Lezione 3: Grafica 3D*

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 3: Grafica 3D*"

Transcript

1 Lezione 3: Grafica 3D* Informatica Multimediale Docente: Umberto Castellani *I lucidi sono tratti da una lezione di Maura Melotti

2 Sommario Il processo grafico La modellazione 3D Rendering Image storage and display

3 Introduzione: il processo grafico 3D Modelling 3D Animation Definition Rendering Texture Information Image Storage and Display

4 Image storage and display Rendering Hardware Framebuffer Disk File Film Recorder Video Recorder

5 Modelling e rendering 3D Modelling 3D Animation Definition Rendering Texture Information Image Storage and Display

6 MODELLING

7 Modellazione 3D La modellazione 3D: è il processo di descrizione di un oggetto o una scena al fine di poterla disegnare Struttura: Definizione geometrica Trasformazioni 3D Apparenza: Definizione telecamere virtuali Definizione sorgenti di luce Definizione proprietà dei materiali

8 Struttura e apparenza La struttura viene descritta principalmente dalla geometria degli oggetti e dalla loro posizione reciproca (posizionamento nello spazio 3D). L apparenza descrive come la superficie del modello interagisce con la luce (colore, riflessi e trasparenze)

9 Geometria La geometria degli oggetti viene definita dalle seguenti primitive grafiche (i.e., i mattoni che costituiscono l oggetto): Punti Linee Poligoni (i.e., triangoli) Usando primitive multiple si generano oggetti complicati, ovvero le scene complesse sono composte da moltissimi blocchi di primitive E importante il livello di dettaglio (LOD) 12 poligoni triangoli

10 Geometria: punti Point primitives

11 Geometria: linee Definite come liste di punti polyline o line strip

12 Geometria: poligoni Es: Triangoli sono sempre convessi è il più semplice tipo di poligono è planare Many graphics systems have separate primitives for triangles that are more efficient than the general polygon primitives.

13 Geometria: poligoni Most graphics systems know how to draw only very simple convex polygons, usually triangles.

14 Geometria: poligoni Quad mesh Triangle Strip

15 Geometria: tipi di modelli E possibile generare le primitive geometriche specificando differenti tipi di modelli: Superfici esplicite Superfici implicite Constructiove Solide Geometry (CSG) Altri più avanzati..(i.e., superfici di suddivisione, modelli deformabili, modelli autogenerativi, ect.) Generalmente si modella solo la parte visibile degli oggetti (i.e., le superfici) in altre applicazioni è utile modellare anche gli interni (es: in ambito medico)

16 Superfici esplicite Le superfici esplicite descrivono direttamente le primitive geometriche Poligoni o mesh: la superficie viene Superfici parametriche

17 Mesh poligonali la superficie viene scomposta in un insieme di poligoni, solitamente triangoli ottenendo una tessellazione Servono molti triangoli per definire oggetti con una geometria complicata e dunque la memoria potrebbe esplodere (o il loro processamento) E importante definire il livello di tessellazione

18 Superfici parametriche Ci sono diverse funzioni matematiche che descrivono particolari superfici curve Si usano piccole regioni o patches Come nella tessellazione pologonale si effettua una tessellazione di patch di curve Sono definite da punti di controllo Esempi: bezier, Hermite, B-spline, Nurbs, ectc.

19 Superfici implicite Una superficie implicita è descritta da una funzione matematica Es. sfere, cilindri, coni, etc. Metaballs Isosuperfici

20 Constructive Solid Geometry (CSG) Sono ottenute combinando simplici solidi 3D usando le operazioni booleani (and, or, not)

21 Livello di dettaglio Le superfici più complesse hanno bisogno di più triangoli per essere rappresentate Maggiore è il numero di triangoli e migliore è la capacità del modello di rappresentare i dettagli Livello di dettaglio (level of detail)

22 Livello di dettagli: compromesso Più dettaglio Più realismo modellazione più laboriosa rendering più lento occupa più memoria

23 Modelling: trasformazioni Trasformazioni: rotazione scale traslazione

24 Trasformazioni: calcolo Equazioni lineari in forma matriciale x' = Ax + By + Cz + D y' = Ex + Fy + Gz + H z' = Ix + Jy + Kz + L

