Ponti in Corrente Alternata

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Ponti in Corrente Alternata"

Transcript

1 PONTI DI MISU... IMPEDEN, ETTN, MMETTEN, ONDUTTN, SUSETTN.... PONTI PPOTO EE... 4 Equazione generale di equilibrio dei ponti a rapporto reale... 4 Esempio :... 5 Esempio :... 5 PONTI PPOTO IMMGINIO... 5 Equazione generale di equilibrio dei ponti a rapporto immaginario... 5 Esempio :... 6 PONTI PODOTTO EE... 6 Equazione generale di equilibrio dei ponti a prodotto reale... 7 Esempio 4:... 7 Esempio 5:... 7 PONTI PODOTTO IMMGINIO... 8 Equazione generale di equilibrio dei ponti a prodotto immaginario... 8 Esempio 6:... 8 NOTE ONUSIVE... 9 MISU DI MUTU INDUTTN... 9 onsiderazioni sul fattore di bontá Q... IIOGFI:... Ponti in orrente lternata prof. leto zzani IPSI Moretto rescia 9 ottobre 995

2 PONTI DI MISU I Ponti di Misura in corrente alternata si rifanno strutturalmente al ponte di Weatstone; essi comprendono un generatore di fem alternata e sinusoidale (a frequenza di KHz), tre impedenze campioni,, ed un rivelatore di zero (Voltmetro elettronico, oscilloscopio o cuffia telefonica). Il ponte si dice in equilibrio quando la d.d.p. esistente fra i punti e è nulla. In tal caso risulta: V = V. f=khz I I Ir x I I4 V D = V. D fig. D Ponte in.. I = 0. Quando il ponte è in equilibrio l'intensità di corrente I che percorre passa pure in ; l'intensità di corrente I che percorre passa pure in x. Pertanto si potrà scrivere : I = I.4 I = I.5 dividendo membro a membro la.4 e la.5 e risolvendo rispetto a x si ottiene : =.6 I ponti vengono perciò impiegati per la misura di una impedenza incognita x per confronto con le tre impedenze campioni che si realizza quando il ponte si trova in equilibrio (condizione individuata dal rivelatore di zero posto fra i lati e ). a precisione della misura è determinata dalla precisione degli elementi campioni del ponte e dalla sensibilità del rivelatore di zero; non è quindi necessario usare come rivelatore uno strumento preciso ma è essenziale disporre di uno strumento molto sensibile. I ponti di misura in corrente alternata vengono classificati in due grandi categorie: Ponti a rapporto (reale o immaginario) Ponti a prodotto (reale o immaginario). Osservando l'espressione.6 si nota che in essa si possono individuare due diversi rapporti: e e un solo prodotto Ponti in - zzani

3 Impedenza, eattanza, mmettenza, onduttanza, Suscettanza. Y Y Y V = = I jω = j I = = = = j = j V jω ω ω V = = = j = j I jω ω ω I = = V = jω = j V = = I I = = = = G G = V e relazioni appena scritte ci inducono alle seguenti conclusioni: a) Un bipolo puramente resistivo è caratterizzato da una resistenza positiva e da una conduttanza G positiva. b) Un bipolo reattivo di tipo induttivo è caratterizzato da una reattanza positiva e da una suscettanza negativa. c) Un bipolo reattivo di tipo capacitivo è caratterizzato da una reattanza negativa e da una suscettanza positiva. Inoltre porre : = + j equivale a scomporre una impedenza nelle sue componenti serie e porre : Y = G + j equivale a scomporre una ammettenza nelle sue componenti parallelo G Ponti in - zzani

4 PONTI PPOTO EE Si dicono ponti a rapporto reale quei ponti ove è possibile porre: = k.7 Tale situazione è possibile se gli elementi e sono o due resistenze o due pure reattanze. Infatti si ha : = = k = k reale positivo.8 = jω = jω k = k reale positivo.9 = = k = k reale positivo.0 jω jω = jω = k = k reale negativo. jω ω x x x x Equazione generale di equilibrio dei ponti a rapporto reale =. se nell'equazione generale di equilibrio dei ponti. si pone: = + j. = + j.4 si ottiene : + j = k + j = k + jk fig. Possibili strutture di ponti a rapporto reale.5 da cui eguagliando separatamente le parti reali e quelle immaginarie si ottiene: = k.6 = k.7 Dalla.6 essendo le valori reali e positivi si desume che il valore di k può solo essere positivo in altri termini ponti con k reale negativo (situazione. a pag. 5 fig. ultimo a destra) non possono andare in equilibrio. a.7 ci indica che le due reattanze del ponte ed x devono essere dello stesso tipo (entrambe induttive o capacitive). In totale si possono realizzare ben sei ponti a rapporto reale ( modi per realizzare un rapporto reale positivo e per ciascuno di Ponti in - zzani 4

5 essi due modi di combinare le reattanze). Il tipo di scomposizione indicato nelle formule. e.4 porta a prendere in considerazione un circuito elettrico costituito da due elementi (resistenza e reattanza) connessi in serie. Esempio : Il ponte di fig. è del tipo a rapporto reale; in cui valgono le seguenti relazioni : k = = =.8 ω ω che sostituite nelle espressioni.6 e.7 forniscono le condizioni di equilibrio del ponte di De Sauty riportato graficamente in fig. :.9 = = Esempio : Il ponte di fig. 4 è del tipo a rapporto reale; in cui valgono le seguenti relazioni : k = = =.0 ω ω x x fig. Ponte di De Sauty x x fig. 4 Ponte a rapporto reale che sostituite nelle espressioni.6 e.7 forniscono le seguenti condizioni di equilibrio particolari :. = = PONTI PPOTO IMMGINIO Si dicono ponti a rapporto immaginario quei ponti ove è possibile porre: = jk. Tale situazione è possibile se gli elementi che determinano il rapporto sono una pura resistenza l'uno e una pura reattanza l'altro. Infatti si ha : = jω = k = rapporto immaginario negativo. ω = = k = ω rapporto immaginario positivo.4 jω Equazione generale di equilibrio dei ponti a rapporto immaginario.7 = se nell'equazione generale di equilibrio dei ponti. si pone: = + j.8 = + j.9 Ponti in - zzani 5

