REGOLE FACILI ITALIANO e MATEMATICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "REGOLE FACILI ITALIANO e MATEMATICA"

Transcript

1 REGOLE FACILI ITALIANO e MATEMATICA -classi 3, 4, 5 scuola primaria- A cura di

2 INDICE SCHEDE REGOLE DI ITALIANO: Monosillabi 1 Articoli partitivi 2 Preposizioni 3 Aggettivi 4 Pronomi personali 5 Pronomi 6 Analisi logica 7 Complementi 8 REGOLE DI MATEMATICA: Doppio, triplo 9 Il migliaio 10 Moltiplicazioni a due cifre con la prova 11 Divisioni con la prova 12 Proprietà delle operazioni Moltiplicazioni e divisioni per Le frazioni Multipli e divisori 18 Criteri di divisibilità 19 La percentuale 20 Le espressioni 21 Le potenze 22 Misure Peso lordo, peso netto e tara 25 Compravendita 26

3

4 Monosillabi Sempre con l accento Sempre senza accento CIÒ GIÀ GIÙ PIÙ PUÒ BLU DO FA FU LE LO MA ME MI NO QUA QUI RE SA SO SU TI TRE TU VA VI Monosillabi che cambiano significato Con l accento Senza accento DÀ - VERBO DARE DÌ È - GIORNO NOME - VERBO ESSERE LÀ - AVVERBIO DI LUOGO LÌ - AVVERBIO DI LUOGO NÉ - CONGIUNZIONE NEGATIVA DA - PREPOSIZIONE SEMPLICE DI - PREPOSIZIONE SEMPLICE E - CONGIUNZIONE LA - ARTICOLO PRONOME LI - PRONOME NE - PRONOME AVVERBIO SÉ - PRONOME PERSONALE SE - CONGIUNZIONE SÌ - AVVERBIO DI AFFERMAZIONE SI - PARTICELLA PRONOMINALE TÈ - BEVANDA NOME TE - PRONOME PERSONALE 1

5 Articoli partitivi INDICANO UNA QUANTITÀ IMPRECISATA Esempio: (prendi delle fragole!) MASCHILE FEMMINILE SINGOLARE PLURALE SINGOLARE PLURALE del dei dello degli della delle 2

6 Preposizioni SEMPLICI ARTICOLATE DI A DA IN CON SU PER + IL LO LA I GLI LE DI PREP. SEMPLICE + ART. DETERMINATIVO del dello della dei degli delle A al allo alla ai agli alle DA IN dal dallo dalla dai dagli dalle nel nello nella nei negli nelle SU sul sullo sulla sui sugli sulle TRA FRA 3

7 Aggettivi Accompagnano il nome e specificano delle informazioni. QUALIFICATIVI DETERMINATIVI Indicano la qualità del nome Si distinguono dagli altri aggettivi perché hanno i gradi GRADO POSITIVO COMPARATIVO DI MAGGIORANZA COMPARATIVO DI MINORANZA COMPARATIVO DI UGUAGLIANZA SUPERLATIVO ASSOLUTO SUPERLATIVO RELATIVO (bello) (più bello di) (meno bello di) (bello come) (bellissimo, molto bello) (il più bello) POSSESSIVI mio, tuo... proprio, altrui... DIMOSTRATIVI questo, codesto, quello, stesso, medesimo INDEFINITI Qualche, ogni, nessuno, poco, tanto, alcuni, qualsiasi, altro... NUMERALI ORDINALI CARDINALI RICORDA! primo, secondo... 1, 2, 3... L AGGETTIVO accompagna il nome, il PRONOME, invece, lo sostituisce. Gli AGGETTIVI DETERMINATIVI possono essere anche pronomi! 4

8 Pronomi personali I PRONOMI SOSTITUISCONO I NOMI! Soggetto Specificano la persona del verbo. Complemento 1ª PERS. SING. IO 2ª PERS. SING. 3ª PERS. SING. TU EGLI/ELLA LUI/LEI ESSO/ESSA 1ª PERS. PLURALE 2ª PERS. PLURALE 3ª PERS. PLURALE NOI VOI ESSI/ESSE/LORO ME, MI TE, TI LUI, LEI, SÉ, SI, LO, LA, NE, GLI, LE NOI, CE, CI VOI, VE, VI ESSI, ESSE, SÉ, LORO, LI, LE, NE, SI 5

9 questo, codesto, quello, stesso, medesimo, coloro, colui, ciò. DIMOSTRATIVI che, quale, quanto, chi. ESCLAMATIVI E INTERROGATIVI Pronomi ORDINALI NUMERALI CARDINALI POSSESSIVI mio, tuo... proprio, altrui... primo, secondo... 1, 2, 3... INDEFINITI Alcuno, nessuno, poco, ognuno, nulla... RICORDA! I PRONOMI stanno al posto del nome (il nome a cui si riferiscono non c è) Gli AGGETTIVI, invece, accompagnano il nome (il nome a cui si riferiscono è vicino a loro) 6

10 Analisi logica DIVIDE LA FRASE IN SINTAGMI Soggetto Espansione Di chi si parla? Diretta Compie / subisce l azione Complemento oggetto Chi? Che cosa? Indiretta Tutti gli altri complementi Predicato (verbo) Verbale Che cosa fa? Nominale Cosa è? Com è? 7

11 Complementi Diretto Chi? Che cosa? COMPLEMENTO OGGETTO Esempio: Maria mangia (che cosa?) una mela Indiretti Di chi? Di che cosa? Dove? Da dove? Verso dove? Per dove? Quando? Da/per/tra quanto tempo? A chi? A che cosa? Da chi? Da che cosa? DI SPECIFICAZIONE DI LUOGO DI TEMPO DI TERMINE D AGENTE (persona) DI CAUSA EFFICIENTE (cosa) Come? In che modo? DI MODO Con che cosa? Con chi? Con che cosa? A causa di chi? A causa di che cosa? Per quale fine? A quale scopo? Per chi? Per che cosa? DI MEZZO DI COMPAGNIA (PERSONA) DI UNIONE (COSE) DI CAUSA DI FINE O SCOPO 8