25 Rotazioni Rotation

26 Rotazione su asse Z 3D Rotation About Z

27 Rotazione su asse Y 3D Rotation About Y

28 Rotazione su asse X 3D Rotation About X

29 Scala x' = x * Sx y' = y * Sy Scaling z' = z * Sz

30 Scala Scaling

31 Traslazioni x' = x + Dx y' = y + Dy z' = z + Dz Translation Translation

32 Traslazioni Translation

33 Apparenza: telecamere virtuali

34 Telecamera Nel passare dal 3D al 2D c è perdita di informazione Occorre definire: Da dove si osserva (view point) Su cosa si osserva (look at point) Orientazione della telecamera (view direction) Regole di proiezione: ortografica Proiettiva clipping

35 Telecamera: proiezioni Ortografica: gli oggetti vengono mappati sul piano immagine senza variariazione di dimensione Proiettiva: si emula la fisica del sistema proiettivo (gli oggetti lontani sono più piccoli) È importante definire i parametri di proiezione come la focale (zoom)

36 Proiezione: frustrum e clipping Nel definire la telecamera si deve specificare il cono di vista (i.e., frustrum) Si determina dal parallelepipedo tra il piano più vicino e il piano più lontano Gli elementi della scena che non cadono dentro al frustrum non vengono proiettati (fase di clipping)

37 Apparenza: illuminazione L essere umano è molto sensibile alla luminosità Dalla variazione della luminosità si percepisce la forma 3D di un oggetto La modellazione delle luci della scena si occupa del loro posizionamento e del tipo

38 Tipi di illuminazione Directional Light: is specified with only a direction and an intensity which apply everywhere in the scene (sunlight). Point Light: all light comes from one point. Spotlight: it has a shade around it so that it shines only in a cone. Ambient Light: it models the light that is scattered about by bouncing off other objects.

39 Apparenza: proprietà dei materiali Nel modellare un oggetto è importante definire le proprietà del materiale che lo compone Tali proprietà condizionano l apparenza dell oggetto nel momento in cui viene colpito dalla luce Le proprietà principali sono: Colore Riflettanza rugosità demo

40 Interazione luce-superfici

41 Riflessione da superfici a) speculare b) diffusiva c) trasparente

42 Sorgenti di Luce sorgente estesa (lampadina): Funzione di illuminazione I(x,y,z, u, f, l) il contributo totale sulla superficie si ottiene integrando nello spazio

43 Software di modellazione 3D AutoCAD : 3DStudio : Maya : Multigen :

Fuoco, direttrice ed equazione di una parabola traslata. Bruna Cavallaro, Treccani scuola

Fuoco, direttrice ed equazione di una parabola traslata. Bruna Cavallaro, Treccani scuola Fuoco, direttrice ed equazione di una parabola traslata Bruna Cavallaro, Treccani scuola 1 Traslare parabole con fuoco e direttrice Su un piano Oxy disegno una parabola, con fuoco e direttrice. poi traslo

Dettagli

Prof. Caterina Rizzi Dipartimento di Ingegneria Industriale

Prof. Caterina Rizzi Dipartimento di Ingegneria Industriale RUOLO DELLA MODELLAZIONE GEOMETRICA E LIVELLI DI MODELLAZIONE PARTE 2 Prof. Caterina Rizzi... IN QUESTA LEZIONE Modelli 2D/3D Modelli 3D/3D Dimensione delle primitive di modellazione Dimensione dell oggettoy

Dettagli

Data Alignment and (Geo)Referencing (sometimes Registration process)

Data Alignment and (Geo)Referencing (sometimes Registration process) Data Alignment and (Geo)Referencing (sometimes Registration process) All data aquired from a scan position are refered to an intrinsic reference system (even if more than one scan has been performed) Data

Dettagli

Lezione 12: La visione robotica

Lezione 12: La visione robotica Robotica Robot Industriali e di Servizio Lezione 12: La visione robotica L'acquisizione dell'immagine L acquisizione dell immagine Sensori a tubo elettronico (Image-Orthicon, Plumbicon, Vidicon, ecc.)