6 si ottiene : + j = jk + j = jk k.0 da cui eguagliando separatamente le parti reali e quelle immaginarie si ottiene: = k. = k. Dalla. essendo un valore reale e positivo si desume che il prodotto k può assumere solo valori negativi; inoltre per la. il segno di k determina il segno della reattanza incognita. Si possono prospettare quindi le seguenti situazioni: ( ) k > 0 < 0 > 0. k < 0 > 0 < 0.4 In totale si possono realizzare due ponti a rapporto immaginario (uno con rapporto positivo e uno con rapporto negativo). o scambio fra e non introduce alcun elemento di novità nei ponti a rapporto immaginario. Esempio : Il ponte di figura è del tipo a rapporto immaginario; in cui valgono le seguenti relazioni : k = ω = ω =.5 ω che sostituite nelle espressioni. e. forniscono le condizioni di equilibrio del ponte di Owen riportato in fig. 5 : =.6 = x x fig. 5 Ponte di Owen PONTI PODOTTO EE Si dicono ponti a prodotto reale i ponti ove è possibile porre: = k.7 Tale situazione è possibile se gli elementi e sono o due resistenze o due pure reattanze. Infatti si ha : = = k = prodotto reale positivo.8 = jω = jω k = ω prodotto reale negativo.9 = = k = jω jω ω prodotto reale negativo.40 = jω = k = jω prodotto reale positivo.4 Ponti in - zzani 6

7 Equazione generale di equilibrio dei ponti a prodotto reale = = ky.4 se nell'equazione generale di equilibrio dei ponti si pone: = + j.4 Y = = G + j.44 si ottiene : + j = k G + j = kg + jk.45 da cui eguagliando separatamente le parti reali e quelle immaginarie si ottiene: = kg.46 = k.47 Dalla prima delle due relazioni si desume che, essendo e G valori reali e positivi, il valore di k può solo essere positivo in altri termini ponti con k reale negativo non possono andare in equilibrio. a seconda delle due relazioni ci indica che i due elementi reattivi del ponte x e devono essere dello stesso segno. Si possono prospettare quindi le seguenti situazioni: ( ) k > 0 < 0 < 0.48 k > 0 > 0 > 0.49 In totale si possono realizzare quattro ponti a prodotto reale (due modi per realizzare un prodotto reale positivo e per ciascuno di essi due modi di combinare le reattanze). Esempio 4: Il ponte di fig. 6 è del tipo a prodotto reale; in cui valgono le seguenti relazioni : k = G = = ω = ω.50 che sostituite nelle espressioni.46 e.47 forniscono le condizioni di equilibrio del Ponte di Maxwell riportato in fig. 6 : =.5 Esempio 5: Il ponte di fig. 7 è del tipo a prodotto reale; in cui valgono le seguenti relazioni : k = G = = = ω ω.5 che sostituite nelle espressioni.46 e.47 forniscono le seguenti condizioni di equilibrio particolari : = =.5 x x fig. 6 Ponte di Maxwell x x fig. 7 Ponte a prodotto reale Ponti in - zzani 7

8 PONTI PODOTTO IMMGINIO Si dicono ponti a prodotto immaginario i ponti ove è possibile porre: = jk.54 Tale situazione è possibile se gli elementi che determinano il prodotto sono una pura resistenza l'uno e una pura reattanza l'altro. Infatti si ha : = = jω k = ω prodotto immaginario positivo.55 = = k = jω ω prodotto immaginario negativo.56 Equazione generale di equilibrio dei ponti a prodotto immaginario inario = = jky.57 se nell'equazione generale di equilibrio dei ponti si pone: = + j.58 Y = = G + j.59 si ottiene : + j = jk G + j = jkg k.60 da cui eguagliando separatamente le parti reali e quelle immaginarie si ottiene: = k.6 = kg.6 Dalla. essendo un valore reale e positivo si desume che il prodotto k può assumere solo valori negativi; inoltre per la. il segno di k determina il segno della reattanza incognita. Si possono prospettare quindi le seguenti situazioni: ( ) k > 0 < 0 > 0.6 k < 0 > 0 < 0.64 In totale si possono realizzare due ponti a rapporto immaginario (uno con rapporto positivo e uno con rapporto negativo). o scambio fra e non introduce alcun elemento di novità nei ponti a prodotto immaginario. Esempio 6: Il ponte di fig. 8 è del tipo a prodotto immaginario; in cui valgono le seguenti relazioni : k = G = = ω =.65 ω ω che sostituite nelle espressioni.6 e.6 forniscono le seguenti condizioni di equilibrio particolari : x x fig. 8 Ponte a prodotto immaginario Ponti in - zzani 8

9 = Note onclusive =.66 - I ponti in corrente alternata effettivamente impiegati per la misura di induttori o di condensatori contengono preferibilmente come elementi campioni solo esistori e ondensatori di precisione per un semplice motivo: è più facile infatti realizzare un condensatore con perdite trascurabili, piuttosto che un induttore. - Gli elementi del ponte che determinano il valore numerico del prodotto o del rapporto variano congiuntamente in modo da determinare una variazione dell'ordine di grandezza del componente (in caso di capacità si potrà passare da pf a nf e successivamente ai µf); il rimanente elemento del ponte invece varierà con continuità. - I ponti in corrente alternata effettivamente impiegati forniscono il valore del componente reattivo (x oppure x) ed il valore del fattore di bontà Q (nel caso di induttori) tgδ (nel caso di condensatori); noto il valore della frequenza f a cui viene effettuata la misura, è possibile risalire facilmente ai valori delle resistenze di perdita serie o parallelo del componente reattivo sotto misura. Misura di Mutua Induttanza Il concetto di Mutua Induzione si riferisce a circuiti elettrici fra di loro isolati che risultano magneticamente accoppiati. Quando si considerano due circuiti mutuamente accoppiati è obbligatorio indicare oltre alla convenzione di segno per V e I anche quella per il flusso Φ. a convenzione è rappresentata da un "pallino" collocato in prossimità di uno dei due conduttori che fanno capo all'induttanza. Si conviene di ritenere positivo il flusso magnetico prodotto da correnti entranti dal lato contrassegnato dal "pallino". I I VVOGIMENTO "" VVOGIMENTO "" 4 Si consideri il circuito di fig. in esso risulta : Φ = I flusso di autoinduzione prodotto dalla corrente I sull'avvolgimento Φ = I flusso di autoinduzione prodotto dalla corrente I sull'avvolgimento Φ = MI flusso di mutua induzione prodotto dalla corrente I sull'avvolgimento Φ = MI flusso di mutua induzione prodotto dalla corrente I sull'avvolgimento Pertanto si avrà: Φ = Φ + Φ = I + MI.67 Φ = Φ + Φ = I + MI fig. 9 Mutua Induzione fra due circuiti.68 Ponti in - zzani 9

