RETI DI TELECOMUNICAZIONE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "RETI DI TELECOMUNICAZIONE"

Transcript

1 RETI DI TELECOMUNICAZIONE SISTEMI M/G/1 e M/D/1 Sistemi M/G/1 Nei sistemi M/G/1: i clienti arrivano secondo un processo di Poisson con parametro λ i tempi di servizio hanno una distribuzione generale della quale si conosce il valore medio e la varianza abbiamo la presenza di un unico servente indichiamo con X i il tempo di servizio del generico cliente i-esimo sarà SISTEMI M/G/1 e M/D/1 2 1

2 Formula di Pollaczek-Khinchin Per un sistema M/G/1 il tempo medio di attesa in cosa è dato dalla relazione Dimostrazione Siano W i il tempo di attesa in coda dell i-esimo cliente; R i il tempo di servizio residuo visto dall i-esimo cliente (corrisponde al tempo addizionale che trascorre nel servente il cliente che vi si trova quando arriva l i-esimo cliente: in altre parole il tempo che intercorre da quando arriva l i-esimo cliente a quando esce il primo cliente dal sistema dopo l arrivo dell i-esimo cliente); X i tempo di servizio dell i-esimo cliente; N i numero di clienti trovati in attesa in coda dall i-esimo cliente al suo arrivo; SISTEMI M/G/1 e M/D/1 3 Formula di Pollaczek-Khinchin Dimostrazione Il tempo di attesa in coda dell i-esimo cliente sarà dato dalla somma del tempo di servizio residuo e dei tempi di servizio di tutti i clienti già accodati Possiamo calcolare il valore atteso del tempo di attesa in coda SISTEMI M/G/1 e M/D/1 4 2

3 Formula di Pollaczek-Khinchin Dimostrazione nell ultima relazione si è sfruttata la linearità dell operatore E{ } e la relazione Il valore atteso del tempo di attesa in coda sarà quindi dato dalla somma del valore atteso del tempo di servizio residuo e del valore atteso del numero di clienti in coda moltiplicato il valore atteso del tempo di servizio Posto possiamo scrivere SISTEMI M/G/1 e M/D/1 5 Formula di Pollaczek-Khinchin Dimostrazione e sfruttando la legge di Little per il numero di utenti in coda si ottiene Per calcolare R consideriamo il processo tempo di servizio residuo r(τ) Se l i-esimo cliente arriva all istante t osserverà un tempo di servizio residuo r(t) SISTEMI M/G/1 e M/D/1 6 3

4 Formula di Pollaczek-Khinchin Dimostrazione Possiamo graficare un tipico andamento del processo r(τ) posto M(t) pari al numero di completamenti di servizio nell intervallo [0, t], sarà SISTEMI M/G/1 e M/D/1 7 Formula di Pollaczek-Khinchin Dimostrazione Al tendere di t ad infinito M(t) tende al numero di clienti arrivati, quindi: ed inoltre il secondo termine tende al valore quadratico medio (stiamo considerando il sistema ergodico) Sarà allora e quindi la dimostrazione della formula SISTEMI M/G/1 e M/D/1 8 4

5 Sistemi M/G/1 Il tempo di attesa nel sistema sarà dato da applicando la legge di Little possiamo calcolare il numero di utenti medio in coda e il numero di utenti medio nel sistema SISTEMI M/G/1 e M/D/1 9 Relazione fra sistemi M/M/1 e M/G/1 I sistemi M/M/1 sono un caso speciale dei sistemi M/G/1 Per un sistema M/M/1 sarà da cui Tempo medio di attesa in coda Tempo medio di attesa nel sistema SISTEMI M/G/1 e M/D/1 10 5

6 Relazione fra sistemi M/M/1 e M/G/1 e utilizzando la legge di Little, numero medio di clienti in coda numero medio di clienti nel sistema Tutte i valori medi trovati coincidono con quelli già ricavati per i sistemi M/M/1 SISTEMI M/G/1 e M/D/1 11 Sistemi M/D/1 Nei sistemi M/D/1 il tempo di servizio è costante (le unità informative hanno tutte la stessa lunghezza) Sarà Anche i sistemi M/D/1 sono un caso speciale di sistemi M/G/1 per cui vale la formula di Pollaczek-Khinchin Possiamo ricavare Tempo medio di attesa in coda SISTEMI M/G/1 e M/D/1 12 6

