CONTROLLI AUTOMATICI Ingegneria Meccatronica MODELLI DI SISTEMI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CONTROLLI AUTOMATICI Ingegneria Meccatronica MODELLI DI SISTEMI"

Transcript

1 CONTROLLI AUTOMATICI Ingegneria Meccatronica MODELLI DI SISTEMI Prof. Cesare Fantuzzi Ing. Cristian Secchi Modelli di sistemi dinamici Considereremo sistemi descritti da equazioni differenziali tra derivate dei segnali di ingresso u( e derivate dei segnali di uscita y( u( Sistema y( m j= 0 a j j d y j = n j= 0 b j j d u j ModSemp -- 2 Cesare Fantuzzi & Cristian Secchi Pag.

2 Modelli di sistemi dinamici Operatore D Operatore D : Notazione simbolica D per indicare l'operazione di derivazione rispetto al tempo per semplificare la scrittura delle equazioni differenziali: Ad esempio, se x (, x 2 ( sono funzioni derivabili, e a, a 2 costanti, allora Si può dare un significato anche al simbolo /D (o D - ) ponendo in cui K è un'opportuna costante. ModSemp -- 3 Modelli di sistemi dinamici Operatore D Questa relazione costituisce una notazione convenzionale, in quanto in realtà l'operatore D non è invertibile, rappresentando una corrispondenza che non è uno a uno, ma molti a uno: tutte le funzioni che differiscono per una costante presentano la stessa derivata: Per tale ragione /D non si può applicare ai due membri di una relazione esprimente l'uguaglianza di due funzioni: D y( = D x( se è y( = x(, non è detto che sia D - y( = D - x( (solo per cond. iniziali nulle). ModSemp -- 4 Cesare Fantuzzi & Cristian Secchi Pag. 2

3 Circuiti elettrici Q 0 è la carica iniziale del condensatore N e N 2 sono i numeri di spire del circuito primario e secondario ModSemp -- 5 Circuiti elettrici Le unità di misura delle grandezze elettriche nel sistema SI sono: Variabili: [v] = V, Volt; [i] = A, Ampere; [Q] = C, Coulomb; Parametri: [R] = Ω, [L] = H, [C] = F, Ohm; Henry; Farad; In genere, i modelli matematici di circuiti elettrici (composizione di sistemi elementari) si ricavano applicando le leggi di Kirchhoff che esprimono il bilancio delle cadute di potenziale lungo le maglie o delle correnti ai nodi: ModSemp -- 6 Cesare Fantuzzi & Cristian Secchi Pag. 3

4 Circuiti elettrici Le leggi di Kirchhoff esprimono il bilancio delle cadute di potenziale lungo le maglie o delle correnti ai nodi: La somma algebrica delle tensioni in una maglia è nulla; La somma algebrica delle correnti in un nodo è nulla. v 2 i 2 i3 v v 4 v3 i i 4 v = v 2 + v 3 + v 4 i + i 2 + i 3 +i 4 = 0 ModSemp -- 7 Circuiti elettrici - Esempio Volendo ricavare, anzichè la corrente i, la tensione d'uscita v u, si può operare la sostituzione i( = C D v u (, mediante la quale si ottiene (v C ( = v u () l'equazione differenziale che mette in evidenza la relazione tra causa v i ed effetto v u. ModSemp -- 8 Cesare Fantuzzi & Cristian Secchi Pag. 4

5 Circuiti elettrici - Esempio i( ingresso i R equazione differenziale A i C equazione algebrica nell'operatore D condizioni iniziali nulle Kirchoff al v( nodo A i = i R + i C uscita dv( i( = v( + C R i = R v+ CDv i R = v( R dv( ic = C Sistema del ordine accumulatore di energia ModSemp -- 9 Circuiti elettrici - Esempio v i ( i( equazione differenziale v R equazione algebrica nell'operatore D v c ( Kirchoff alla maglia v i = v R + v C t vi ( = Ri() t + idτ C 0 vi = Ri + C D i Dvi = RDi + C i Se interessa v c come uscita vr = Ri t vc = idτ 0 condizioni iniziali nulle Sistema del ordine ricordando che i = i ( ) c CDv c v = RCD + v ModSemp -- 0 Cesare Fantuzzi & Cristian Secchi Pag. 5

6 i( () Circuiti elettrici - Esempio i L ingresso i R A i C equazione integro-differenziale condizioni iniziali nulle il = v( L Kirchoff al i R = v ( t ) v( nodo A R dv( i = i L + i R + i C ic = C uscita dv( i( = v( + v( + C L R derivando ambo i membri 2 equazione differenziale di dv d v del 2 ordine = v + + C 2 equazione algebrica nell'operatore D L R Sistema del 2 ordine 2 accumulatori di energia ModSemp -- i( Circuiti elettrici - Esempio i L ingresso i R A i C v( uscita condizioni iniziali nulle Kirchoff al nodo A i = i L + i R + i C il = v( L ir = v( R dv( ic = C Consente di ricavare l'uscita v( a partire dall'ingresso i( Se come uscita interessa la corrente nell'induttanza induttanza, ricordando che v = LDi ModSemp -- 2 Cesare Fantuzzi & Cristian Secchi Pag. 6