10 i poniamo ora il problema di misurare M che ovviamente essendo un coefficiente di proporzionalità fra flusso Φ e intensità di corrente I si misurerà ovviamente in Henry. I I 4 Nel circuito di fig. 0 i due avvolgimenti sono stati connessi in serie ( con ) in modo tale da realizzare la condizione di "flussi concordi"; risulta quindi che : I = I.69 ΦT = Φ + Φ = I + + M.70 Φ ( M ) T = = I fig. 0 onnessione serie flussi concordi c rappresenta il valore di induttanza misurato fra i morsetti e 4 del circuito di fig. 0. I I 4 Nel circuito di fig. i due avvolgimenti sono stati connessi in serie ( con 4) in modo tale da realizzare la condizione di "flussi discordi"; risulta quindi che : I = I.7 ΦT = Φ Φ = I + M.7 D Φ ( M ) T = = +.74 I fig. onnessione serie con flussi discordi d rappresenta il valore di induttanza misurato fra i morsetti e del circuito di fig.. Sottraendo membro a membro dalla.7 la.74 risulta : M D =.75 4 Ponti in - zzani 0

11 Sul circuito di fig. 9 possono quindi essere effettuate 4 misure : Misura di fra i morsetti e lasciando aperti e 4. Misura di fra i morsetti e 4 lasciando aperti e. Misura di c fra i morsetti e 4 (vedi fig. 0), Misura di d fra i morsetti e (vedi fig. ). onsiderazioni sul fattore di bontá Q Dicesi fattore di bontà di un componente reattivo il rapporto esistente fra il modulo della potenza reattiva scambiata ed il valore della potenza attiva dissipata. Q = Potenza reattiva scambiata Potenza attiva dissipata Se la misura di viene effettuata utilizzando un ponte in corrente alternata, oltre alla misura di il ponte fornisce anche il valore del coefficiente di bontà Q. È interessante notare che la misura di c fornisce di solito un valore di Q discretamente più elevato rispetto al valore ricavato dalle misure di, e di d. Il fatto può essere spiegato riferendoci al seguente ragionamento: quando si effettua la misura di c (vedi fig. 6) a numeratore della.76 avremo i contributi di potenza reattiva dovuti a, ed M; mentre al denominatore figureranno i contributi di potenza attiva che si vengono a produrre in e. Si può dimostrare che il valore massimo teorico del coefficiente di mutua induzione M è dato dalla relazione: M M =.77 poichè M risulta:.76 0 < M M M.78 è conveniente porre : M = k M = k.79 M ovviamente k, denominato "coefficiente di accoppiamento" risulta così definito : M M k = = M M.80 0 < k.8 ibliografia: Giuseppe ingales orso di Misure Elettriche leup Padova Giometti Frascari Manuale per il aboratorio di Misure Elettroniche alderini ologna Ponti in - zzani

SOMMARIO. Misure di Frequenza e di Mutua Induttanza

SOMMARIO. Misure di Frequenza e di Mutua Induttanza SOARIO ISURA DI FREQUENZA CON IL ETODO DEI BATTIENTI... Premesse di carattere teorico sui Battimenti... Il circuito di misura...3 odalità di svolgimento della misura...4 odulazione d'intensità dell'asse

Dettagli

Esercizi aggiuntivi Unità A2

Esercizi aggiuntivi Unità A2 Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1 A2 ircuiti in corrente alternata monofase 1 Un circuito serie, con 60 Ω e 30 mh, è alimentato con tensione V 50 V e assorbe la corrente 0,4 A. alcolare:

Dettagli

CIRCUITI IN REGIME SINUSOIDALE

CIRCUITI IN REGIME SINUSOIDALE IUITI IN EGIME SINUSOIDALE 9.1. Nel circuito della figura il voltaggio alternato è V = V 0 cost con = 314 rad/s, V 0 = 311 V, L = 0.9 H, = 6.96 F. Se il fattore di potenza del circuito è pari a 0.98, la

Dettagli

LEZIONE DI ELETTRONICA

LEZIONE DI ELETTRONICA LEZIONE DI ELETTRONICA Analisi dei circuiti lineari in regime sinusoidale 2 MODULO : Analisi dei circuiti lineari in regime sinusoidale PREMESSA L analisi dei sistemi elettrici lineari, in regime sinusoidale,

Dettagli

Consideriamo ora circuiti in cui siano presenti più componenti. Circuito ohmico-induttivo R-L con resistenza e reattanza in serie.

Consideriamo ora circuiti in cui siano presenti più componenti. Circuito ohmico-induttivo R-L con resistenza e reattanza in serie. Circuiti RC ed RL Consideriamo ora circuiti in cui siano presenti più componenti. Circuito ohmico-induttivo R-L con resistenza e reattanza in serie. Figura A In figura vi è lo schema riferito ad un generatore

Dettagli

Impedenze ed Ammettenze 1/5

Impedenze ed Ammettenze 1/5 Impedenze ed Ammettenze 1/5 V=Z I. Rappresentazione alternativa I=Y V Z ed Y sono numeri complessi Bipolo di impedenza Z = R+ j X Resistenza Reattanza Conduttanza 1 Y = = G+ jb Z Suscettanza Lezione 2

Dettagli

B B B. 5.2 Circuiti in regime sinusoidale. (a) (b) (c)

B B B. 5.2 Circuiti in regime sinusoidale. (a) (b) (c) V V A 5.2 Circuiti in regime sinusoidale 219 W B B B (a) (b) (c) Figura 5.4. Simboli del (a) voltmetro, (b) amperometro e (c) wattmetro ideali e relativi schemi di inserzione I I V Nel simbolo del voltmetro

Dettagli

1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO. i(t) = v(t) / R = V M / R sen ωt i(t) = I M sen ωt I(t) = I M e jωt