12

13 Doppio/metà, triplo... Doppio = x 2 Metà = : 2 Triplo = x 3 Terza parte = : 3 Quadruplo = x 4 Quarta parte = : 4 9

14 Il migliaio 1UK = U Cioè 1 gruppo di mille cose 1 uk = 10 h = 100 da = u 10

15 Moltiplicazioni e divisioni in colonna con la prova MOLTIPLICAZIONE A DUE CIFRE Esempio: 1. Si moltiplica le u per le u 2. Si moltiplica le u per le da 23 x 12 = 276 Si ottiene il 1 prodotto parziale, e si scrive + 3. Si scrive uno 0 sotto le u 4. Si moltiplica le da per le u 5. Si moltiplica le da per le da Si ottiene il 2 prodotto parziale 6. Si fa la somma dei prodotti parziali h da u 2 3 x 1 2 = = Si ottiene il risultato PROVA Si applica la PROPRIETÀ COMMUTATIVA. OPERAZIONE PROVA h da u 2 3 x 1 2 = = h da u 1 2 x 2 3 = = FARE ATTENZIONE AI RIPORTI QUANDO CI SONO! 11

16 DIVISIONE dividendo divisore 127 : 3 = 42 r. 1 quoziente resto 1. Metto il cappellino al numero che posso dividere ( 12 ): quante volte il divisore ( 3 ) sta in quel numero? (Controllo pensando alla tabellina) Il 3 nel 12 sta 4 volte (3x4=12) col resto di 0 che va scritto sotto all ultima cifra del numero col cappellino. 2. Abbasso la cifra dopo il cappellino ( 7 ) e calcolo quante volte sta il divisore ( 3 ) in quel numero Il 3 nel 7 sta 2 volte col resto di 1 ( 3x2=6 ), per arrivare a 7 manca 1 e va scritto sotto al : 3 = 42 r. 1 PROVA Si moltiplica il risultato (QUOZIENTE) per il DIVISORE. Il prodotto sarà uguale al DIVIDENDO se la divisione è corretta h da u 4 2 x 3 = = RICORDA di aggiungere il resto, quando c è. 12

17 Proprietà delle operazioni ADDIZIONE COMMUTATIVA ASSOCIATIVA = = = = 40 Cambiando l ordine degli addendi, il totale non cambia Sostituendo più addendi con la loro somma, il totale non cambia SOTTRAZIONE INVARIANTIVA = = = = 12 Sommando o sottraendo ad entrambi i termini lo stesso numero, la differenza non cambia 13

18 MOLTIPLICAZIONE COMMUTATIVA ASSOCIATIVA 3 x 5 = 15 5 x 3 = 15 Cambiando l ordine dei fattori, il prodotto non cambia DISTRIBUTIVA 14 x 6 = 7 x 2 x 6 = 84 Il prodotto della moltiplicazione non cambia se a un fattore si sostituiscono più numeri il cui prodotto è uguale al fattore sostituito 3 x 5 x 2 = 3 x 10 = 30 Sostituendo alcuni fattori con il loro prodotto il prodotto finale non cambia DISSOCIATIVA 3 x ( ) = (3 x 10) + (3 x 2) = = 36 Permette di moltiplicare un numero per ciascun termine di una addizione (o sottrazione) e sommare (o sottrarre) i risultati ottenuti DIVISIONE INVARIANTIVA 16 : 4 = 4 x2 x2 32 : 8 = 4 16 : 4 = 4 :2 :2 8 : 2 = 4 Moltiplicando o dividendo entrambi i termini della divisione per lo stesso numero il quoziente non cambia 14

19 MOLTIPLICARE x 10 / 100 / x x 10 = 130 Si aggiunge uno zero x 100 x x 100 = x = Si aggiungono due zeri Si aggiungono tre zeri Se c è la virgola, la si sposta verso DESTRA di uno, due, tre posti e si riempie con lo zero eventuali posti vuoti. 0,2 x 10 = 2 0,2 x 100 = 20 0,2 x = 200 DIVIDERE : 10 / 100 / : : 10 = 23 Si toglie uno zero : x 100 = 35 Si tolgono due zeri : : = 78 Si tolgono tre zeri Se c è la virgola, la si sposta verso SINISTRA di uno, due, tre posti e si riempie con lo zero eventuali posti vuoti. 20,3 : 10 = 2,03 20,3 : 100 = 0,203 20,3 : = 0,

20 Le frazioni Frazionare = dividere in parti uguali 1 3 l intero è diviso in 3 parti uguali e ne è stata colorata NUMERATORE (quante parti vengono considerate) LINEA DI FRAZIONE DENOMINATORE (numero delle parti uguali in cui è stato diviso l intero) Calcolare la frazione di un numero x 3 di : 5 = 4 5 : 4 x 3 =

21 Calcolare l intero 21 = 3 di 4 : x 21 = 3 24 : 3 = x 4 = 24 Confrontare le frazioni CON DENOMINATORE UGUALE È maggiore quella con il numeratore maggiore CON NUMERATORE UGUALE È maggiore quella con il denominatore minore

22 Multipli e Divisori Numeri che si ottengono moltiplicando per 1, 2... Numeri che dividono esattamente un numero Esempio: 32 è multiplo di 8 ed anche di 4 8 x 4 = 32 4 x 8 = 32 Esempio: 4 è divisore di Ricorda! CONOSCI LE TABELLINE, I NUMERI CHE LE COMPONGONO SONO MULTIPLI DEL NUMERO «PROPRIETARIO» DELLA TABELLINA IN CUI SI TROVANO Ricorda! CONOSCI LE TABELLINE, IL NUMERO «PROPRIETARIO» DELLA TABELLINA È DIVISORE DI TUTTI I NUMERI CHE STANNO NELLA SUA TABELLINA Esempio: tabellina del 7 Esempio: tabellina del 7 14, 21, 28, Sono multipli del numero 7 «proprietario» 7 è il «proprietario», ed è divisore di 7, 14, 21,