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Argomento interdisciplinare

Argomento interdisciplinare 1 Argomento interdisciplinare Tecnologia-Matematica Libro consigliato: Disegno Laboratorio - IL MANUALE DI TECNOLOGIA _G.ARDUINO_LATTES studiare da pag.19.da 154 a 162 Unità aggiornata: 7/2012 2 Sono corpi

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

RELAZIONE DI FINE TIROCINIO

RELAZIONE DI FINE TIROCINIO Dipartimento di Ingegneria Civile Laura Magistrale in Ingegneria Civile per la Protezione dai Rischi Naturali A.A. 2014-2015 RELAZIONE DI FINE TIROCINIO INTRODUZIONE ALL'USO DEL SOFTWARE GIS UDIG Tirocinante:

Dettagli

Gi-Gi Art. 859 - User's Guide Istruzioni d'uso

Gi-Gi Art. 859 - User's Guide Istruzioni d'uso doc.4.12-06/03 Gi-Gi Art. 859 - User's Guide Istruzioni d'uso A belaying plate that can be used in many different conditions Una piastrina d'assicurazione che può essere utilizzata in condizioni diverse.

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

r.berardi NOTE E SCHEDE OPERATIVE PER APPRENDERE LE PROIEZIONI ORTOGONALI

r.berardi NOTE E SCHEDE OPERATIVE PER APPRENDERE LE PROIEZIONI ORTOGONALI r.berardi NOTE E SCHEDE OPERATIVE PER APPRENDERE LE PROIEZIONI ORTOGONALI 1. Proiezioni Assonometriche e ortogonali 2. Teoria delle proiezioni ortogonali Pag. 1 Pag. 2. 3. SCHEDE OPERATIVE SULLE PROIEZIONI

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

Luca Lussardi - Universit` a Cattolica del Sacro Cuore Dalla citt` a ideale alle cellule: l ubiquit` a della matematica

Luca Lussardi - Universit` a Cattolica del Sacro Cuore Dalla citt` a ideale alle cellule: l ubiquit` a della matematica Lo studio della matematica costituisce un educazione formativa della mente. La matematica sviluppa tutte le facoltà dell ingegno, affina in particolare le facoltà logiche, educa e rende più retta l intuizione,

Dettagli

Presentazioni multimediali relative al senso del tatto DIMENSIONI LIVELLO INIZIALE LIVELLO INTERMEDIO LIVELLO AVANZATO

Presentazioni multimediali relative al senso del tatto DIMENSIONI LIVELLO INIZIALE LIVELLO INTERMEDIO LIVELLO AVANZATO PERCORSO DI INSEGNAMENTO/APPRENDIMENTO TIPO DI UdP: SEMPLICE (monodisciplinare) ARTICOLATO (pluridisciplinare) Progetto didattico N. 1 Titolo : Let s investigate the world with our touch! Durata: Annuale

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

SOL terra Marco Zanuso Jr, Christophe Mathieu 2014

SOL terra Marco Zanuso Jr, Christophe Mathieu 2014 SOL terra Marco Zanuso Jr, Christophe Mathieu 2014 MADE IN ITALY SOL - Marco Zanuso Jr, Christophe Mathieu 2013 Sol è un sistema basato interamente sull interpretazione di innovativi principi di calcolo

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

Indicizzazione terza parte e modello booleano

Indicizzazione terza parte e modello booleano Reperimento dell informazione (IR) - aa 2014-2015 Indicizzazione terza parte e modello booleano Gruppo di ricerca su Sistemi di Gestione delle Informazioni (IMS) Dipartimento di Ingegneria dell Informazione

Dettagli

Integrali di superficie: esercizi svolti

Integrali di superficie: esercizi svolti Integrali di superficie: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio. Calcolare i seguenti integrali superficiali sulle superfici

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it 3 4 5 Terne pitagoriche e teorema di Pitagora, numeri e triangoli Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it Qualche osservazione preliminare sul Teorema di Pitagora e le terne

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

La dinamica delle collisioni

La dinamica delle collisioni La dinamica delle collisioni Un video: clic Un altro video: clic Analisi di un crash test (I) I filmati delle prove d impatto distruttive degli autoveicoli, dato l elevato numero dei fotogrammi al secondo,

Dettagli

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Lezione 1 Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Definizione di utente e di programmatore L utente è qualsiasi persona che usa il computer anche se non è in grado di programmarlo

Dettagli

TRAVE SU SUOLO ELASTICO

TRAVE SU SUOLO ELASTICO Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

O 6 - GLI SPECCHI. Fig. 85

O 6 - GLI SPECCHI. Fig. 85 O 6 - GLI SPECCHI Quando un fascio di luce (radiazione ottica) incide sulla superficie di separazione fra due materiali diversi, possono avvenire tre cose, generalmente tutte e tre allo stesso tempo, in