7 i( Circuiti elettrici - Esempio i L ingresso i R A i C v( uscita condizioni iniziali nulle Kirchoff al nodo A i = i L + i R + i C i i i L R C Consente di ricavare l'uscita v( a partire dall'ingresso i( = v( L = v( R dv( = C Se come uscita interessa la corrente nella resistenza, ricordando che v = Ri R ModSemp -- 3 Circuiti elettrici - Esempio A il = v( condizioni iniziali nulle L i L i R i C i( Kirchoff al ir = v ( t ) v( R nodo A dv( i = i L + i R + i C ic = C ingresso uscita Consente di ricavare l'uscita v( a partire dall'ingresso i( Se come uscita interessa la corrente nei diversi componenti, ricordando che: v = i C C D ModSemp -- 4 Cesare Fantuzzi & Cristian Secchi Pag. 7

8 Sistemi meccanici In generale si cerca di adottare modelli a costanti concentrate, perchè di più facile impiego, anche se spesso alquanto approssimativi e meno aderenti alla realtà di quanto non lo siano nel caso dei circuiti elettrici: ad esempio, in un modello a costanti concentrate la massa di una molla, (distribuita) è supposta trascurabile o concentrata agli estremi della molla. Si cerca di adottare modelli lineari, anche se ciò implica la limitazione dello studio a variazioni relativamente piccole delle grandezze in gioco. ModSemp -- 5 Sistemi meccanici Nella deduzione dei modelli, per semplicità si farà riferimento a moti di traslazione lungo una sola direzione e di rotazione attorno ad un solo asse. Le equazioni differenziali che descrivono il moto dei sistemi meccanici si ricavano di regola esprimendo l'equilibrio delle forze e delle coppie applicate a ciascuna delle parti in movimento. Per ottenere il modello dinamico di un sistema meccanico in moto traslatorio è fondamentale la legge di Newton: dove m è la massa concentrata, f è la risultante di tutte le forze applicate, x lo spostamento risultante ( è quindi l'accelerazione). f f 4 f 5 f 2 f 3 f ModSemp -- 6 Cesare Fantuzzi & Cristian Secchi Pag. 8

9 Sistemi meccanici Per un corpo in rotazione attorno ad un asse la legge di Newton si scrive essendo: J il momento d'inerzia rispetto all'asse asse di rotazione, c la risultante delle coppie, θ la rotazione del corpo. c θ ModSemp -- 7 Sistemi meccanici I sistemi meccanici in moto traslatorio si possono considerare costituiti dai componenti elementari: la massa, in cui si concentrano le forze di inerzia, f m x f 2 la molla, in cui si concentrano le forze di richiamo elastico, (se per x = 0 e x 2 = 0 la molla non è caricata) l'ammortizzatore, in cui si concentrano le forze di attrito viscoso. Si suppone che gli estremi di tali componenti meccanici siano sottoposti a moto traslatorio orizzontale. f K f x x 2 f f x B x 2 ModSemp -- 8 Cesare Fantuzzi & Cristian Secchi Pag. 9

10 Sistemi meccanici Analogamente per sistemi in moto rotatorio: Forze coppie Masse inerzie c(, ω( J c(, θ ( K c(, θ 2 ( c(, ω ( B c(, ω 2 ( ModSemp -- 9 Sistemi meccanici Riduttore c (, ω ( c 2 (, ω 2 ( In un riduttore ideale (senza perdite per attrito e con accoppiamento perfetto tra gli ingranaggi), la velocità viene ridotta del fattore k r Poiché in questo meccanismo la potenza entrante deve essere uguale a quella uscente la coppia risulta amplificata. ModSemp Cesare Fantuzzi & Cristian Secchi Pag. 0

11 Sistemi meccanici Altri elementi: Cinghia/puleggia Vite a ricircolazione di sfere Camma Biella/manovella ModSemp -- 2 Sistemi meccanici Le unità di misura delle grandezze meccaniche nel sistema SI sono: Variabili: [f] = N, Newton; [x] = m, metri; = m/sec, velocità; = m/sec 2, accelerazione. Parametri: [M] = kg, chilogrammi; [K] = N/m, coefficiente di rigidezza; [B] = N sec/m, coefficiente di attrito viscoso. Oppure (caso rotatorio) Variabili: [c] = N m; [θ]=rad; = rad/sec; = rad/sec^2. Parametri: [J] = kg\,m^2; [K] = N\,m/rad, coefficiente di rigidezza torsionale; [B] = N\,m\,sec/rad, coefficiente di attrito torsionale. ModSemp Cesare Fantuzzi & Cristian Secchi Pag.