23 Criteri di divisibilità Ricorda! Un numero è divisibile per 2 se è pari Un numero è divisibile per 3 se la somma delle sue cifre è nella tabellina del 3 Un numero è divisibile per 4 se le ultime due cifre sono 00 oppure formano un numero multiplo di 4 Un numero è divisibile per 5 se la cifra delle unità è 0 oppure

24 La percentuale È una frazione che ha 100 per denominatore! 8% = CALCOLARE IL VALORE DELLA PERCENTUALE CALCOLARE L INTERO l 8% di x di =? : 300 è il 60% di? : 60 x 300 = di : 100 = : 60 = 5 24 x 8 = x 100 =

25 Le espressioni SENZA PARENTESI CON LE PARENTESI Solo solo + e - oppure x e : I calcoli vanno fatti seguendo l ordine preciso in cui si trovano Esempio: = = = 5 x 2 x 3 : 10 = x : 1. Prima si fanno le x e le : seguendo l ordine in cui si trovano, 2. Poi si fanno le + e le - seguendo l ordine in cui si trovano Esempio: 30 : x 3-1 = = 18-1 = x 3 : 10 = 30 : 10 = 3 3. Prima si fanno le operazioni nelle parentesi TONDE (... ) e tutto il resto si copia com è 4. Poi si fanno le operazioni nelle parentesi QUADRE [... ] e tutto il resto si copia com è 5. Infine si fanno le operazioni nelle parentesi GRAFFE {... } e tutto il resto si copia com è 6. Si continua con le regole «SENZA PARENTESI» 21

26 Potenze MOLTIPLICAZIONI IN CUI SI RIPETE TANTE VOLTE LO STESSO FATTORE 3 x 3 x 3 x 3 x 3 = 3 5 (tre alla quinta) ESPONENTE (= quante volte la base va moltiplicata per se stessa) 3 5 BASE (= fattore da moltiplicare per se stesso) Esempio: 2 3 = 2 x 2 x 2 = 8 OK 2 3 = 2 x 3 = 6 NO!!! RICORDA! Con esponente 1, la potenza (cioè il risultato) è il numero stesso. 2 1 = 2 Con esponente 0, la potenza (cioè il risultato) è sempre = 1 Nella potenza con base 10, l esponente ci dice quanti zeri scrivere al risultato dopo la cifra = = =

27 Misure Ricorda! Ogni salto vale 10. Spostandosi a destra si moltiplica (ogni salto x 10) Spostandosi a sinistra si divide (ogni salto : 10)... di LUNGHEZZA MULTIPLI UNITÀ DI MISURA SOTTOMULTIPLI Km hm dam m metro dm cm mm... di CAPACITÀ MULTIPLI UNITÀ DI MISURA SOTTOMULTIPLI hl dal l litro dl cl ml... di PESO MULTIPLI UNITÀ DI MISURA SOTTOMULTIPLI SOTTOMULTIPLI DEL GRAMMO Mg (t) 100Kg 10Kg Kg chilogrammo hg dag g grammo dg cg mg 23

28 Misure di SUPEFICIE MULTIPLI UNITÀ DI MISURA SOTTOMULTIPLI Km² hm² dam² m² metro quadrato dm² cm² mm² Ricorda! Ogni salto vale 100. Spostandosi a destra si moltiplica (ogni salto x 100) Spostandosi a sinistra si divide (ogni salto : 100)... di VOLUME MULTIPLI UNITÀ DI MISURA SOTTOMULTIPLI Km³ hm³ dam³ m³ metro cubo dm³ cm³ mm³ Ricorda! Ogni salto vale Spostandosi a destra si moltiplica (ogni salto x 1000) Spostandosi a sinistra si divide (ogni salto : 1000) 24

29 Peso lordo - Peso netto - Tara Peso lordo Peso netto Tara P. netto + tara P. lordo - tara P. lordo - P. netto 25

30 La Compravendita Ricavo Spesa Guadagno Perdita Spesa + Guadagno Ricavo - Guadagno Ricavo - Spesa Spesa - Ricavo 26

Il Sistema di numerazione decimale

Il Sistema di numerazione decimale Il Sistema di numerazione decimale Il NUMERO è un oggetto astratto, rappresentato da un simbolo (o cifra) ed è usato per contare e misurare. I numeri usati per contare, 0,1,2,3,4,5,. sono detti NUMERI

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali 1. ADDIZIONE Le quattro operazioni fondamentali Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

4 + 7 = 11. Possiamo quindi dire che:

4 + 7 = 11. Possiamo quindi dire che: Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +

Dettagli

Le operazioni fondamentali in R

Le operazioni fondamentali in R La REGOLA DEI SEGNI: 1. ADDIZIONE Le operazioni fondamentali in R + per + dà + per dà + + per dà per + dà Esempi: (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3)

Dettagli

Richiami di aritmetica (1)

Richiami di aritmetica (1) Richiami di aritmetica (1) Operazioni fondamentali e loro proprietà Elevamento a potenza e proprietà potenze Espressioni aritmetiche Scomposizione: M.C.D. e m.c.m Materia: Matematica Autore: Mario De Leo

Dettagli

Le operazioni fondamentali con i numeri relativi

Le operazioni fondamentali con i numeri relativi SINTESI Unità Le operazioni fondamentali con i numeri relativi Addizione La somma di due numeri relativi concordi è il numero relativo che ha lo stesso segno degli addendi e come valore assoluto la somma

Dettagli

posso assicurare che le mie sono ancora maggiori

posso assicurare che le mie sono ancora maggiori PROF. SSA G. CAFAGNA CLASSI: 1 B, 1 G, 1 I, 1 M, 1 N Non preoccuparti delle difficoltà che incontri in matematica, ti posso assicurare che le mie sono ancora maggiori (Albert Einstein) ADDIZIONE I due

Dettagli

ESERCIZIARIO DI MATEMATICA

ESERCIZIARIO DI MATEMATICA Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi

Dettagli

Richiami di aritmetica

Richiami di aritmetica Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI

Dettagli

LEZIONE 1. del 10 ottobre 2011

LEZIONE 1. del 10 ottobre 2011 LEZIONE 1 del 10 ottobre 2011 CAPITOLO 1: Numeri naturali N e numeri interi Z I numeri naturali sono 0, 1, 2, 3, 4, 5, Questi hanno un ordine. Di ogni numero naturale, escluso lo 0, esistono il precedente

Dettagli

Operazioni in N Le quattro operazioni Definizioni e Proprietà

Operazioni in N Le quattro operazioni Definizioni e Proprietà Operazioni in N Le quattro operazioni Definizioni e Proprietà Prof.Enrico Castello Concetto di Operazione NUMERO NUMERO OPERAZIONE RISULTATO PROCEDIMENTO CHE PERMETTE DI ASSOCIARE A DUE NUMERI, DATI IN

Dettagli

= < < < < < Matematica 1

= < < < < < Matematica  1 NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato

Dettagli

ECCOLO FINALMENTE!!!