1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO. i(t) = v(t) / R = V M / R sen ωt i(t) = I M sen ωt I(t) = I M e jωt 1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO i(t) Tensione applicata : v(t) v(t) = V M sen ωt V(t) = V M e jωt : vettore ruotante che genera la sinusoide RESISTORE i(t) = v(t) / R = V M / R sen

Dettagli

Componenti di un circuito elettrico in regime sinusoidale

Componenti di un circuito elettrico in regime sinusoidale omponenti di un circuito elettrico in regime sinusoidale omponenti di un circuito elettrico in regime sinusoidale Introduzione: a corrente elettrica, nel suo passaggio all interno di un conduttore, produce

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTOTECNICA (0 CFU) CS INGEGNEIA MATEMATICA I prova in itinere 20 Novembre 2009 SOLUZIONI - - D. (punti 4 ) ) Spiegare cosa si intende per DUALITA nello studio dei circuiti elettrici. 2) Scrivere per

Dettagli

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica 7.09.0 Problema L interruttore indicato nel circuito in figura commuta nell istante t 0 dalla posizione AA alla posizione BB. Determinare le espressioni delle tensioni v (t) ev (t) per ogni istante di

Dettagli

Esercizi & Domande per il Compito di Elettrotecnica del 17 settembre 2003

Esercizi & Domande per il Compito di Elettrotecnica del 17 settembre 2003 Esercizi & Domande per il Compito di Elettrotecnica del 7 settembre 003 ESERCIZIO v a i a i b v b R v 0 Nel circuito in figura determinare il valore di v o e i o Si ponga: R 6kΩ, R kω, e i o R v o ; i

Dettagli

Trasformatore monofase Da un punto di vista di trasformazioni di energia, si tratta di una macchina elettrica in grado di trasformare energia elettrica in altra energia elettrica. Il suo funzionamento

Dettagli

Elettrotecnica Esercizi di riepilogo

Elettrotecnica Esercizi di riepilogo Elettrotecnica Esercizi di riepilogo Esercizio 1 I 1 V R 1 3 V 2 = 1 kω, = 1 kω, R 3 = 2 kω, V 1 = 5 V, V 2 = 4 V, I 1 = 1 m. la potenza P R2 e P R3 dissipata, rispettivamente, sulle resistenze e R 3 ;

Dettagli

Collegamento generatori di tensione. Collegamento parallelo. Sia dato il sistema di figura 1: Fig. 1 -

Collegamento generatori di tensione. Collegamento parallelo. Sia dato il sistema di figura 1: Fig. 1 - Collegamento generatori di tensione Collegamento parallelo Sia dato il sistema di figura : Fig. - vogliamo trovare il bipolo equivalente al parallelo dei tre generatori di tensione, il bipolo, cioè, che

Dettagli

Competenze di ambito Prerequisiti Abilità / Capacità Conoscenze Livelli di competenza

Competenze di ambito Prerequisiti Abilità / Capacità Conoscenze Livelli di competenza Docente: LASEN SERGIO Classe: 3MAT Materia: Tecnologie Elettrico Elettroniche, dell Automazione e Applicazioni MODULO 1 - CIRCUITI E RETI ELETTRICHE IN CORRENTE CONTINUA Saper effettuare connessioni logiche

Dettagli

Potenza in regime sinusoidale

Potenza in regime sinusoidale 26 Con riferimento alla convenzione dell utilizzatore, la potenza istantanea p(t) assorbita da un bipolo è sempre definita come prodotto tra tensione v(t) e corrente i(t): p(t) = v(t) i(t) Considerando

Dettagli

Tecniche volt-amperometriche in DC. Tecniche volt-amperometriche in AC. Tecniche di zero: ponte in DC. Tecniche di risonanza: Il Q-metro

Tecniche volt-amperometriche in DC. Tecniche volt-amperometriche in AC. Tecniche di zero: ponte in DC. Tecniche di risonanza: Il Q-metro Misura di impedenze Misure di impedenze Tecniche volt-amperometriche in D Tecniche volt-amperometriche in A Tecniche di zero: ponte in D Tecniche di risonanza: Il Q-metro 2 2006 Politecnico di Torino 1

Dettagli

PROGRAMMA PREVENTIVO di Tecnologie Elettrico-Elettroniche ed Applicazioni. Docente: VARAGNOLO GIAMPAOLO. Insegnante Tecnico Pratico: ZENNARO LUCIANO

PROGRAMMA PREVENTIVO di Tecnologie Elettrico-Elettroniche ed Applicazioni. Docente: VARAGNOLO GIAMPAOLO. Insegnante Tecnico Pratico: ZENNARO LUCIANO ISTITUTO VERONESE MARCONI Sede di Cavarzere (VE) PROGRAMMA PREVENTIVO di Tecnologie Elettrico-Elettroniche ed Applicazioni Docente: VARAGNOLO GIAMPAOLO Insegnante Tecnico Pratico: ZENNARO LUCIANO Classe

Dettagli

RISONANZA. Fig.1 Circuito RLC serie

RISONANZA. Fig.1 Circuito RLC serie RISONANZA Risonanza serie Sia dato il circuito di fig. costituito da tre bipoli R, L, C collegati in serie, alimentati da un generatore sinusoidale a frequenza variabile. Fig. Circuito RLC serie L impedenza

Dettagli

0. Ripasso di elettrotecnica

0. Ripasso di elettrotecnica orso di Elementi di ingegneria elettrica di potenza ngelo Baggini angelo.baggini@unibg.it 0. ipasso di elettrotecnica orsi di Elementi di ingengeria elettrica di potenza mpianti elettrici ETE EETT Soluzione

Dettagli

CIRCUITI ELETTRICI. Le grandezze fondamentali nei circuiti elettrici sono:

CIRCUITI ELETTRICI. Le grandezze fondamentali nei circuiti elettrici sono: CIRCUITI ELETTRICI Riccardo Scannaliato 4H 2015/16 Le grandezze fondamentali nei circuiti elettrici sono: La corrente elettrica: la quantità di carica che attraversa una sezione S di conduttore in un secondo.