Dettagli

e-spare Parts User Manual Peg Perego Service Site Peg Perego [Dicembre 2011]

e-spare Parts User Manual Peg Perego Service Site Peg Perego [Dicembre 2011] Peg Perego Service Site Peg Perego [Dicembre 2011] 2 Esegui il login: ecco la nuova Home page per il portale servizi. Log in: welcome to the new Peg Perego Service site. Scegli il servizio selezionando

Dettagli

1. Che cos è. 2. A che cosa serve

1. Che cos è. 2. A che cosa serve 1. Che cos è Il Supplemento al diploma è una certificazione integrativa del titolo ufficiale conseguito al termine di un corso di studi in una università o in un istituto di istruzione superiore corrisponde

Dettagli

MyMedia Portal LMS un servizio SaaS di e-learning basato sul Video Streaming per la vendita on line di Lezioni Multimediali interattive

MyMedia Portal LMS un servizio SaaS di e-learning basato sul Video Streaming per la vendita on line di Lezioni Multimediali interattive 1 MyMedia Portal LMS un servizio SaaS di e-learning basato sul Video Streaming per la vendita on line di Lezioni Multimediali interattive Cos è un servizio di e-learning SaaS, multimediale, interattivo

Dettagli

WEBCONFERENCE. La lezione a casa

WEBCONFERENCE. La lezione a casa WEBCONFERENCE La lezione a casa Fabio Biscaro @ www.oggiimparoio.it capovolgereibes.net 2 Valutazione dei video (1) 1. Video corti 2. Focus su un unico argomento 3. Essere chiari e non dare nulla per scontato

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

Guida. Vista Live. Controllo. Riproduzione su 24 ore. Ricerca avanz. Le icone includono: Mod. uscita. Icona. Un sensore di allarme.

Guida. Vista Live. Controllo. Riproduzione su 24 ore. Ricerca avanz. Le icone includono: Mod. uscita. Icona. Un sensore di allarme. Guida operatore del registratore TruVision Vista Live Sull immagine live dello schermo vengono visualizzati laa data e l ora corrente, il nome della telecamera e viene indicato se è in corso la registrazione.

Dettagli

AUTOLIVELLI (orizzontalità ottenuta in maniera automatica); LIVELLI DIGITALI (orizzontalità e lettura alla stadia ottenute in maniera automatica).

AUTOLIVELLI (orizzontalità ottenuta in maniera automatica); LIVELLI DIGITALI (orizzontalità e lettura alla stadia ottenute in maniera automatica). 3.4. I LIVELLI I livelli sono strumenti a cannocchiale orizzontale, con i quali si realizza una linea di mira orizzontale. Vengono utilizzati per misurare dislivelli con la tecnica di livellazione geometrica

Dettagli

Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta

Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta L. P. 22 Aprile 2015 Sommario L espressione della quantità di moto e dell energia in relatività ristretta

Dettagli

Come verifico l acquisizione dei contenuti essenziali della mia disciplina

Come verifico l acquisizione dei contenuti essenziali della mia disciplina Riflessione didattica e valutazione Il questionario è stato somministrato a 187 docenti di italiano e matematica delle classi prime e seconde e docenti di alcuni Consigli di Classe delle 37 scuole che

Dettagli

PRESENT SIMPLE. Indicativo Presente = Presente Abituale. Tom s everyday life

PRESENT SIMPLE. Indicativo Presente = Presente Abituale. Tom s everyday life PRESENT SIMPLE Indicativo Presente = Presente Abituale Prerequisiti: - Pronomi personali soggetto e complemento - Aggettivi possessivi - Esprimere l ora - Presente indicativo dei verbi essere ed avere

Dettagli

La Visione Artificiale: Controllo di Qualità, Fotogrammetria e Realtà Virtuale

La Visione Artificiale: Controllo di Qualità, Fotogrammetria e Realtà Virtuale La Visione Artificiale: Controllo di Qualità, Fotogrammetria e Realtà Virtuale D. Prattichizzo G.L. Mariottini F. Moneti M. Orlandesi M. Fei M. de Pascale A. Formaglio F. Morbidi S. Mulatto SIRSLab Laboratorio

Dettagli

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015 NUMERI. SPAZIO E FIGURE. RELAZIONI, FUNZIONI, MISURE, DATI E PREVISIONI Le sociali e ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA procedure