ECCOLO FINALMENTE!!! ECCOLO FINALMENTE!!! Disponibile da fine giugno 160 pagine 15 euro 4 sezioni: aritmetica geometria problemi schede allegate Per ulteriori informazioni - in attesa dell' aggiornamento del sito - contattare

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali SINTESI Unità 3 Le quattro operazioni fondamentali Addizione Si dice somma di due numeri naturali il numero che si ottiene contando di seguito al primo tanti numeri consecutivi quante sono le unità del

Dettagli

MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche

MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche MAPPA 1 Strumenti e rappresentazioni grafiche Tabella a doppia entrata Una tabella a doppia entrata è formata da righe e colonne. Per convenzione, si legge in senso orario (nel verso indicato dalla freccia).

Dettagli

Conoscenze. 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene...

Conoscenze. 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene... Conoscenze 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene...... 2. La sottrazione è l operazione che associa a due numeri, detti rispettivamente... e..,

Dettagli

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero.

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero. L unità frazionaria DEFINIZIONE. L unità frazionaria n con n 0 rappresenta una sola delle n parti uguali in cui è stato diviso l intero. Sono unità frazionarie: ognuna di esse indica che l intero è stato

Dettagli

Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: 3 + 2 = 2 + 3 3 2 = 2 3

Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: 3 + 2 = 2 + 3 3 2 = 2 3 Calcolo mentale rapido Proprietà delle operazioni Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: Proprietà commutativa dell addizione

Dettagli

Classe ALLENAMENTO INVALSI MATEMATICA (4) - Numeri (2) Cognome e Nome Classe Data

Classe ALLENAMENTO INVALSI MATEMATICA (4) - Numeri (2) Cognome e Nome Classe Data Classe 1-3 - ALLENAMENTO INVALSI MATEMATICA (4) - Numeri (2) Cognome e Nome Classe Data 1. Quale valore deve avere il perché la seguente uguaglianza sia vera? 24,5 : 100 = 2,45 : [ ] B. 1 [ ] C. 0,1 [

Dettagli

E costituito da un indice.

E costituito da un indice. Questo semplice quaderno di matematica è pensato sia per bambini e bambine che hanno problemi specifici di apprendimento sia per quei bambini e bambine che hanno solo bisogno di un ripasso prima di un

Dettagli

OPERAZIONI IN Q = + = = = =

OPERAZIONI IN Q = + = = = = OPERAZIONI IN Q A proposito delle operazioni tra numeri razionali, affinché il passaggio da N a vero e proprio ampliamento è necessario che avvengano tre cose: Q risulti un ) le proprietà di ciascuna operazione

Dettagli

Richiami di aritmetica(2)

Richiami di aritmetica(2) Richiami di aritmetica() Frazioni definizioni, operazioni, espressioni Numeri decimali Rapporti e proporzioni Percentuali Materia Matematica Autore Mario De Leo Le frazioni La frazione è un operatore che

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

Milena Catucci Schede facilitate per esercizi di analisi logica e grammaticale

Milena Catucci Schede facilitate per esercizi di analisi logica e grammaticale www.ilmelograno.net Milena Catucci il QUADERNINO delle REGOLE di ITALIANO Schede facilitate per esercizi di analisi logica e grammaticale GUIDA PER FARE L ANALISI GRAMMATICALE ( come utilizzare le schede

Dettagli

La tabella è completa perché l'addizione è un'operazione sempre possibile.

La tabella è completa perché l'addizione è un'operazione sempre possibile. Operazioni aritmetiche fondamentali in N Addizione Operazione che a due numeri (addendi) ne associa un terzo (somma) ottenuto contando di seguito al primo tante unità quante ne rappresenta il secondo.

Dettagli

GLOSSARIO MATEMATICO. ,0,, 2, 3,,... = {razionali e irrazionali}

GLOSSARIO MATEMATICO. ,0,, 2, 3,,... = {razionali e irrazionali} GLOSSARIO MATEMATICO SIMBOLI MATEMATICI N insieme dei naturali { 0,,,,,... } Z insieme dei interi relativi {...,,,0,,,... } Q insieme dei razionali...,,,0, +, +,... 7 Q a insieme dei razionali positivi

Dettagli

per un altro; le più importanti sono quelle di seguito elencate.

per un altro; le più importanti sono quelle di seguito elencate. 2 Abilità di calcolo I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici. Prima di cimentarti con i test proposti,

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 4 2016

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 4 2016 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 4 2016 GLI INSIEMI NUMERICI N Numeri naturali Z : Numeri interi Q : Numeri razionali R : Numeri reali Q A meno di isomorfismi!!! R 5 π

Dettagli

Scheda per il recupero 1

Scheda per il recupero 1 A Ripasso Le operazioni in N e le loro proprietà OPERAZIONE PROPRIETÀ ESEMPI Addizione Interna a N (ovvero la somma di due numeri naturali è sempre un numero naturale) Commutativa a þ b ¼ b þ a Associativa

Dettagli

OPERAZIONI CON LE FRAZIONI

OPERAZIONI CON LE FRAZIONI OPERAZIONI CON LE FRAZIONI ADDIZIONE prima di eseguire l operazione si riducono le frazioni (se è possibile) ai minimi termini. Si riconoscono tre situazioni. Le frazioni hanno lo stesso denominatore si