7 Sistemi M/D/1 Tempo medio di attesa nel sistema e utilizzando la legge di Little, numero medio di clienti in coda numero medio di clienti nel sistema SISTEMI M/G/1 e M/D/1 13 Sistemi M/M/1, M/G/1 e M/D/1 I sistemi M/M/1 e M/D/1 costituiscono i due casi estremi del comportamento di un sistema generico M/G/1 In particolare i valori trovati per il tempo medio di attesa in coda W, per il tempo medio di attesa nel sistema T, per il numero medio di clienti in coda N q, e per il numero medio di clienti nel sistema N saranno minimi per un sistema M/D/1 e massimi per un sistema M/M/1 L ipotesi di sistema M/M/1 è quindi sempre quella più pessimistica e quindi, progettando un sistema utilizzando queste ipotesi, in qualunque caso, il comportamento reale avrà delle prestazioni migliori rispetto a quelle teorizzate SISTEMI M/G/1 e M/D/1 14 7

8 Analisi di un sistema con protocollo Automatic Repeat request (ARQ) Sia dato un sistema ARQ go-back-n nel quale la ritrasmissione delle trame avviene solo sui frame informativi (non sugli ack) Assumiamo: Arrivi secondo Poisson Probabilità che una trama sia rifiutata pari a p Assumiamo le trame di lunghezza costante e sia 1 (un unità di tempo) il tempo di trasmissione di una trama La probabilità che il tempo di servizio sia pari a 1+kn a causa di k ritrasmissioni è Il tempo medio di servizio sarà SISTEMI M/G/1 e M/D/1 15 Analisi di un sistema con protocollo Automatic Repeat request (ARQ) Il valore quadratico medio del tempo di servizio sarà ricordando che sarà SISTEMI M/G/1 e M/D/1 16 8

9 Analisi di un sistema con protocollo Automatic Repeat request (ARQ) Applicando la formula di P-K si trova supponendo λ = 0.95 ρ = 0.95 n = 8 p=0 Tempo medio di attesa in coda: W = 9.5 Tempo medio di attesa nel sistema: T = 10.5 p=10-3 Tempo medio di attesa in coda: W = 12.1 Tempo medio di attesa nel sistema: T = 13.1 p= Tempo medio di attesa in coda: W = Tempo medio di attesa nel sistema: T = SISTEMI M/G/1 e M/D/1 17 Sistemi M/G/1 con periodi di vacanza Il servizio non è di tipo continuativo Periodicamente il servente viene staccato da una coda ad esempio perché inserito in un altra Il periodo in cui il servente è staccato viene detto busy o di vacanza Se indichiamo con V 1, V 2, le durate delle singole vacanze supponiamo che Le durate siano indipendenti tra loro Le durate siano identicamente distribuite Le durate siano indipendenti sia dai tempi di servizio che dai tempi di arrivo dei clienti In generale vale ancora la relazione dove R deve però tenere conto della presenza delle vacanze SISTEMI M/G/1 e M/D/1 18 9

10 Sistemi M/G/1 con periodi di vacanza Sarà dove M(t) è il numero di clienti serviti in [0, t] L(t) è il numero di vacanze avute in [0, t] SISTEMI M/G/1 e M/D/1 19 Sistemi M/G/1 con periodi di vacanza Moltiplicando e dividendo il primo addendo per M(t) e il secondo addendo per L(t) Come già ricavato sarà al tendere di t ad infinito Se ρ è la frazione di tempo in cui il sistema è occupato, sarà (1-ρ) la frazione di tempo in cui il sistema è in vacanza Al tendere di t ad infinito la durata media di un periodo di vacanza può essere calcolata come SISTEMI M/G/1 e M/D/

11 Sarà allora Sistemi M/G/1 con periodi di vacanza ed ancora, per t che tende ad infinito Quindi in definitiva il tempo medio di attesa in coda sarà SISTEMI M/G/1 e M/D/1 21 FDM Classico Siano dati m flussi di frame a lunghezza fissa Ogni flusso sia caratterizzato da un processo degli arrivi di Poisson con frequenza λ i = λ / m Ogni frame ha una lunghezza pari a m unità temporali µ i =1/m Adottiamo una multiplazione FDM classica suddividendo la banda del canale in m sottocanali di banda costante Ciascun sottocanale è un sistema M/D/1 con Essendo m il tempo medio di servizio sarà il tempo di attesa nel sistema SISTEMI M/G/1 e M/D/