Dettagli

2. FONDAMENTI DELLA TECNOLOGIA

2. FONDAMENTI DELLA TECNOLOGIA 2. FONDAMENTI DELLA TECNOLOGIA 2.1 Principio del processo La saldatura a resistenza a pressione si fonda sulla produzione di una giunzione intima, per effetto dell energia termica e meccanica. L energia

Dettagli

Richiami di algebra lineare e geometria di R n

Richiami di algebra lineare e geometria di R n Richiami di algebra lineare e geometria di R n combinazione lineare, conica e convessa spazi lineari insiemi convessi, funzioni convesse rif. BT.5 Combinazione lineare, conica, affine, convessa Un vettore

Dettagli

1 - Cos è l accessibilità e a chi è destinata

1 - Cos è l accessibilità e a chi è destinata 1 - Cos è l accessibilità e a chi è destinata di Michele Diodati michele@diodati.org http://www.diodati.org Cosa significa accessibile 2 di 19 Content is accessible when it may be used by someone with

Dettagli

proiezione geometrica modalità di propagazione dei raggi di luce incidenti il sistema ottico

proiezione geometrica modalità di propagazione dei raggi di luce incidenti il sistema ottico Capitolo 4 Sistema ottico 4.1 Introduzione Nel processo di formazione dell immagine, il sistema ottico genera in un piano (il piano immagine) l immagine bidimensionale degli oggetti 3D del mondo la cui

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Le variabili. Olga Scotti

Le variabili. Olga Scotti Le variabili Olga Scotti Cos è una variabile Le variabili, in un linguaggio di programmazione, sono dei contenitori. Possono essere riempiti con un valore che poi può essere riletto oppure sostituito.

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

GLI ASSI CULTURALI. Allegato 1 - Gli assi culturali. Nota. rimessa all autonomia didattica del docente e alla programmazione collegiale del

GLI ASSI CULTURALI. Allegato 1 - Gli assi culturali. Nota. rimessa all autonomia didattica del docente e alla programmazione collegiale del GLI ASSI CULTURALI Nota rimessa all autonomia didattica del docente e alla programmazione collegiale del La normativa italiana dal 2007 13 L Asse dei linguaggi un adeguato utilizzo delle tecnologie dell

Dettagli

Corso di Laurea Magistrale in. Ingegneria civile per la protezione dai rischi naturali D.M. 270. Relazione di fine tirocinio A.A.

Corso di Laurea Magistrale in. Ingegneria civile per la protezione dai rischi naturali D.M. 270. Relazione di fine tirocinio A.A. Corso di Laurea Magistrale in Ingegneria civile per la protezione dai rischi naturali D.M. 270 Relazione di fine tirocinio A.A. 2013-2014 Analisi Strutturale tramite il Metodo agli Elementi Discreti Relatore:

Dettagli

WWW.TINYLOC.COM CUSTOMER SERVICE GPS/ RADIOTRACKING DOG COLLAR. T. (+34) 937 907 971 F. (+34) 937 571 329 sales@tinyloc.com

WWW.TINYLOC.COM CUSTOMER SERVICE GPS/ RADIOTRACKING DOG COLLAR. T. (+34) 937 907 971 F. (+34) 937 571 329 sales@tinyloc.com WWW.TINYLOC.COM CUSTOMER SERVICE T. (+34) 937 907 971 F. (+34) 937 571 329 sales@tinyloc.com GPS/ RADIOTRACKING DOG COLLAR MANUALE DI ISTRUZIONI ACCENSIONE / SPEGNERE DEL TAG HOUND Finder GPS Il TAG HOUND

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

Present Perfect SCUOLA SECONDARIA I GRADO LORENZO GHIBERTI ISTITUTO COMPRENSIVO DI PELAGO CLASSI III C/D

Present Perfect SCUOLA SECONDARIA I GRADO LORENZO GHIBERTI ISTITUTO COMPRENSIVO DI PELAGO CLASSI III C/D SCUOLA SECONDARIA I GRADO LORENZO GHIBERTI ISTITUTO COMPRENSIVO DI PELAGO CLASSI III C/D Present Perfect Affirmative Forma intera I have played we have played you have played you have played he has played

Dettagli

Introduzione al GIS (Geographic Information System)