12 Sistemi meccanici - Esempio Carrelli con attrito m 2 m u( x 2 ( x ( Applicando la legge di Newton a ciascuna massa si ottiene ModSemp Sistemi meccanici - Esempio Carrelli con attrito m 2 m u( x 2 ( x ( La variabile osservata del sistema è la velocita di m 2 e quindi Dalle due eq.ni differenziali, utilizzando l'operatore D, si ottiene: ModSemp Cesare Fantuzzi & Cristian Secchi Pag. 2

13 Sistemi meccanici - Esempio Da Si ricava Se si considerano per esempio per i parametri i valori numerici: si ottiene l'equazione differenziale la cui soluzione y( descrive l'andamento dell'uscita in funzione dell'ingresso u( e delle condizioni iniziali y(t_0) = ModSemp Sistemi meccanici - Esempio Le coppie applicate in questo caso sono: coppia esterna c( coppia dovuta alla molla torsionale c k ( = k θ( coppia dovuta all'attrito torsionale c b ( = B Applicando la legge di Newton si ha ModSemp Cesare Fantuzzi & Cristian Secchi Pag. 3

14 Effetti non lineari - Attrito Nei sistemi meccanici esistono fenomeni nonlineari che, per la discontinuità delle caratteristiche, non sono suscettibili neppure di una linearizzazione locale: il più importante di questi è l'attrito. Per rimanere nel campo dei modelli lineari si dovrebbe considerare il solo attrito viscoso. In realtà è presente anche l'attrito secco o attrito al distacco, consistente in una forza che equilibra la forza applicata, impedendo l'inizio del moto, finché questa non supera una soglia F_ d, oltre la quale inizia il movimento e la forza si annulla. Inoltre può essere presente l'attrito coulombiano, caratterizzato da una forza nulla quando il corpo è immobile, costante quando esso è in movimento e tale da opporsi al moto. L'attrito al distacco e l'attrito coulombiano sono fenomeni tipicamente nonlineari, per cui, finché l'approssimazione risulta accettabile, nei modelli matematici si considera il solo attrito viscoso. ModSemp Effetti non lineari - Saturazione Saturazione La saturazione è un fenomeno comune a tutti i processi fisici: l'uscita y del sistema è proporzionale all'ingresso x solo in un certo intervallo di valori, mentre rimane praticamente costante al di fuori di esso. ModSemp Cesare Fantuzzi & Cristian Secchi Pag. 4

15 Effetti non lineari Elasticita Elasticità Si fa, quando possibile, l'ipotesi che i corpi con cui si tratta siano rigidi. A causa della presenza di inevitabili elasticità strutturali, i modelli che si ricavano con le ipotesi di corpi rigidi sono validi solo in opportune bande di frequenze, che per definizione sono al di sotto delle frequenze naturali delle strutture definite da questi effetti. Se possibile, si deve prestare attenzione a non eccitare queste frequenze. Una regola di tipo empirico che si può adottare è quella di far sì che la pulsazione del sistema complessivo (con il controllo) sia inferiore di quella naturale non è semplice determinare ω 0 ModSemp Effetti non lineari Isteresi Isteresi Il sistema di attuazione (riduttore) introduce solitamente un qualche effetto di isteresi. Nel caso di riduttori, è dovuto al gioco d esistente tra gli ingranaggi. gg x: spostamento in ingresso y: spostamento in uscita ModSemp Cesare Fantuzzi & Cristian Secchi Pag. 5

16 Effetti non lineari - Isteresi Il movimento dell'ingranaggio pilota non si trasmette all'altro fino a quando i denti delle due ruote non sono in contatto. Se la velocità di xcambiasegno segno, allora y rimane costante per un certo tratto Ingresso Uscita (dash) Isteresi (d = 0.6) Non linearità a due valori : per ogni x vi sono 2 possibili valori di y, a seconda della storia dell'ingresso. Si possono avere instabilità o oscillazioni permanenti (cicli limite) ModSemp -- 3 Sistemi meccanici Effetti non lineari Zona morta L'uscita non risente di variazioni dell'ingresso contenute in una data banda. ModSemp Cesare Fantuzzi & Cristian Secchi Pag. 6

17 CONTROLLI AUTOMATICI Ingegneria Meccatronica Modelli di Sistemi FINE Prof. Cesare Fantuzzi Ing. Cristian Secchi Cesare Fantuzzi & Cristian Secchi Pag. 7

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale MODELLI DI SISTEMI

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale MODELLI DI SISTEMI CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale MODELLI DI SISTEMI Ing. Luigi Biagiotti Tel. 05 2093034 / 05 2093068 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

03. Sistemi e Modelli

03. Sistemi e Modelli 03. Sistemi e Modelli Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Alessio Levratti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

02. Modelli Matematici: Derivazione

02. Modelli Matematici: Derivazione Controlli Automatici 02. Modelli Matematici: Derivazione Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it

Dettagli

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI ED CA - 02 MODELLI DI SISTEMI FISICI

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI ED CA - 02 MODELLI DI SISTEMI FISICI Automation Robotics and System CONTROL Università degli Studi di Modena e Reggio Emilia Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI ED AZIONAMENTI ELETTRICI CA - 02 MODELLI DI SISTEMI