Dettagli

MISURATORE DIGITALE DI LCR

MISURATORE DIGITALE DI LCR MISURATORE DIGITALE DI LCR Il misuratore digitale di LCR (LCR meter) è uno strumento che trova impiego nei laboratori elettronici di progetto e collaudo; esso permette di eseguire la misura dei parametri

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

Impedenze e circuiti. Prof. Mario Angelo GIORDANO. PDF created with pdffactory trial version

Impedenze e circuiti. Prof. Mario Angelo GIORDANO. PDF created with pdffactory trial version Impedenze e circuiti Prof. Mario Angelo GIORDANO Impedenza Si definisceimpedenzail numero complesso dato dal rapporto trailnumero complesso cherappresentala tensioneed il numero complesso cherappresental

Dettagli

Prof. F.Soramel Elementi di Fisica 2 - A.A. 2010/11 1

Prof. F.Soramel Elementi di Fisica 2 - A.A. 2010/11 1 Induzione La legge dell induzione di Faraday combina gli effetti dei campi elettrici e delle correnti, infatti sappiamo che Corrente + campo magnetico momento torcente motore elettrico Momento torcente

Dettagli

Appendice Il trasformatore monofase

Appendice Il trasformatore monofase Appendice l trasformatore monofase - Appendice l trasformatore monofase - Principio di funzionamento Schema generale l trasformatore è un dispositivo costituito da un nucleo in materiale ferromagnetico

Dettagli

PRINCIPIO DI FUNZIONAMENTO DEL TRASFORMATORE

PRINCIPIO DI FUNZIONAMENTO DEL TRASFORMATORE PRINCIPIO DI FUNZIONAMENTO DEL TRASFORMATORE Il trasformatore è costituito essenzialmente da un nucleo di lamierini ferromagnetici su cui sono avvolti due avvolgimenti in rame con diverso numero di spire

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Fisica Componenti elementari

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici Sergio Benenti Prima versione settembre 2013 Revisione settembre 2017? ndice 21 Circuito elettrico elementare

Dettagli

La corrente alternata

La corrente alternata La corrente alternata Corrente continua e corrente alternata Le correnti continue sono dovute ad un generatore i cui poli hanno sempre lo stesso segno e pertanto esse percorrono un circuito sempre nello

Dettagli

Il trasformatore Principio di funzionamento

Il trasformatore Principio di funzionamento Il trasformatore Principio di funzionamento Il trasformatore è una macchina elettrica statica reversibile, che funziona sul principio della mutua induzione. È formato da un nucleo in lamierino ferromagnetico

Dettagli

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 603 Crema email:

Dettagli

Potenze in regime sinusoidale. Lezione 4 1

Potenze in regime sinusoidale. Lezione 4 1 Potenze in regime sinusoidale Lezione 4 1 Definizione di Potenza disponibile Generatore di segnale Z g = Rg + j Xg Potenza disponibile P d V V = = 4R 8R oe om g g Standard industriale = R = 50 Ω Lezione

Dettagli

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a 5. Amplificatori Corso di Fondamenti di Elettronica Fausto Fantini a.a. 2010-2011 Amplificazione Amplificare un segnale significa produrre un segnale in uscita (output) con la stessa forma d onda del segnale

Dettagli

La risposta dei circuiti. alla corrente elettrica alternata

La risposta dei circuiti. alla corrente elettrica alternata La risposta dei circuiti alla corrente elettrica alternata Lezioni d'autore di Claudio Cigognetti VIDEO ideali alla corrente alternata (I) Una semplice bobina, un filo conduttore avvolto a spirale su un

Dettagli

Esercitazioni di Elettrotecnica

Esercitazioni di Elettrotecnica Esercitazioni di Elettrotecnica a cura dell Ing ntonio Maffucci Parte II: ircuiti in regime sinusoidale /3 Esercitazioni di Elettrotecnica /3 Maffucci ESEIZIONE N7: Fasori ed impedenze ESEIZIO 7 Esprimere

Dettagli

COLLEGAMENTO SERIE E PARALLELO DI BIPOLI (Resistenze)

COLLEGAMENTO SERIE E PARALLELO DI BIPOLI (Resistenze) COLLEGAMENTO SERIE E PARALLELO DI BIPOLI (Resistenze) Per realizzare un circuito elettrico è necessario collegare tra loro più bipoli. Il tipo di collegamento che si effettua dipende dalle esigenze e dagli

Dettagli

Ruggero Caravita, Giacomo Guarnieri Gruppo Gi101 Circuiti 1. Circuiti 1. Relazione sperimentale A P P A R A T O S P E R I M E N T A L E

Ruggero Caravita, Giacomo Guarnieri Gruppo Gi101 Circuiti 1. Circuiti 1. Relazione sperimentale A P P A R A T O S P E R I M E N T A L E Relazione sperimentale Scopo dell esperienza è quella di determinare il valore di un set di resistenze incognite mediante la tecnica del ponte di Wheatstone. Sono inoltre indagate le caratteristiche di

Dettagli

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte c Partitori di tensione e di corrente Partitore di tensione: si fa riferimento ad una tensione nota che alimenta una

Dettagli

Lez Dai segnali nel dominio del tempo a studio di segnali nel dominio della frequenza.

Lez Dai segnali nel dominio del tempo a studio di segnali nel dominio della frequenza. Lez. 09-3-3 Dai segnali nel dominio del tempo a studio di segnali nel dominio della frequenza. Consideriamo ora un circuito elettrico alimentato da un generatore di f.e.m composto dalla serie di una R,

Dettagli

Equazioni differenziali lineari a coefficienti costanti

Equazioni differenziali lineari a coefficienti costanti Equazioni differenziali lineari a coefficienti costanti Generalità Il modello matematico di un qualsiasi sistema fisico in regime variabile conduce alla scrittura di una o più equazioni differenziali.