Introduzione al GIS (Geographic Information System) Introduzione al GIS (Geographic Information System) Sommario 1. COS E IL GIS?... 3 2. CARATTERISTICHE DI UN GIS... 3 3. COMPONENTI DI UN GIS... 4 4. CONTENUTI DI UN GIS... 5 5. FASI OPERATIVE CARATTERIZZANTI

Dettagli

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. CURVE DI LIVELLO Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. Definizione. Si chiama insieme di livello k della funzione f

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

Process mining & Optimization Un approccio matematico al problema

Process mining & Optimization Un approccio matematico al problema Res User Meeting 2014 con la partecipazione di Scriviamo insieme il futuro Paolo Ferrandi Responsabile Tecnico Research for Enterprise Systems Federico Bonelli Engineer Process mining & Optimization Un

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

Le telecamere Installate verranno connesse ad Unità di elaborazione multiplexer per la gestione e la verifica di gruppi omogenei di 4-8-16-32-48-64

Le telecamere Installate verranno connesse ad Unità di elaborazione multiplexer per la gestione e la verifica di gruppi omogenei di 4-8-16-32-48-64 Le telecamere Installate verranno connesse ad Unità di elaborazione multiplexer per la gestione e la verifica di gruppi omogenei di 4-8-16-32-48-64 telecamere. I sistemi di acquisizione ed archiviazione

Dettagli

Corso di Gioielleria con

Corso di Gioielleria con Corso di Gioielleria con Modellazione Anello Polpo con Aurelio Perugini Modellazione anello Polpo Pag. 1 Modellazione Anello Polpo Chi utilizza Rhinoceros da qualche tempo si sarà reso conto che, nonostante

Dettagli

I carichi critici: attività e criticità identificate dal National Focal Point

I carichi critici: attività e criticità identificate dal National Focal Point I carichi critici: attività e criticità identificate dal National Focal Point P. Bonanni*, F.Fornasier*, A. De Marco * ISPRA, ENEA Carico critico Stima quantitativa dell esposizione ad uno o più inquinanti

Dettagli

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014)

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) Le grandezze fisiche. Metodo sperimentale di Galilei. Concetto di grandezza fisica e della sua misura. Il Sistema internazionale di Unità

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

1. SIMPLE PRESENT. Il Simple Present viene anche detto presente abituale in quanto l azione viene compiuta abitualmente.

1. SIMPLE PRESENT. Il Simple Present viene anche detto presente abituale in quanto l azione viene compiuta abitualmente. 1. SIMPLE PRESENT 1. Quando si usa? Il Simple Present viene anche detto presente abituale in quanto l azione viene compiuta abitualmente. Quanto abitualmente? Questo ci viene spesso detto dalla presenza

Dettagli

Il vostro sogno diventa realtà... Your dream comes true... Close to Volterra,portions for sale of "typical tuscan"

Il vostro sogno diventa realtà... Your dream comes true... Close to Volterra,portions for sale of typical tuscan Il vostro sogno diventa realtà... Vicinanze di Volterra vendita di porzione di fabbricato "tipico Toscano" realizzate da recupero di casolare in bellissima posizione panoramica. Your dream comes true...

Dettagli

C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese

C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese Introduzione Nell articolo vengono mostrate vari possibili legami tra la costante di Archimede (pi greco) e la sezione aurea (phi).

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Famiglie di font. roman ( normale ) corsivo o italic grassetto o bold grassetto corsivo o bold italic

Famiglie di font. roman ( normale ) corsivo o italic grassetto o bold grassetto corsivo o bold italic Famiglie di font Nella maggior parte dei casi, un font appartiene a una famiglia I font della stessa famiglia hanno lo stesso stile grafico, ma presentano varianti Le varianti più comuni sono: roman (

Dettagli

Vediamo ora altre applicazioni dei prismi retti descritti in O1.

Vediamo ora altre applicazioni dei prismi retti descritti in O1. O2 - I PRISMI OTTICI S intende con prisma ottico un blocco di vetro ottico 8 limitato normalmente da superfici piane, di forma spesso prismatica. Un fascio di luce 9 può incidere su una o due delle sue

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

12 famiglie e tipi di file (estensioni più comuni)

12 famiglie e tipi di file (estensioni più comuni) 12 famiglie e tipi di file (estensioni più comuni) Ogni file è caratterizzato da un proprio nome e da una estensione, in genere tre lettere precedute da un punto; ad esempio:.est Vi sono tuttavia anche

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

Lezione del 28-11-2006. Teoria dei vettori ordinari

Lezione del 28-11-2006. Teoria dei vettori ordinari Lezione del 8--006 Teoria dei vettori ordinari. Esercizio Sia B = {i, j, k} una base ortonormale fissata. ) Determinare le coordinate dei vettori v V 3 complanari a v =,, 0) e v =, 0, ), aventi lunghezza

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano PPUNTI DI SCIENZ DEE COSTRUZIONI Giulio lfano nno ccademico 004-005 ii Indice 1 TRVTURE PINE 1 1.1 Geometria, equilibrio e vincoli...................... 1 1.1.1 Piani di simmetria........................