12 FDM a Slot Ammettiamo che la trasmissione possa iniziare solo in prefissati istanti di tempo corrispondenti all inizio di uno slot di durata m Ciascun sottocanale sarà un sistema M/D/1 con periodi di vacanza La vacanza è dovuta all arrivo di un frame con la coda vuota quando è già iniziato un periodo di trasmissione; in questo caso la trasmissione del frame deve attendere l inizio di un nuovo ciclo Sarà Essendo m il tempo medio di servizio sarà il tempo di attesa nel sistema SISTEMI M/G/1 e M/D/1 23 TDM a Slot L asse temporale viene suddiviso in slot di lunghezza pari ad 1 unità temporale La multiplazione dei vari flussi avviene interlacciando ciclicamente le m parti di cui è costituita ogni trama nel tempo Sarà ancora Ogni flusso caratterizzato da un processo degli arrivi di Poisson con frequenza λ i = λ / m Ogni frame di lunghezza pari a m unità temporali µ i =1/m Ciascun sottocanale è un sistema M/D/1 con periodi di vacanza Essendo 1 il tempo medio di servizio sarà il tempo di attesa nel sistema Il canale dopo la trasmissione di uno slot ritorna comunque disponibile SISTEMI M/G/1 e M/D/

13 Sistemi M/G/1 con priorità Alla stessa coda arrivano clienti appartenenti a diverse classi di priorità La classe di priorità è individuata da un indice numerico maggiore o uguale a 1 Ad un indice più basso corrisponde una priorità più alta L indice 1 ha quindi priorità massima Non si ammette pre-emption L arrivo in coda di un cliente a priorità più alta non interrompe comunque il servizio di un cliente già nel servente anche se a priorità più bassa Indichiamo con SISTEMI M/G/1 e M/D/1 25 Sistemi M/G/1 con priorità Per la classe di priorità 1 il tempo di attesa in coda sarà dato dalla somma del tempo di servizio residuo del cliente attualmente in servizio e dal tempo di servizio atteso da tutti i clienti in coda sempre di priorità 1 La priorità 1 può essere analizzata come un semplice sistema M/G/1 Numero medio di clienti in coda di priorità 1 (dalla legge di Little) sostituendo quindi SISTEMI M/G/1 e M/D/

14 Sistemi M/G/1 con priorità Per i clienti di priorità 2 si deve considerare: a) Il tempo residuo R del cliente attualmente in servizio b) Il tempo di servizio di tutti i clienti di priorità 1 già accodati c) Il tempo di servizio di tutti i clienti di priorità 2 già accodati d) Il tempo di servizio di tutti i clienti di priorità 1 che possono arrivare durante l attesa in coda di un cliente di priorità 2 a b c d SISTEMI M/G/1 e M/D/1 27 Si trova quindi che Sistemi M/G/1 con priorità dalla quale il tempo medio di attesa in coda per i clienti di classe 2 In generale il tempo medio di attesa in coda per i clienti di classe k sarà SISTEMI M/G/1 e M/D/

15 Sistemi M/G/1 con priorità Per ricavare il tempo medio residuo R del cliente attualmente in servizio bisogna considerare le diverse priorità Data la funzione r(τ) sarà dove con X ij abbiamo indicato il tempo di servizio del j-esimo cliente di priorità i SISTEMI M/G/1 e M/D/1 29 Sistemi M/G/1 con priorità Scambiando la posizione delle sommatorie rispetto al limite e moltiplicando e dividendo ogni termine della sommatoria interna per M i (t) Facendo tendere t ad infinito (sistema stazionario ed ergodico), M i (t) tende al numero di clienti arrivati e serviti nel tempo [0, t] SISTEMI M/G/1 e M/D/

16 Sistemi M/G/1 con priorità Il tempo di servizio residuo sarà quindi Si trova quindi in definitiva che il tempo medio di attesa in coda per un cliente di classe k sarà Il ritardo medio per cliente viene minimizzato attribuendo priorità più alta ai clienti con tempo di servizio più bassi SISTEMI M/G/1 e M/D/1 31 Esempio Sia dato un collegamento a 9600bps nel quale viaggiano Frame dati di lunghezza fissa pari a 48bit Frame informativi di lunghezza media pari a 960bit Sia inoltre e SISTEMI M/G/1 e M/D/

17 Esempio Non utilizzando un sistema a priorità si trova che il valore quadratico medio del tempo di servizio sarà da cui il tempo medio di attesa in coda Utilizzando le priorità sarà Abbiamo quindi dimezzato il tempo di attesa in coda per i frame di priorità 1 con un lievissimo incremento del tempo di attesa in coda dei frame di priorità 2 SISTEMI M/G/1 e M/D/

Protocolli di accesso multiplo

Protocolli di accesso multiplo Protocolli di accesso multiplo Quando l accesso ad una risorsa può avvenire da parte di più utenti indipendenti, si parla di risorsa condivisa ed è necessaria l implementazione di particolari protocolli