Dettagli

Richiami su grandezze fisiche considerate e convenzioni utilizzate nell analisi di circuiti. Gianluca Susi

Richiami su grandezze fisiche considerate e convenzioni utilizzate nell analisi di circuiti. Gianluca Susi Richiami su grandezze fisiche considerate e convenzioni utilizzate nell analisi di circuiti Gianluca Susi Carica E indicata con q e si misura in Coulomb [C] Principio di conservazione della carica elettrica:

Dettagli

TASFORMATORI. I trasformatori sono macchine elettriche:

TASFORMATORI. I trasformatori sono macchine elettriche: TASFORMATORI Trasformatori I trasformatori sono macchine elettriche: 1. statiche, cioè non hanno parti in movimento; 2. funzionanti a corrente alternata sinusoidale; 3. Reversibili: l ingresso può diventare

Dettagli

Il trasformatore 1/55

Il trasformatore 1/55 l trasformatore /55 Costituzione di un trasformatore monofase l trasformatore monofase è costituito da un nucleo di ferro, formato da un pacco lamellare di lamierini sagomati (colonne e gioghi) e isolati

Dettagli

POLITECNICO DI TORINO TERZA ESERCITAZIONE ATTENZIONE

POLITECNICO DI TORINO TERZA ESERCITAZIONE ATTENZIONE POLITECNICO DI TORINO Laboratorio di Elettrotecnica Data: Gruppo: Allievi: TERZA ESERCITAZIONE Strumenti utilizzati Materiale necessario Generatore di funzioni da banco Oscilloscopio da banco Bread-board

Dettagli

Corso di Sistemi Prof. Aniello Celentano anno scolastico 2015/2016 ITIS G. Ferraris (NA)

Corso di Sistemi Prof. Aniello Celentano anno scolastico 2015/2016 ITIS G. Ferraris (NA) I Numeri complessi I numeri complessi sono costituiti da una coppia di numeri reali (a,b). Il numero reale a è la parte reale, mentre b è la parte immaginaria. La parte immaginaria è sempre accompagnata

Dettagli

Capacità parassita. Quindi ci si aspetta che la funzione di trasferimento dipenda dalla frequenza

Capacità parassita. Quindi ci si aspetta che la funzione di trasferimento dipenda dalla frequenza Esperienza n. 10 Partitore resistivo e sua compensazione in c.a. Partitore resistivo-capacitivo Partitore resistivo: abbiamo visto che in regime di corrente continua il rapporto di partizione è costante:

Dettagli

Quesiti di Fisica Generale

Quesiti di Fisica Generale Quesiti di Fisica Generale 3. Elettromagnetismo prof. Domenico Galli, prof. Umberto Marconi 3 aprile 2012 I compiti scritti di esame del prof. D. Galli e del prof. U. Marconi propongono 4 quesiti, sorteggiati

Dettagli

Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni

Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Definizioni e breve richiamo alle principali leggi dei circuiti elettrici Risolvere un circuito elettrico significa determinare i

Dettagli

Circuiti in corrente alternata

Circuiti in corrente alternata Capitolo 2 Circuiti in corrente alternata 2.1 Generatori di corrente alternata Un generatore di corrente alternata è un generatore in cui la differenza di potenziale in uscita varia in modo sinusoidale

Dettagli

Compito di Elettrotecnica, Ing. Gestionale, Pisa, 5 Giugno vista dai morsetti 1-2 del bipolo in figura (A da tabella)

Compito di Elettrotecnica, Ing. Gestionale, Pisa, 5 Giugno vista dai morsetti 1-2 del bipolo in figura (A da tabella) Compito di Elettrotecnica, Ing. Gestionale, Pisa, 5 Giugno 214 Allievo... 1) Calcolare la R eq vista dai morsetti 1-2 del bipolo in figura (A da tabella) 2) Calcolare la E th (tensione di Thevenin) ai

Dettagli

Trasformatore monofase

Trasformatore monofase Trasformatore ideale l trasformatore ideale è un sistema lineare e non dissipativo potesi: P 0 ρ cu 0 (P cu 0) μ η u i u i l 0 μ S Tutto il flusso viene incanalato nel nucleo che si comporta come un unico

Dettagli

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler Equazioni e disequazioni M.Simonetta Bernabei, Horst Thaler A(x)=0 x si chiama incognita dell equazione. Se oltre all incognita non compaiono altre lettere l equazione si dice numerica, altrimenti letterale.

Dettagli

ELETTRONICA : Compiti delle vacanze. Nome e Cognome:.

ELETTRONICA : Compiti delle vacanze. Nome e Cognome:. POR FSE 04-00 PARTE : LEGGI I SEGUENTI CAPITOLI DEL LIBRO DEL LIBRO L ENERGIA ELETTRICA, E RISPONDI ALLE DOMANDE. Capitoli 0- del libro L energia elettrica.. Che cosa è il magnetismo?e cosa si intende

Dettagli

Esercizio 1. CALCOLO DEI PARAMETRI DEL CIRCUITO EQUIVALENTE DI UN TRASFORMATORE MONOFASE E DEL SUO RENDIMENTO MASSIMO

Esercizio 1. CALCOLO DEI PARAMETRI DEL CIRCUITO EQUIVALENTE DI UN TRASFORMATORE MONOFASE E DEL SUO RENDIMENTO MASSIMO Conversione Elettromeanica A.A. 22/23 Esercizio 1. CALCOLO DEI AAMETI DEL CICUITO EQUIVALENTE DI UN TASFOMATOE MONOFASE E DEL SUO ENDIMENTO MASSIMO Si consideri un trasformatore monofase di cui sono noti

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito quando: 1) il circuito è in presenza di un campo magnetico

Dettagli

POTENZA ATTIVA - REATTIVA - APPARENTE

POTENZA ATTIVA - REATTIVA - APPARENTE POTENZA ATTIA - REATTIA - APPARENTE LA POTENZA ELETTRICA NEI CIRCUITI IN REGIME SINUSOIDALE Nei circuiti a corrente alternata, la potenza elettrica varia evidentemente da un istante all altro, perché variano

Dettagli

LEZIONE DI ELETTRONICA per la classe 5 TIM e TSE

LEZIONE DI ELETTRONICA per la classe 5 TIM e TSE LEZIONE DI ELETTRONICA per la classe 5 TIM e TSE 2 MODULO : Analisi dei circuiti lineari in regime sinusoidale PREMESSA L analisi dei sistemi elettrici lineari, in regime sinusoidale, consente di determinare

Dettagli

INTERPRETAZIONE CINEMATICA DELLA DERIVATA

INTERPRETAZIONE CINEMATICA DELLA DERIVATA INTERPRETAZIONE CINEMATICA DELLA DERIVATA Consideriamo un punto mobile sopra una qualsiasi linea Fissiamo su tale linea un punto O, come origine degli archi, e un verso di percorrenza come verso positivo;