Dettagli

Istituto Tecnico Industriale Statale Luigi di Savoia Chieti. Contratto Formativo. Disciplina TECNOLOGIA e TECNICHE DI RAPPRESENTAZIONE GRAFICA

Istituto Tecnico Industriale Statale Luigi di Savoia Chieti. Contratto Formativo. Disciplina TECNOLOGIA e TECNICHE DI RAPPRESENTAZIONE GRAFICA Istituto Tecnico Industriale Statale Luigi di Savoia Chieti Contratto Formativo Corso I.T.I.S. Classe I sez.a CH Disciplina TECNOLOGIA e TECNICHE DI RAPPRESENTAZIONE GRAFICA Docenti : DITURI LUIGI e INGELIDO

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Virtualizzazione con Microsoft Tecnologie e Licensing

Virtualizzazione con Microsoft Tecnologie e Licensing Microsoft Virtualizzazione con Microsoft Tecnologie e Licensing Profile Redirezione dei documenti Offline files Server Presentation Management Desktop Windows Vista Enterprise Centralized Desktop Application

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

DVR Icatch serie X11 e X11Z iwatchdvr applicazione per iphone /ipad

DVR Icatch serie X11 e X11Z iwatchdvr applicazione per iphone /ipad DVR Icatch serie X11 e X11Z iwatchdvr applicazione per iphone /ipad Attraverso questo applicativo è possibile visualizzare tutti gli ingressi del DVR attraverso il cellulare. Per poter visionare le immagini

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 6-20-26 ottobre 2009 Indice 1 Formule di quadratura semplici e composite Formule di quadratura

Dettagli

su web che riportano documentazione e software dedicati agli argomenti trattati nel libro, riportandone, alla fine dei rispettivi capitoli, gli

su web che riportano documentazione e software dedicati agli argomenti trattati nel libro, riportandone, alla fine dei rispettivi capitoli, gli Prefazione Non è facile definire che cosa è un problema inverso anche se, ogni giorno, facciamo delle operazioni mentali che sono dei metodi inversi: riconoscere i luoghi che attraversiamo quando andiamo

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

group HIGH CURRENT MULTIPLEX NODE

group HIGH CURRENT MULTIPLEX NODE HIGH CURRENT MULTIPLEX NODE edizione/edition 04-2010 HIGH CURRENT MULTIPLEX NODE DESCRIZIONE GENERALE GENERAL DESCRIPTION L'unità di controllo COBO è una centralina elettronica Multiplex Slave ; la sua

Dettagli

TIMSS 2007 Quadro di riferimento di matematica. dal volume: "TIMSS 2007 Assessment Frameworks"

TIMSS 2007 Quadro di riferimento di matematica. dal volume: TIMSS 2007 Assessment Frameworks Capitolo Uno TIMSS 2007 Quadro di riferimento di matematica dal volume: "TIMSS 2007 Assessment Frameworks" a cura di Anna Maria Caputo, Cristiano Zicchi Copyright 2005 IEA International Association for

Dettagli

Che cos è la luce? (Luce, colori, visioni.quale sarà mai il loro segreto?) Prof. Gianluca Todisco

Che cos è la luce? (Luce, colori, visioni.quale sarà mai il loro segreto?) Prof. Gianluca Todisco Che cos è la luce? (Luce, colori, visioni.quale sarà mai il loro segreto?) 1 LA LUCE NELLA STORIA Nell antica Grecia c era chi (i pitagorici) pensavano che ci fossero dei fili sottili che partono dagli

Dettagli

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina Cosa è il DSS L elevato sviluppo dei personal computer, delle reti di calcolatori, dei sistemi database di grandi dimensioni, e la forte espansione di modelli basati sui calcolatori rappresentano gli sviluppi

Dettagli