Dettagli

1. OPERAZIONE DI ESTRAZIONE DELLA RADICE DI UN NUMERO

1. OPERAZIONE DI ESTRAZIONE DELLA RADICE DI UN NUMERO 1. OPERAZIONE DI ESTRAZIONE DELLA RADICE DI UN NUMERO L'estrazione della radice di un numero è una delle due operazioni inverse dell'operazione di elevamento a potenza attraverso la quale si calcola la

Dettagli

MORFOLOGIA ITALIANA seconda edizione riveduta ed aggiornata I N D I C E

MORFOLOGIA ITALIANA seconda edizione riveduta ed aggiornata I N D I C E I N D I C E Introduzione... 1. Il verbo... 1.1. Classificazione... 1.1.1. Il significato e la funzione dei verbi... 1.1.2. Il genere dei verbi: verbi transitivi e verbi intransitivi... 1.1.3. La forma

Dettagli

MATEMATICA CLASSE QUARTA

MATEMATICA CLASSE QUARTA MATEMATICA CLASSE QUARTA a) I NUMERI NATURALI E LE 4 OPERAZIONI U.D.A. : 1 I NUMERI NATURALI 1. Conoscere l evoluzione dei sistemi di numerazione nella storia dell uomo. 2. Conoscere e utilizzare la numerazione

Dettagli

La tabella dell addizione Completa la tabella e poi rispondi alle domande.

La tabella dell addizione Completa la tabella e poi rispondi alle domande. La tabella dell addizione Completa la tabella e poi rispondi alle domande. CCCCCCCCCCCC + 0 4 5 6 7 8 9 0 0 4 5 6 7 8 9 0 A ogni coppia ordinata di numeri naturali corrisponde sempre un numero naturale?

Dettagli

184 Il dialetto arzaghese

184 Il dialetto arzaghese INDICE PREFAZIONE...3 Prefazione alla seconda edizione...8 FONOLOGIA E ORTOGRAFIA...9 Fonemi...9 Alfabeto IPA...10 Alfabeto arzaghese e sua corrispondenza col sistema fonologico...17 Ortografia...18 Scrittura

Dettagli

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

Esercizi di matematica scuola media inferiore Livello 1

Esercizi di matematica scuola media inferiore Livello 1 Esercizi di matematica scuola media inferiore Livello Indice degli argomenti ARITMETICA NUMERI NATURALI E NUMERI DECIMALI LE OPERAZIONI FONDAMENTALI ADDIZIONE SOTTRAZIONE ESPRESSIONI ARITMETICHE CON ADDIZIONI

Dettagli

BREVE RIEPILOGO SULLE FRAZIONI

BREVE RIEPILOGO SULLE FRAZIONI BREVE RIEPILOGO SULLE FRAZIONI ---> Numeratore = numero di parti uguali considerate Linea di frazione Denominatore = numero di parti uguali in cui è diviso l'intero la frazione si

Dettagli

Classifichiamo i poligoni

Classifichiamo i poligoni Geometria La parola geometria significa misura (metria) della terra (geo). La geometria si occupa dello studio della misura e della forma degli oggetti disposti nello spazio. Le idee primitive (che vengono

Dettagli

Algebra. I numeri relativi

Algebra. I numeri relativi I numeri relativi I numeri relativi sono quelli preceduti dal segno > o dal segno . I numeri positivi sono quelli preceduti dal segno + (zero escluso). I numeri negativi sono quelli preceduti

Dettagli

MAPPA MULTIPLI E DIVISORI

MAPPA MULTIPLI E DIVISORI MAPPA MULTIPLI E DIVISORI 1 MULTIPLI E DIVISORI divisibilità definizione di multiplo criteri di divisibilità definizione di divisore numeri primi e numeri composti scomposizione in fattori primi calcolo

Dettagli

La tabella dell addizione Completa la tabella e poi rispondi alle domande.

La tabella dell addizione Completa la tabella e poi rispondi alle domande. La tabella dell addizione Completa la tabella e poi rispondi alle domande. CCCCCCCCCCCC + 0 4 5 6 7 8 9 0 0 4 5 6 7 8 9 0 A ogni coppia ordinata di numeri naturali corrisponde sempre un numero naturale?

Dettagli

1 Multipli e sottomultipli. Divisibilità

1 Multipli e sottomultipli. Divisibilità Multipli e sottomultipli. Divisibilità LA TEORIA Se la divisione fra due numeri naturali è propria (cioè il resto è uguale a 0) i due numeri si dicono divisibili. Per esempio, nella divisione 8 : diciamo

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1) LGEBR \ CLCOLO LETTERLE \ MONOMI (1) Un monomio è un prodotto di numeri e lettere; gli (eventuali) esponenti delle lettere sono numeri naturali (0 incluso). Ogni numero (reale) può essere considerato come

Dettagli

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto NUMERI RELATIVI NUMERO RELATIVO È caratterizzato da: segno positivo (+) o negativo (-) 2 3 2 parte numerica che è detta valore assoluto 3 NUMERI RELATIVI Numeri interi relativi (N) Numeri razionali relativi

Dettagli

Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y

Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y Calcolo letterale Calcolo letterale e operazioni - L uso delle lettere al posto dei numeri si utilizza per scrivere proprietà e regole dandone una valenza più generale rispetto ad un restrittivo esempio

Dettagli

Ragionamento numerico, critico-numerico e numerico-deduttivo

Ragionamento numerico, critico-numerico e numerico-deduttivo Capitolo 2 Ragionamento numerico, critico-numerico e numerico-deduttivo 1. I test di ragionamento critico-numerico Per rendere più agevole la lettura di una distribuzione di dati, raggrupparne sezioni

Dettagli

PROGRAMMA DI MATEMATICA Anno scolastico

PROGRAMMA DI MATEMATICA Anno scolastico PROGRAMMA DI MATEMATICA Anno scolastico 2011-2012 Aritmetica UNITÀ 1 - STRUMENTI DI BASE UTILIZZIAMO I NUMERI Numeri e operazioni in colonna Numeri e cifre Operazioni in colonna (addizione, sottrazione,