Dettagli

Principi di ingegneria elettrica. Reti in regime sinusoidale. Lezione 13 a. Impedenza Ammettenza

Principi di ingegneria elettrica. Reti in regime sinusoidale. Lezione 13 a. Impedenza Ammettenza Principi di ingegneria elettrica Lezione 3 a Reti in regime sinusoidale mpedenza Ammettenza Legge di Ohm simbolica n un circuito lineare comprendente anche elementi dinamici (induttori e condensatori)

Dettagli

CORRENTI ALTERNATE. Dopo che la spira è ruotata di in certo angolo in un tempo t si ha

CORRENTI ALTERNATE. Dopo che la spira è ruotata di in certo angolo in un tempo t si ha 1 easy matematica CORRENI ALERNAE Consideriamo una bobina ruotante, con velocità angolare ω costante all'interno di un campo magnetico uniforme B. Gli estremi della spira sono collegati a due anelli chiamati

Dettagli

SISTEMI TRIFASE. Nel. Nella forma polare: Nella forma cartesiana o algebrica:

SISTEMI TRIFASE. Nel. Nella forma polare: Nella forma cartesiana o algebrica: SISTEMI TRIFASE 3_FASE I sistemi 3fase hanno fondamentale importanza nella produzione, trasformazione e trasmissione dell energia elettrica. Il sistema trifase è applicato in campo industriale o comunque

Dettagli

2 Quale tra le seguenti formule serve per calcolare il valore di una reattanza induttiva?

2 Quale tra le seguenti formule serve per calcolare il valore di una reattanza induttiva? 1 Qual'è uno degli scopi dell'impiego delle capacità nei circuiti? Risposta errata A Trasformare la corrente alternata in continua Risposta corretta B Bloccare il flusso della corrente continua e lasciar

Dettagli

Il condensatore. 14/10/2002 Isidoro Ferrante A.A. 2002/2003 1

Il condensatore. 14/10/2002 Isidoro Ferrante A.A. 2002/2003 1 Il condensatore Un condensatore è costituito in linea di principio da due conduttori isolati e posti a distanza finita, detti armature. aricando i due conduttori con carica opposta, si forma tra di essi

Dettagli

G. Rizzoni, Elettrotecnica - Principi e applicazioni Soluzioni ai problemi, Capitolo 3

G. Rizzoni, Elettrotecnica - Principi e applicazioni Soluzioni ai problemi, Capitolo 3 CAPITOLO 3 Analisi delle reti resistive Paragrafi da 3.2 a 3.4: Analisi ai nodi e alle maglie Problema 3.1 Correnti di maglia: Correnti di lato in Fissa una direzione per la corrente in R 1 (ad esempio

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Dr. Erasmo Modica erasmo@galois.it EQUAZIONI DI SECONDO GRADO Definizione: Dicesi

Dettagli

I SEGNALI SINUSOIDALI

I SEGNALI SINUSOIDALI I SEGNALI SINUSOIDALI I segnali sinusoidali sono i segnali più importanti nello studio dell elettronica e dell elettrotecnica. La forma d onda sinusoidale è una funzione matematica indispensabile per interpretare

Dettagli

Collegamento di resistenze

Collegamento di resistenze Collegamento di resistenze Resistenze in serie Vogliamo calcolare la resistenza elettrica del circuito ottenuto collegando tra loro più resistenze in serie. Colleghiamo a una pila di forza elettromotrice

Dettagli

Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff

Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff alentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Bipoli lineari;

Dettagli

PROVE A VUOTO E IN CORTOCIRCUITO SU TRASFORMATORE. Galletti Riccardo Matr Docente del corso: prof.ssa Angela Russo

PROVE A VUOTO E IN CORTOCIRCUITO SU TRASFORMATORE. Galletti Riccardo Matr Docente del corso: prof.ssa Angela Russo Corso di sist. elettrici per telecomunicazioni - 1 prova di laboratorio PROVE A VUOTO E IN CORTOCIRCUITO SU TRASFORMATORE Docente del corso: prof.ssa Angela Russo Galletti Riccardo Matr. 165 Prove a vuoto

Dettagli

MACCHINE ELETTRICHE TRASFORMATORE TRIFASE

MACCHINE ELETTRICHE TRASFORMATORE TRIFASE MACCHNE ELETTRCHE TRASFORMATORE TRFASE Trasformatore Trifase Un trasformatore trifase può essere realizzato tramite tre trasformatori monofase gemelli, collegando opportunamente gli avvolgimenti primari

Dettagli

RICHIAMI di TEORIA dei CIRCUITI e LEGAMI con le EQUAZIONI di MAXWELL

RICHIAMI di TEORIA dei CIRCUITI e LEGAMI con le EQUAZIONI di MAXWELL RCHAM di TEORA dei CRCUT e LEGAM con le EUAZON di MAXWELL l concetto di circuito elettrico è senza dubbio ben noto da un punto di vista intuitivo; ciononostante non è ovvio darne una definizione chiara

Dettagli

(corrente di Norton) ai morsetti 1-2 del circuito in figura (A, B, C da tabella)

(corrente di Norton) ai morsetti 1-2 del circuito in figura (A, B, C da tabella) Compito di Elettrotecnica, Ing. Civile, Pisa, 5 Giugno 2013 1) Calcolare la R eq vista dai morsetti 1-2 del bipolo in figura (A, B, C, D da tabella) Allievo... 2) Calcolare la E th (tensione di Thevenin)

Dettagli

ESERCITAZIONI DI AZIONAMENTI ELETTRICI. Circuiti equivalenti della macchina asincrona.