Dettagli

FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica. SISTEMI E MODELLI

FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica.  SISTEMI E MODELLI FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html SISTEMI E MODELLI Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

Elementi di Modellistica

Elementi di Modellistica Elementi di Modellistica Obiettivo: Sviluppare un modello matematico di un sistema fisico per il progetto di controllori. Un modello fisico per il controllo deve essere: descrittivo: in grado di catturare

Dettagli

Formulazione dell equazione del moto. Prof. Adolfo Santini - Dinamica delle Strutture 1

Formulazione dell equazione del moto. Prof. Adolfo Santini - Dinamica delle Strutture 1 Formulazione dell equazione del moto Prof. Adolfo Santini - Dinamica delle Strutture 1 Sistema a un grado di libertà In alcuni sistemi strutturali la massa, lo smorzamento e la rigidezza sono concentrati

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici meccanici Sistemi meccanici in traslazione: elementi base Sistemi in traslazione: equazioni del moto Sistemi in traslazione: rappresentazione

Dettagli

01AYS - FONDAMENTI DI AUTOMATICA. Modellistica e rappresentazione in variabili di stato di sistemi dinamici

01AYS - FONDAMENTI DI AUTOMATICA. Modellistica e rappresentazione in variabili di stato di sistemi dinamici 01AYS - FONDAMENTI DI AUTOMATICA Modellistica e rappresentazione in variabili di stato di sistemi dinamici proff. Marina Indri e Michele Taragna Dip. di Automatica e Informatica Politecnico di Torino Anno

Dettagli

Le lettere x, y, z rappresentano i segnali nei vari rami.

Le lettere x, y, z rappresentano i segnali nei vari rami. Regole per l elaborazione di schemi a blocchi Oltre alle tre fondamentali precedenti regole (cascata, parallelo, retroazione), ne esiste una serie ulteriore che consente di semplificare i sistemi complessi,

Dettagli

Meccanica Applicata alle Macchine

Meccanica Applicata alle Macchine Meccanica Applicata alle Macchine 06-11-013 TEMA A 1. Un cilindro ed una sfera omogenei di uguale massa m ed uguale raggio r sono collegati tra loro da un telaio di massa trascurabile mediante coppie rotoidali

Dettagli

MODELLI DEI SISTEMI FISICI ELEMENTARI

MODELLI DEI SISTEMI FISICI ELEMENTARI MODELLI DEI SISTEMI FISICI ELEMETARI La modellistica è la disciplina che si occupa della costruzione dei modelli matematici dei sistemi el seguito introduciamo dei cenni di modellistica sulla base delle

Dettagli

MODELLI DEI SISTEMI FISICI ELEMENTARI

MODELLI DEI SISTEMI FISICI ELEMENTARI MODELLI DEI SISTEMI FISICI ELEMETARI La modellistica è la disciplina che si occupa della costruzione dei modelli matematici dei sistemi el seguito introduciamo dei cenni di modellistica sulla base delle

Dettagli

Traslazioni. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Traslazioni. Debora Botturi ALTAIR.  Debora Botturi. Laboratorio di Sistemi e Segnali Traslazioni ALTAIR http://metropolis.sci.univr.it Argomenti Velocitá ed accelerazione di una massa che trasla Esempio: massa che trasla con condizioni iniziali date Argomenti Argomenti Velocitá ed accelerazione

Dettagli

01. Modelli di Sistemi

01. Modelli di Sistemi Controlli Automatici 01. Modelli di Sistemi Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it

Dettagli

Fondamenti di Meccanica Esame del

Fondamenti di Meccanica Esame del Politecnico di Milano Fondamenti di Meccanica Esame del 0.02.2009. In un piano verticale un asta omogenea AB, di lunghezza l e massa m, ha l estremo A vincolato a scorrere senza attrito su una guida verticale.

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale MODELLI DI SISTEMI

CONTROLLI AUTOMATICI Ingegneria Gestionale  MODELLI DI SISTEMI CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm MODELLI DI SISTEMI Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

Il motore a corrente continua

Il motore a corrente continua Il motore a corrente continua 15 marzo 2015 Ing. chiara.foglietta@uniroma3.it Università degli Studi Roma TRE Agenda Il motore a corrente continua 2 Il motore elettrico a corrente continua è un componente

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Esercizi-equazioni Esercizi equazioni di stato:

Esercizi-equazioni Esercizi equazioni di stato: Esercizi-equazioni Esercizi equazioni di stato: 1. Determinare le equazioni di stato per il seguente sistema termico: Esercizi 2, 1 Hp. Modellistica a) Trascuriamo la temperatura di parete : Si scrive

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici elettrici Elementi fondamentali Rappresentazione in variabili di stato Esempi di rappresentazione in variabili di stato Modellistica

Dettagli

0.6 Moto rotazionale intorno ad un asse fisso

0.6 Moto rotazionale intorno ad un asse fisso 0.6.0. Moto rotazionale intorno ad un asse fisso 25 0.6 Moto rotazionale intorno ad un asse fisso Premessa Questa esperienza riguarda lo studio del comportamento di un corpo (volano) libero di ruotare