Dettagli

Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA

Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA RIPASSO DI MATEMATICA MATEMATICA DI BASE CHE OCCORRE CONOSCERE Numeri relativi ed operazioni con i medesimi Frazioni Potenze e relative proprieta Monomi, polinomi, espressioni algebriche Potenze di dieci

Dettagli

EQUIVALENZE. Eseguire equivalenze significa trasformare una misura in un altra equivalente Come effettuare i cambi tra misure: km hm dam m dm cm mm

EQUIVALENZE. Eseguire equivalenze significa trasformare una misura in un altra equivalente Come effettuare i cambi tra misure: km hm dam m dm cm mm EQUIVALENZE Eseguire equivalenze significa trasformare una misura in un altra equivalente Come effettuare i cambi tra misure: X 10 X 10 X 10 X 10 X 10 X 10 km hm dam m dm cm mm : 10 : 10 : 10 : 10 : 10

Dettagli

Mariarosaria Mancusi

Mariarosaria Mancusi Appunti di Matematica per allievi stranieri del I anno Corso serale A.F. 20/204 IFP Pertini Trento Settore Acconciatore - Estetista A cura di Mariarosaria Mancusi .. 4. L insieme... 6.. Rappresentazione..

Dettagli

Fonologia e ortografia

Fonologia e ortografia Programma di lingua e letteratura italiana (grammatica) 2014/2015 Prof.ssa Maria Rosaria Aliberti Classe 1BT Fonologia e ortografia I suoni e i segni Come si scrivono e come si pronunciano le lettere Uso

Dettagli

I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo

I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo I numeri relativi Definizioni Rappresentazione Operazioni Espressioni Esercizi Materia Matematica Autore Mario De Leo Definizioni I numeri relativi sono i numeri preceduti dal simbolo (positivi) o dal

Dettagli

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm A. Calcolo in Q Questo capitolo tratta argomenti che solitamente sono già stati svolti alle scuole medie ed elementari. Tali argomenti sono necessari per affrontare il programma delle scuole superiori.

Dettagli

I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza

I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza LA RADICE QUADRATA I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza L estrazione di radice, l operazione che

Dettagli

La proprietà associativa Applica la proprietà associativa, come nell esempio.

La proprietà associativa Applica la proprietà associativa, come nell esempio. La proprietà associativa Applica la proprietà associativa, come nell esempio. es.: (3 + 47) + 0 = 3 + (47 + 0) = 3 + 47 + 0 = 80 (9 +) + 74 =...... +... +... = 58 + (5 + 79) =... +... +... =...... +...

Dettagli

L insieme dei numeri Relativi

L insieme dei numeri Relativi L insieme dei numeri Relativi ITIS Feltrinelli anno scolastico 007-008 R. Folgieri 007-008 1 Ampliamento di N e Q: i relativi Nell insieme N non possiamo fare operazioni quali -1 perché il risultato non

Dettagli

Unità frazionaria. 5 Da quanti gettoni è formato l intero?... Quanti gettoni hai colorato?...

Unità frazionaria. 5 Da quanti gettoni è formato l intero?... Quanti gettoni hai colorato?... Esegui secondo le indicazioni. Unità frazionaria Ritaglia le figure in fondo alla scheda. Prendi la figura n. e piegala lungo il tratteggio. Quante parti uguali hai ottenuto?... Colorane una sola. Ogni

Dettagli

ESERCIZIO N. 1: SVOLGIMENTO DELL ANALISI LOGICA E GRAMMATICALE. 1) Il mio vicino di casa ha fatto i bagagli ed è partito per Parigi.

ESERCIZIO N. 1: SVOLGIMENTO DELL ANALISI LOGICA E GRAMMATICALE. 1) Il mio vicino di casa ha fatto i bagagli ed è partito per Parigi. ESERCIZIO N. 1: SVOLGIMENTO DELL E GRAMMATICALE Fai l analisi logica delle seguenti frasi. 1) Il mio vicino di casa ha fatto i bagagli ed è partito per Parigi. Il mio vicino: soggetto + attributo. Di casa:

Dettagli

10. 4 4 11. 2 : 12. Quale delle seguenti frazioni occorre

10. 4 4 11. 2 : 12. Quale delle seguenti frazioni occorre www.matematicamente.it Frazioni Frazioni Nome: Classe: Data:. Nella frazione A. è il denominatore, è il numeratore B. è il numeratore, è il denominatore C. Sia, sia sono detti numeratori D. Sia, sia sono

Dettagli

Ricorda: i termini dell addizione sono detti.. il risultato Proprietà dell addizione: Commutativa: = in generale a + b = b + a

Ricorda: i termini dell addizione sono detti.. il risultato Proprietà dell addizione: Commutativa: = in generale a + b = b + a Le operazioni numeriche Le proprietà delle operazioni. ( teoria 13 24 es. 105 112 ) 1) L addizione ( + ). 342 + === Addenti 3,42+ 879 87,9 === Somma Ricorda: i termini dell addizione sono detti.. il risultato

Dettagli

Costruiamo la STRISCIA DELLE MISURE. decametro metro decimetro. Tm Gm Mm km hm dam m dm cm mm µm nm pm

Costruiamo la STRISCIA DELLE MISURE. decametro metro decimetro. Tm Gm Mm km hm dam m dm cm mm µm nm pm Terametro Gigametro Megametro chilometro ettometro decametro metro decimetro micrometro millimetro milcrometro nanometro picometro Costruiamo la STRISCIA DELLE MISURE. Tm Gm Mm km hm dam m dm cm mm µm

Dettagli

Numeri relativi: numeri il cui valore dipende dal segno che li precede.

Numeri relativi: numeri il cui valore dipende dal segno che li precede. . Definizioni e proprietà Numeri relativi: numeri il cui valore dipende dal segno che li precede. + 4 è un numero positivo, cioè maggiore di 0, perché preceduto dal segno + (il segno + davanti ai numeri

Dettagli

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -.