ESERCITAZIONI DI AZIONAMENTI ELETTRICI. Circuiti equivalenti della macchina asincrona. ESERCITAZIONI DI AZIONAMENTI ELETTRICI Circuiti equivalenti della macchina asincrona. 1. Le prove a vuoto e a rotore bloccato di una macchina asincrona, eseguite in laboratorio, hanno dato i seguenti risultati:

Dettagli

Reti nel dominio del tempo. Lezione 7 1

Reti nel dominio del tempo. Lezione 7 1 Reti nel dominio del tempo Lezione 7 1 Poli (o frequenze naturali) di una rete Lezione 7 2 Definizione 1/2 Il comportamento qualitativo di una rete dinamica dipende dalle sue frequenze naturali o poli

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza egge di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

MACCHINE ELETTRICHE 11 gennaio 2006 Elettrotecnica _ Energetica _

MACCHINE ELETTRICHE 11 gennaio 2006 Elettrotecnica _ Energetica _ MACCHINE ELETTRICHE 11 gennaio 2006 Elettrotecnica _ Energetica _ DOMANDE DI TEORIA 1) Diagrammi di Blondel e delle due reattanze. 2) Motore asincrono trifase: regolazione della velocità. 3) Motore a corrente

Dettagli

Campi Elettromagnetici e Circuiti I Risposta in frequenza

Campi Elettromagnetici e Circuiti I Risposta in frequenza Facoltà di Ingegneria Università degli studi di Pavia Corso di aurea Triennale in Ingegneria Elettronica e Informatica Campi Elettromagnetici e Circuiti I isposta in frequenza Campi Elettromagnetici e

Dettagli

università DEGLI STUDI DI NAPOLI FEDERICO II

università DEGLI STUDI DI NAPOLI FEDERICO II università DEGLI STUDI DI NAPOLI FEDERICO II Facoltà di Ingegneria Registro delle Lezioni dell insegnamento di: Introduzione ai Circuiti Corso di Laurea in Ingegneria dell'automazione Corso di Laurea in

Dettagli

Corso di Microonde Esercizi su Linee di Trasmissione

Corso di Microonde Esercizi su Linee di Trasmissione Corso di Microonde Esercizi su Linee di Trasmissione Tema del 6.7.1999 Il carico resistivo R L è alimentato alla frequenza f =3GHz attraverso una linea principale di impedenza caratteristica Z 0 = 50 Ω

Dettagli

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A,

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A, ebbraio 1. L intensità di corrente elettrica che attraversa un circuito in cui è presente una resistenza R è di 4 A. Se nel circuito si inserisce una ulteriore resistenza di 2 Ω la corrente diventa di

Dettagli

Trasformatore monofase E =

Trasformatore monofase E = Circuito equivalente esatto del trasformatore monofase E V t = = = E V t = Rapporto di trasformazione V V = R I = R I + jx d jx I d + I E I + + E = I + I0 = I + Im Ip E E = jωλ = jω Φ = = R 0 E = I p E

Dettagli

Indice. XI Prefazione. 1 Capitolo 1 METODO CIRCUITALE: COMPONENTI E LEGGI DI KIRCHHOFF Modello circuitale dei fenomeni elettromagnetici

Indice. XI Prefazione. 1 Capitolo 1 METODO CIRCUITALE: COMPONENTI E LEGGI DI KIRCHHOFF Modello circuitale dei fenomeni elettromagnetici XI Prefazione 1 Capitolo 1 METODO CIRCUITALE: COMPONENTI E LEGGI DI KIRCHHOFF 1 1.1 Modello circuitale dei fenomeni elettromagnetici 1.1.1 Modello a parametri concentrati, p. 1-1.1.2 Modello a parametri

Dettagli

Misure di potenza. Misure di potenza. Misure di potenza a BF. Misure di potenza a RF Politecnico di Torino 1

Misure di potenza. Misure di potenza. Misure di potenza a BF. Misure di potenza a RF Politecnico di Torino 1 Misure di potenza Misure di potenza Misure di potenza a F 006 Politecnico di Torino 1 Obiettivi della lezione Metodologici problematiche di una misura di potenza corretta definizione del misurando concetti

Dettagli

I.T.I.S. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 2013/14 COGNOME E NOME Data: 27/11/2013

I.T.I.S. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 2013/14 COGNOME E NOME Data: 27/11/2013 I.T.I.. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 03/4 OGNOME E NOME Data: 7//03 Quesito ) (50%) Dato il circuito qui a fianco che rappresenta un oscillatore sinusoidale a ponte

Dettagli

1 Fattorizzazione di polinomi

1 Fattorizzazione di polinomi 1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente

Dettagli

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (5.1)

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (5.1) Capitolo 5 Amplificazione 5.1 Circuiti attivi Gli elementi circuitali considerati sino ad ora, sia lineari (resistenze, capacità, induttanze e generatori indipendenti), sia non lineari (diodi), sono detti

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Richiami di Elettrotecnica

Richiami di Elettrotecnica Dip. di Ingegneria dell Informazione ed Elettrica e Matematica Applicata Corso di Laurea in Ingegneria Informatica Corso di Tecnologie Elettriche per l Informatica Industriale prof. Vincenzo Tucci/Patrizia

Dettagli

P4 OSCILLATORI SINUSOIDALI

P4 OSCILLATORI SINUSOIDALI P4 OSILLATOI SINUSOIDALI P4. Dimensionare un oscillatore a ponte di Wien con amplificatore operazionale, per una frequenza f 6 khz, utilizzando un termistore NT per il controllo automatico di guadagno.

Dettagli

CIRCUITI IN ALTERNATA

CIRCUITI IN ALTERNATA CIRCUITI IN ALTERNATA I primi impianti di illuminazione pubblica sorti fra fine 700 e inizio 800 erano in corrente continua. La limitazione principale dell uso di questi impianti era la breve distanza

Dettagli

LEGGE GENERALE DI OHM

LEGGE GENERALE DI OHM LEGGE GENERALE DI OHM Prendiamo ad esempio il seguente circuito elettrico: La corrente fluisce,anche se ci sono più generatori con azione discorde,in un solo verso che si suppone noto (se non è noto si

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017

ISTITUTO ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2016/2017 ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017 CLASSE 4 I Disciplina: Elettrotecnica ed Elettronica PROGETTAZIONE DIDATTICA ANNUALE Elaborata dai docenti: Linguanti Vincenzo,

Dettagli

Componenti elettronici

Componenti elettronici A.R.I. - Sezione di Parma Corso di preparazione esame patente radioamatore 2016 Componenti elettronici Carlo Vignali, I4VIL Esempi di grandezze esprimibili con numeri reali esprimibili con numeri complessi

Dettagli

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di Elettrotecnica orso di Elettrotecnica - od. 9200 N Diploma Universitario eledidattico in Ingegneria Informatica ed Automatica Polo ecnologico di Alessandria A cura di uca FERRARIS Scheda N 4

Dettagli