Dettagli

Attuatori. Gli attuatori costituiscono gli elementi che controllano e permettono il movimento delle parti

Attuatori. Gli attuatori costituiscono gli elementi che controllano e permettono il movimento delle parti Attuatori Gli attuatori costituiscono gli elementi che controllano e permettono il movimento delle parti meccaniche di una macchina automatica. Sono una componente della parte operativa di una macchina

Dettagli

MOMENTI DI INERZIA PER CORPI CONTINUI

MOMENTI DI INERZIA PER CORPI CONTINUI MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI

Dettagli

Equazioni differenziali lineari a coefficienti costanti

Equazioni differenziali lineari a coefficienti costanti Equazioni differenziali lineari a coefficienti costanti Generalità Il modello matematico di un qualsiasi sistema fisico in regime variabile conduce alla scrittura di una o più equazioni differenziali.

Dettagli

Rotazioni. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Rotazioni. Debora Botturi ALTAIR.  Debora Botturi. Laboratorio di Sistemi e Segnali Rotazioni ALTAIR http://metropolis.sci.univr.it Argomenti Propietá di base della rotazione Argomenti Argomenti Propietá di base della rotazione Leggi base del moto Inerzia, molle, smorzatori, leve ed ingranaggi

Dettagli

Lezione 18. Trasmissione e carico. F. Previdi - Controlli Automatici - Lez. 18

Lezione 18. Trasmissione e carico. F. Previdi - Controlli Automatici - Lez. 18 Lezione 8. Trasmissione e carico F. Previdi - Controlli Automatici - Lez. 8 . Introduzione Tra motore e carico viene di norma inserito un riduttore per adattare le velocità di rotazione e la coppia erogata

Dettagli

Dinamica delle Strutture

Dinamica delle Strutture Corso di Laurea magistrale in Ingegneria Civile e per l Ambiente e il Territorio Dinamica delle Strutture Prof. Adolfo SANTINI Ing. Francesco NUCERA Prof. Adolfo Santini - Dinamica delle Strutture 1 Dinamica

Dettagli

Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A

Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A I vettori 1) Cosa si intende per grandezza scalare e per grandezza vettoriale? 2) Somma graficamente due vettori A, B. 3) Come è definito

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Sistemi Dinamici a Tempo Continuo

Sistemi Dinamici a Tempo Continuo Parte 2 Aggiornamento: Settembre 2010 Parte 2, 1 Sistemi Dinamici a Tempo Continuo Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL: www-lar.deis.unibo.it/~lmarconi

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria

UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE (Lauree di primo livello DM 509/99 e DM 270/04 e Diploma Universitario)

Dettagli

Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici

Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici Prof. Roberto Guidorzi Dipartimento di Elettronica, Informatica e Sistemistica Università di Bologna Viale del Risorgimento 2, 40136

Dettagli

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac La DINAMICA è il ramo della meccanica che si occupa dello studio del moto dei corpi e delle sue cause o delle circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo

Dettagli

ISTITUTO PROFESSIONALE DI STATO PER L INDUSTRIA E L ARTIGIANATO I.P.S.I.A. L. B. ALBERTI

ISTITUTO PROFESSIONALE DI STATO PER L INDUSTRIA E L ARTIGIANATO I.P.S.I.A. L. B. ALBERTI ISTITUTO PROFESSIONALE DI STATO PER L INDUSTRIA E L ARTIGIANATO I.P.S.I.A. L. B. ALBERTI Via Clotilde Tambroni, RIMINI ( RN ) Anno scolastico 2016-2017 Classe I A Materia: FISICA Insegnante : Prof. GIUSEPPE

Dettagli

Costruzioni in zona sismica

Costruzioni in zona sismica Costruzioni in zona sismica Lezione 7 Sistemi a più gradi di libertà Il problema dinamico viene formulato con riferimento a strutture con un numero finito di gradi di libertà. Consideriamo le masse concentrate

Dettagli

Lezione 8 Dinamica del corpo rigido

Lezione 8 Dinamica del corpo rigido Lezione 8 Dinamica del corpo rigido Argomenti della lezione:! Corpo rigido! Centro di massa del corpo rigido! Punto di applicazione della forza peso! Punto di applicazione della forza peso! Momento della

Dettagli

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola CORSO DI COMPLEMENTI DI MECCANICA Prof. Vincenzo Niola SISTEMI A DUE GRADI DI LIBERTÀ Lo studio dei sistemi a più gradi di libertà verrà affrontato facendo riferimento, per semplicità, solo a sistemi conservativi,

Dettagli

Dinamica: Forze e Moto, Leggi di Newton

Dinamica: Forze e Moto, Leggi di Newton Dinamica: Forze e Moto, Leggi di Newton La Dinamica studia il moto dei corpi in relazione il moto con le sue cause: perché e come gli oggetti si muovono. La causa del moto è individuata nella presenza