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -. I numeri naturali non sono adatti per risolvere tutti i problemi. Esempio. La temperatura atmosferica di un mattino estivo, sopra lo zero, viene indicata con un numero preceduto dal segno + (+19 C, +25

Dettagli

ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI

ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI si campa anche senza sapere che cos è un equazione, senza sapere suonare uno strumento musicale, senza conoscere il nome del

Dettagli

Che cos è il pronome. Rispetto al SIGNIFICATO i pronomi si distinguono in:

Che cos è il pronome. Rispetto al SIGNIFICATO i pronomi si distinguono in: IL PRONOME Che cos è il pronome Il pronome è la parte variabile del discorso che SOSTITUISCE: un nome È l autobus CHE (l autobus) prendo ogni mattina. un aggettivo Dicono che sei gentile, ma a me non LO

Dettagli

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N.

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. MULTIPLI E DIVISORI Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. Poiché N = 0,1,2,3...7...95,..104.. Zero è multiplo di

Dettagli

1 Multipli di un numero

1 Multipli di un numero Multipli di un numero DEFINIZIONE. I multipli di un numero sono costituiti dall insieme dei prodotti ottenuti moltiplicando quel numero per la successione dei numeri naturali. I multipli del numero 4 costituiscono

Dettagli

I RADICALI QUADRATICI

I RADICALI QUADRATICI I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,

Dettagli

espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio:

espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio: Calcolo letterale Espressione letterale Un espressione letterale è un insieme di numeri e lettere legati dai simboli delle operazioni. Il valore numerico di un espressione letterale è il risultato numerico

Dettagli

che cosa sai fare Prova a misurare la tua consapevolezza sulla lingua parlata 4 Prova a misurare la tua consapevolezza sulla lingua scritta 5

che cosa sai fare Prova a misurare la tua consapevolezza sulla lingua parlata 4 Prova a misurare la tua consapevolezza sulla lingua scritta 5 Percorso 1 La fonortografia mappa del percorso 2 Prova a misurare la tua consapevolezza sulla lingua parlata 4 Prova a misurare la tua consapevolezza sulla lingua scritta 5 Come si parla e come si scrive

Dettagli

Il calcolo letterale algebrico. (NLM teoria pag ; esercizi pag )

Il calcolo letterale algebrico. (NLM teoria pag ; esercizi pag ) Il calcolo letterale algebrico. (NLM teoria pag. 7 86; esercizi pag. 11 5) Il calcolo letterale, o algebrico, è quella parte della matematica che generalizza il calcolo numerico utilizzando delle lettere

Dettagli

CURRICOLO DI ITALIANO CLASSE PRIMA

CURRICOLO DI ITALIANO CLASSE PRIMA CURRICOLO DI ITALIANO CLASSE PRIMA Conoscere l ordine alfabetico; Riconoscere le vocali dal punto di vista grafico e fonico; Riconoscere e isolare le vocali nelle parole che le contengono; Riconoscere

Dettagli

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica erasmo@galois.it MONOMI In una formula si dicono variabili le lettere alle quali può essere

Dettagli

le frazioni NUMERATORE Termini della frazione le frazioni a cura di Barbara Colla 1 Linea di frazione (rappresenta la divisione) DENOMINATORE

le frazioni NUMERATORE Termini della frazione le frazioni a cura di Barbara Colla 1 Linea di frazione (rappresenta la divisione) DENOMINATORE le frazioni Termini della frazione NUMERATORE indica il numero delle parti che vengono considerate Linea di frazione (rappresenta la divisione) DENOMINATORE indica il numero delle parti uguali in cui è

Dettagli

x + y = t x y = t x y = t x : y = t a b c = a (b c) (a b) : c = a (b: c) b : c am bn = (ab) m+n a : b

x + y = t x y = t x y = t x : y = t a b c = a (b c) (a b) : c = a (b: c) b : c am bn = (ab) m+n a : b Vero Falso 1. L addizione è sempre possibile in N. 2. La sottrazione è sempre possibile in N. 3. Se x + y = t, x e y si chiamano fattori. 4. Se x y = t, t si chiama differenza. 5. Se x y = t, t si chiama

Dettagli

ESERCIZI IN PIÙ I NUMERI COMPLESSI

ESERCIZI IN PIÙ I NUMERI COMPLESSI ESERCIZI IN PIÙ I NUMERI COMPLESSI L equazione x x 0 non ha soluzioni nell insieme dei numeri reali; infatti, applicando la formula ridotta, si ottiene x, 3. Interpretando come numero immaginario, cioè

Dettagli

9. ESERCIZI SUI NUMERI RELATIVI (risposte a pag. 58)

9. ESERCIZI SUI NUMERI RELATIVI (risposte a pag. 58) 9. ESERCIZI SUI NUMERI RELATIVI (risposte a pag. 8) ) Un sommozzatore scende a metri sotto il livello del mare, poi: risale di metri, ridiscende di metri, sale nuovamente di 8 metri. A che profondità si

Dettagli

L aggettivo e il pronome:

L aggettivo e il pronome: L aggettivo e il pronome: Quel ragazzo alto è il mio compagno di banco. Alla tua festa sono venute molte persone interessanti. Queste ghiande sono cadute da quella quercia. Quale libro hai letto? Ogni

Dettagli

Somma di numeri floating point. Algoritmi di moltiplicazione e divisione per numeri interi

Somma di numeri floating point. Algoritmi di moltiplicazione e divisione per numeri interi Somma di numeri floating point Algoritmi di moltiplicazione e divisione per numeri interi Standard IEEE754 " Standard IEEE754: Singola precisione (32 bit) si riescono a rappresentare numeri 2.0 10 2-38

Dettagli

Equivalenze. Prof. A. Spagnolo IMS P. Villari - Napoli

Equivalenze. Prof. A. Spagnolo IMS P. Villari - Napoli Equivalenze 12dm 2...mm 2 ; 14037cm 2...m 2 ; 12kg...cg; 12hm 2...m 2 ; 3km/h...m/s; 12,8m/s...km/h; 5,5km/min...m/s; 6700m/h...m/s; 34m/s...m/h; 3,75m/s...km/min; 350kg/m 3...g/cm 3 ; 14,4g/cm 3...kg/m

Dettagli

Ragazzini: nome comune di persona, maschile, plurale, alterato, diminutivo, concreto.