Dettagli

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Automation Robotics and System CONTROL Università degli Studi di Modena e Reggio Emilia Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL o E 2 o ORDINE CA 5 Cesare Fantuzzi (cesare.fantuzzi@unimore.it)

Dettagli

Stampa Preventivo. A.S Pagina 1 di 6

Stampa Preventivo. A.S Pagina 1 di 6 Stampa Preventivo A.S. 2009-2010 Pagina 1 di 6 Insegnante VISINTIN ANTONELLA Classe 4AL Materia fisica preventivo consuntivo 129 0 titolo modulo 4.1 Grandezze fisiche e misure 4.2 Le forze e l'equilibrio

Dettagli

Esempi di modelli fisici

Esempi di modelli fisici 0.0..2 Esempi di modelli fisici ) Dinamica del rotore di un motore elettrico. Si consideri un elemento meccanico con inerzia J, coefficiente di attrito lineare che ruota alla velocità angolare ω al quale

Dettagli

Modelli di sistemi elementari. (Fondamenti di Automatica G. Ferrari Trecate)

Modelli di sistemi elementari. (Fondamenti di Automatica G. Ferrari Trecate) Modelli di sistemi elementari (Fondamenti di Automatica G. Ferrari Trecate) Circuiti elettrici Resistore R i resistenza corrente v tensione v = Ri( Induttore L i induttanza corrente v tensione L i! = v(

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

Principio di inerzia

Principio di inerzia Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

Tutorato di Fisica 1 - AA 2014/15

Tutorato di Fisica 1 - AA 2014/15 Tutorato di Fisica 1 - AA 014/15 Emanuele Fabbiani 19 febbraio 015 1 Oscillazioni 1.1 Esercizio 1 (TE 31-Gen-01, Ing. IND) Durante un terremoto le oscillazioni orizzontali del pavimento di una stanza provocano

Dettagli

LE FORZE. Il mondo che ci circonda è costituito da oggetti che esercitano azioni gli uni sugli altri Queste azioni sono dette forze

LE FORZE. Il mondo che ci circonda è costituito da oggetti che esercitano azioni gli uni sugli altri Queste azioni sono dette forze LE FORZE Il mondo che ci circonda è costituito da oggetti che esercitano azioni gli uni sugli altri Queste azioni sono dette forze Le forze possono agire: Per contatto a distanza Effetto delle forze Le

Dettagli

Traslazioni. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Traslazioni. Debora Botturi ALTAIR.  Debora Botturi. Laboratorio di Sistemi e Segnali Traslazioni ALTAIR http://metropolis.sci.univr.it Argomenti Velocitá ed accelerazione di una massa che trasla Esempio: massa che trasla con condizioni iniziali date Argomenti Argomenti Velocitá ed accelerazione

Dettagli

Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni

Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Definizioni e breve richiamo alle principali leggi dei circuiti elettrici Risolvere un circuito elettrico significa determinare i

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

1 Cinematica del punto Componenti intrinseche di velocità e accelerazione Moto piano in coordinate polari... 5

1 Cinematica del punto Componenti intrinseche di velocità e accelerazione Moto piano in coordinate polari... 5 Indice 1 Cinematica del punto... 1 1.1 Componenti intrinseche di velocità e accelerazione... 3 1.2 Moto piano in coordinate polari... 5 2 Cinematica del corpo rigido... 9 2.1 Configurazioni rigide......

Dettagli

Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà. Proprietà delle matrici di rigidezza e di flessibilità

Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà. Proprietà delle matrici di rigidezza e di flessibilità Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà Proprietà delle matrici di rigidezza e di flessibilità Prof. Adolfo Santini - Dinamica delle Strutture Introduzione In

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

SISTEMI DI CONTROLLO CINEMATICA E DINAMICA DEI ROBOT

SISTEMI DI CONTROLLO CINEMATICA E DINAMICA DEI ROBOT SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccanica e del Veicolo SISTEMI DI CONTROLLO CINEMATICA E DINAMICA DEI ROBOT Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

SISTEMI LINEARI A COEFFICIENTE COSTANTE

SISTEMI LINEARI A COEFFICIENTE COSTANTE SISTEMI LINEARI A COEFFICIENTE COSTANTE Per studiare la velocità, la precisione e la stabilità di un sistema bisogna individuare il modello matematico del sistema Abbiamo visto che un sistema di controllo

Dettagli

MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA prova del Problema N.1. Problema N.2

MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA prova del Problema N.1. Problema N.2 MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA.2011-2012 prova del 01-02-2013 Problema N.1 Il sistema meccanico illustrato in figura giace nel piano verticale. L asta AB con baricentro G 2 è incernierata

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA

CONTROLLI AUTOMATICI Ingegneria Gestionale  ANALISI ARMONICA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 ) 1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11 Indice Indice 3 Note di utilizzo 9 Ringraziamenti 10 Introduzione 11 Capitolo 1 Grandezze fisiche e schematizzazione dei sistemi materiali 13 1.1 Grandezze fisiche ed operazione di misura 13 1.2 Riferimento

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

PROBLEMA N.2 Il motorino elettrico

PROBLEMA N.2 Il motorino elettrico PROBLEMA N.2 Il motorino elettrico Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della dinamica in presenza

Dettagli

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro

Dettagli

P = r. o + r. O + ω r (1)

P = r. o + r. O + ω r (1) 1 5.1-MOTI RELATIVI Parte I 5.1-Moti relativi-cap5 1 5.1-Moti relativi Teorema delle velocità relative Riprendiamo l impostazione tracciata nel paragrafo 2.6 (moti relativi 2-D) e consideriamo un sistema

Dettagli

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da

Dettagli

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA Le competenze di base a conclusione dell obbligo di istruzione sono le seguenti: Osservare, descrivere ed analizzare fenomeni appartenenti alla realtà

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Modellistica dei Sistemi Elettro-Meccanici

Modellistica dei Sistemi Elettro-Meccanici 1 Prof. Carlo Cosentino Fondamenti di Automatica, A.A. 2016/17 Corso di Fondamenti di Automatica A.A. 2016/17 Modellistica dei Sistemi Elettro-Meccanici Prof. Carlo Cosentino Dipartimento di Medicina Sperimentale

Dettagli

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013 POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 I a prova in itinere, 10 maggio 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.

Dettagli

MECCANICA APPLICATA ALLE MACCHINE L

MECCANICA APPLICATA ALLE MACCHINE L Università degli Studi di Bologna II Facoltà di Ingegneria con sede a Cesena MECCANICA ALICATA ALLE MACCHINE L Corso di Laurea in INGEGNEIA MECCANICA Corso di Laurea in INGEGNEIA AEOSAZIALE Anno Accademico

Dettagli

Lezione 4. Meccanica del punto materiale Dinamica

Lezione 4. Meccanica del punto materiale Dinamica Lezione 4 Meccanica del punto materiale Dinamica Forze di attrito Se si misura sperimentalmente la legge del moto di un corpo che cade liberamente nell atmosfera si verifica il moto che non e esattamente

Dettagli

ESERCIZI DI DINAMICA DEL PUNTO MATERIALE

ESERCIZI DI DINAMICA DEL PUNTO MATERIALE ESERCIZI DI DINAMICA DEL PUNTO MATERIALE Per un pendolo semplice di lunghezza l=5 m, determinare a quale altezza può essere sollevata la massa m= g sapendo che il carico di rottura è T max =5 N. SOL.-

Dettagli

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO LEZIONE statica-1 CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO GRANDEZZE SCALARI E VETTORIALI: RICHIAMI DUE SONO LE TIPOLOGIE DI GRANDEZZE ESISTENTI IN FISICA

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica ) CONTROLLI AUTOMATICI Ingegneria Meccatronica ANALISI ARMONICA Prof. Cesare Fantuzzi Ing. Cristian Secchi e-mail: cesare.fantuzzi@unimore.it, cristian.secchi@unimore.it http://www.automazione.ingre.unimore.it

Dettagli

08. Analisi armonica. Controlli Automatici

08. Analisi armonica. Controlli Automatici 8. Analisi armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Alessio Levratti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

Modellistica dei Sistemi Meccanici

Modellistica dei Sistemi Meccanici 1 Prof. Carlo Cosentino Fondamenti di Automatica, A.A. 016/17 Corso di Fondamenti di Automatica A.A. 016/17 odellistica dei Sistemi eccanici Prof. Carlo Cosentino Dipartimento di edicina Sperimentale e

Dettagli

UNIVERSITÀ DEGLI STUDI DI FIRENZE. Registro dell'insegnamento

UNIVERSITÀ DEGLI STUDI DI FIRENZE. Registro dell'insegnamento UNIVERSITÀ DEGLI STUDI DI FIRENZE Registro dell'insegnamento Anno accademico 2012/2013 Prof. ETTORE MINGUZZI Settore inquadramento MAT/07 - FISICA MATEMATICA Facoltà INGEGNERIA Insegnamento MECCANICA RAZIONALE

Dettagli

Lezione 8: Sistemi ad un grado di libertà: l oscillatore elementare (8)

Lezione 8: Sistemi ad un grado di libertà: l oscillatore elementare (8) Lezione 8: Sistemi ad un grado di libertà: l oscillatore elementare (8) Federico Cluni 3 marzo 205 Fattore di amplificazione in termini di velocità e accelerazione Nel caso l oscillatore elementare sia

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA

UNIVERSITA DEGLI STUDI DI BRESCIA UNIVERSITA DEGLI STUDI DI BRESCIA ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE (Lauree di primo livello D.M. 509/99 e D.M. 270/04 e Diploma Universitario) SEZIONE B - Seconda

Dettagli

Programma di fisica. Classe 1^ sez. F A. S. 2015/2016. Docente: prof. ssa Laganà Filomena Donatella

Programma di fisica. Classe 1^ sez. F A. S. 2015/2016. Docente: prof. ssa Laganà Filomena Donatella Programma di fisica. Classe 1^ sez. F A. S. 2015/2016 Docente: prof. ssa Laganà Filomena Donatella MODULO 1: LE GRANDEZZE FISICHE. Notazione scientifica dei numeri, approssimazione, ordine di grandezza.