Ragazzini: nome comune di persona, maschile, plurale, alterato, diminutivo, concreto. ESERCIZIO N. 2. ANALISI GRAMMATICALE SVOLTA 1) I ragazzini giocano spesso a palla nei cortili condominiali. I: articolo determinativo, maschile, plurale. Ragazzini: nome comune di persona, maschile, plurale,

Dettagli

Utilizza tutte le cifre nei cartellini per formare almeno cinque numeri. Scrivili anche in parola.

Utilizza tutte le cifre nei cartellini per formare almeno cinque numeri. Scrivili anche in parola. I grandi numeri: le migliaia Rappresenta sull abaco i numeri scritti sotto. dak uk h da u dak uk h da u dak uk h da u dak uk h da u dak uk h da u 00 000 9 7 0 7 0 0 900 0 Scrivi in cifre i seguenti numeri.

Dettagli

Notazione scientifica e inversione di formule

Notazione scientifica e inversione di formule Notazione scientifica e inversione di formule M. Spezziga Liceo Margherita di Castelvì Sassari Indice 1 Calcoli in notazione scientifica 2 1.1 Moltiplicazioni per potenze di dieci.......................................

Dettagli

DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze

DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze DIVISIBILITA, DIVISORI E MULTIPLI Conoscenze 1. Completa: a) Dati due numeri naturali a e b, con b diverso da..., si dice che a è divisibile per b se... b) In N la divisione è possibile solo se... 2. Sostituisci

Dettagli

Allenamento matematico di primavera

Allenamento matematico di primavera Allenamento matematico di primavera A. Calcola in riga. 0,87 x 10 = 261,42 x 10 = 32,1 x 100 = 0,83 x 100 = 2,89 x 1 000 = 13,2 x 1 000 = 328,4 : 10 = 231 : 10 = 36 : 100 = 14,8 : 100 = 1300 : 1 000 =

Dettagli

MONOMI. Donatella Candelo 13/11/2004 1

MONOMI. Donatella Candelo 13/11/2004 1 Donatella Candelo 1/11/00 1 MONOMI Un monomio è una qualunque espressione algebrica intera data dal prodotto di fattori qualsiasi, numerici o letterali. Praticamente in ogni monomio si può distinguere

Dettagli

24 Capitolo 1. Numeri naturali

24 Capitolo 1. Numeri naturali 24 Capitolo 1. Numeri naturali 1.12 Esercizi 1.12.1 Esercizi dei singoli paragrafi 1.4 - Operazioni con i numeri naturali 1.1. Rispondi alle seguenti domande: a ) Esiste il numero naturale che aggiunto

Dettagli

La Misura Esercizi guida con soluzioni

La Misura Esercizi guida con soluzioni La misura Esercizi guida (UbiMath) - 1 La Misura Esercizi guida con soluzioni Grandezze e sistema metrico decimale Scrivi in forma di numerica e come potenza di dieci i seguenti prefissi SI. 1. mega- =

Dettagli

NUMERI. Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali

NUMERI. Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali NUMERI Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali N NUMERI Per contare i soldi del proprio conto in banca! 0,+1, 1,+2, 2,+3, 3,... Numeri interi Z NUMERI Per tagliare le torte! 0,1,-1,1/2,-1/2,2,-2,1/3,-1/3,2/3.-2/3,...

Dettagli

Quando possiamo dire che un numero a è sottomultiplo del numero b? Al posto dei puntini inserisci è divisibile per oppure è divisore di

Quando possiamo dire che un numero a è sottomultiplo del numero b? Al posto dei puntini inserisci è divisibile per oppure è divisore di ESERCIZI Quando possiamo dire che un numero a è divisibile per un numero b? Quando possiamo dire che un numero a è sottomultiplo del numero b? Quando un numero si dice primo? Al posto dei puntini inserisci

Dettagli

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato:

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato: Radicali Radice quadrata Consideriamo la funzione che associa ad un numero reale il suo quadrato: il cui grafico è il seguente: Il grafico della funzione si trova al di sopra dell asse delle x ed è simmetrico

Dettagli

UNITÀ DIDATTICA 6 LE PROPORZIONI NUMERICHE

UNITÀ DIDATTICA 6 LE PROPORZIONI NUMERICHE UNITÀ DIDATTICA 6 LE PROPORZIONI NUMERICHE 6.1 Le proporzioni. Problemi del tre semplice e del tre composto Se consideriamo 4 numeri a, b, c, d; con b e d diversi da zero, essi formano una proporzione

Dettagli

IL CALCOLO LETTERALE. La «traduzione» del linguaggio comune in linguaggio matematico

IL CALCOLO LETTERALE. La «traduzione» del linguaggio comune in linguaggio matematico IL CALCOLO LETTERALE La «traduzione» del linguaggio comune in linguaggio matematico BREVE STORIA DELL ALGEBRA Dall algebra sincopata all algebra simbolica L algebra è una disciplina antichissima ma il

Dettagli

Numeri interi relativi

Numeri interi relativi Numeri interi relativi 2 2.1 I numeri che precedono lo zero Con i numeri naturali non sempre è possibile eseguire l operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande

Dettagli

35 è congruo a 11 modulo 12

35 è congruo a 11 modulo 12 ARITMETICA MODULARE Scegliamo un numero m che chiameremo MODULO Identifichiamo ogni altro numero con il suo resto nella divisione per m Tutti i numeri col medesimo resto si trovano insieme nella classe

Dettagli

Il PRONOME è la parte variabile del discorso che sostituisce il nome.

Il PRONOME è la parte variabile del discorso che sostituisce il nome. Il PRONOME è la parte variabile del discorso che sostituisce il nome. I pronomi possono essere: PERSONALI MI piace il gelato. RELATIVI La storia è una materia CHE mi piace tanto. POSSESSIVI Il tuo cane

Dettagli

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione.

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. Monomi e Polinomi Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. ) Sono monomi: 5 a 3 b 2 z; 2 3 a2 c 9 ; +7; 8a b 3 a 2. Non sono monomi: a + 2; xyz

Dettagli