Dettagli

Banda passante e sviluppo in serie di Fourier

Banda passante e sviluppo in serie di Fourier CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html Banda passante e sviluppo in serie di Fourier Ing. e-mail: luigi.biagiotti@unimore.it

Dettagli

CIRCUITI ELETTRICI. Le grandezze fondamentali nei circuiti elettrici sono:

CIRCUITI ELETTRICI. Le grandezze fondamentali nei circuiti elettrici sono: CIRCUITI ELETTRICI Riccardo Scannaliato 4H 2015/16 Le grandezze fondamentali nei circuiti elettrici sono: La corrente elettrica: la quantità di carica che attraversa una sezione S di conduttore in un secondo.

Dettagli

Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff

Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff alentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Bipoli lineari;

Dettagli

Unità didattica 3. Terza unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 3. Terza unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 3 Elasticità dei materiali Deformazione di un solido..2 Legge di Hooke.. 3 Forza elastica.. 4 Deformazione elastica di una molla... 5 Accumulo di energia attraverso la deformazione elastica..6

Dettagli

La fisica di Feynmann Meccanica

La fisica di Feynmann Meccanica La fisica di Feynmann Meccanica 1.1 CINEMATICA Moto di un punto Posizione r = ( x, y, z ) = x i + y j + z k Velocità v = dr/dt v = vx 2 + vy 2 + vz 2 Accelerazione a = d 2 r/dt 2 Moto rettilineo Spazio

Dettagli

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Esercizi Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Per ciascun esercizio disegnare su ciascun corpo del sistema il diagramma delle forze, individuando e nominando ciascuna forza.

Dettagli

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Esercizi Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Per ciascun esercizio disegnare su ciascun corpo del sistema il diagramma delle forze, individuando e nominando ciascuna forza.

Dettagli

Nota: per la risoluzione si mostrino chiaramente i diagrammi delle forze per il blocchetto e per la lastra

Nota: per la risoluzione si mostrino chiaramente i diagrammi delle forze per il blocchetto e per la lastra FISICA GENERALE I - Sede di Spezia - Prova A di Meccanica del 15/02/2016 ME 1 Un blocchetto di massa =5.0 è appoggiato sopra una di massa =10 e tra e blocchetto vi è attrito con coefficiente statico =0.90

Dettagli

ESERCIZIO 1 (Punti 9)

ESERCIZIO 1 (Punti 9) UNIVERSITA DI PISA - ANNO ACCADEMICO 007-8 CORSO DI LAUREA IN ING. ELETTRICA (N.O.) CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE VERIFICA INTERMEDIA DEL 15-06-009 ESERCIZIO 1 (Punti 9) Data

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

Tempi Moduli Unità /Segmenti. 2.1 La conservazione dell energia meccanica

Tempi Moduli Unità /Segmenti. 2.1 La conservazione dell energia meccanica PERCORSO FORMATIVO DEL 3 ANNO - CLASSE 3 A L LSSA A. S. 2015/2016 Tempi Moduli Unità /Segmenti MODULO 0: Ripasso e consolidamento di argomenti del biennio MODULO 1: Il moto dei corpi e le forze. (Seconda

Dettagli

Modellistica e Simulazione

Modellistica e Simulazione Modellistica e Simulazione Lezione 4 aprile 2011 Università degli Studi del Sannio Facoltà di Ingegneria Luigi Iannelli Relazioni di comune utilizzo nella modellistica fisica Principi di conservazione

Dettagli

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Soluzioni Teoria Enunciare sinteticamente chiarendo il

Dettagli

I.T.I.S. TRASFORMATA DI LAPLACE DIAGRAMMI DI BODE

I.T.I.S. TRASFORMATA DI LAPLACE DIAGRAMMI DI BODE I.T.I.S. APPUNTI DI ELETTRONICA TRASFORMATA DI LAPLACE E DIAGRAMMI DI BODE PREMESSA Per lo studio dei sistemi di controllo si utilizzano modelli matematici dinamici lineari. L analisi o il progetto di

Dettagli

EQUAZIONI DIFFERENZIALI

EQUAZIONI DIFFERENZIALI Indice 1 EQUAZIONI DIFFERENZIALI 3 1.1 Equazioni fisicamente significative...................... 3 1.1.1 A cosa servono?............................. 3 1.1.2 Legge di Newton............................

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Esercizio 1. Un corsoio di massa m scorre su un piano orizzontale con attrito radente di coefficiente f d. Al corsoio, in C, è collegata la biella B C, di lunghezza b e

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

L EQUILIBRIO DEL PUNTO MATERIALE

L EQUILIBRIO DEL PUNTO MATERIALE 1 L EQUILIBRIO DEL PUNTO MATERIALE La statica studia l equilibrio dei corpi. Un corpo è in equilibrio se è fermo e persevera nel suo stato di quiete al trascorrere del tempo. Un modello è la semplificazione

Dettagli