Dettagli

LABORATORIO DI RETI. 02 La Multiplazione Statistica nelle Reti a Paccchetto

LABORATORIO DI RETI. 02 La Multiplazione Statistica nelle Reti a Paccchetto LABORATORIO DI RETI 02 La Multiplazione Statistica nelle Reti a Paccchetto La multiplazione La capacità dei mezzi trasmissivi fisici può essere suddivisa per ottenere più canali di velocità più bassa La

Dettagli

Classificazione delle tecniche di accesso multiplo

Classificazione delle tecniche di accesso multiplo Classificazione delle tecniche di accesso multiplo Le tecniche di accesso multiplo si dividono in tre classi: Protocolli deterministici o senza contesa: evitano la possibilità che due utenti accedano al

Dettagli

Istruzioni (1): L elaborato verrà letto, compilato e fatto girare per verificare la correttezza della sintassi e delle operazioni svolte

Istruzioni (1): L elaborato verrà letto, compilato e fatto girare per verificare la correttezza della sintassi e delle operazioni svolte Istruzioni (1): L elaborato può essere svolto in gruppi di massimo 4 persone (si raccomanda caldamente l aggregazione) NON dovete annunciarmi preventivamente che elaborato volete fare: sceglietene uno

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE Modelli a coda Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Sistemi a coda Gli elementi chiave di un sistema a coda

Dettagli

Analisi di Protocolli

Analisi di Protocolli Analisi di Protocolli Elenco di protocolli d accesso I principali protocolli di accesso si possono dividere in:. protocolli deterministici (accesso ordinato);. protocolli ad accesso casuale (o a contesa).

Dettagli

Appendice B: Reti di code

Appendice B: Reti di code Appendice B: Reti di code B. INTRODUZIONE ALLE RETI DI CODE B.. Generalità La trattazione della teoria delle code effettuata fino ad ora ha sempre considerato singoli sistemi a coda. Tuttavia, molto spesso

Dettagli

Reti di Telecomunicazioni 1

Reti di Telecomunicazioni 1 Reti di Telecomunicazioni 1 Corso on-line - AA2005/06 Blocco 2 (v2) Ing. Stefano Salsano e-mail: stefano.salsano@uniroma2.it 1 Richiami sul concetto di multiplazione 2 Riprendendo il discorso sulle diverse

Dettagli

Algoritmi di scheduling

Algoritmi di scheduling Capitolo 2 Algoritmi di scheduling 2.1 Sistemi Real Time In un sistema in tempo reale (real time) il tempo gioca un ruolo essenziale. Le applicazioni di tali sistemi sono molteplici e di larga diffusione.

Dettagli

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014 SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 01 1. Determiniamo l espressione analitica di g() dividendo il suo dominio in intervalli. La circonferenza di diametro AO ha equazione (+) + = + + = 0

Dettagli

2. SINCRONIZZAZIONE (CENNI)

2. SINCRONIZZAZIONE (CENNI) 2. SINCRONIZZAZIONE (CENNI) INTRODUZIONE AL PROBLEMA DELLA SINCRONIZZAZIONE SINCRONISMO DI BIT SCRAMBLING SINCRONISMO DI FRAME INTRODUZIONE Abbiamo visto diverse tecniche in grado di convertire e di trasmettere

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

11) convenzioni sulla rappresentazione grafica delle soluzioni

11) convenzioni sulla rappresentazione grafica delle soluzioni 2 PARAGRAFI TRATTATI 1)La funzione esponenziale 2) grafici della funzione esponenziale 3) proprietá delle potenze 4) i logaritmi 5) grafici della funzione logaritmica 6) principali proprietá dei logaritmi

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Sequenziamento a minimo costo di commutazione in macchine o celle con costo lineare e posizione home (In generale il metodo di ottimizzazione

Sequenziamento a minimo costo di commutazione in macchine o celle con costo lineare e posizione home (In generale il metodo di ottimizzazione Sequenziamento a minimo costo di commutazione in macchine o celle con costo lineare e posizione home (In generale il metodo di ottimizzazione presentato in questo file trova la seq. a costo minimo per

Dettagli

LEZIONI DI RETI DI TELECOMUNICAZIONI. Giovanni Poggi

LEZIONI DI RETI DI TELECOMUNICAZIONI. Giovanni Poggi LEZIONI DI RETI DI TELECOMUNICAZIONI Giovanni Poggi Università Federico II di Napoli ultimo aggiornamento 15 marzo 28 Introduzione 1 1 Introduzione 1.1 Notizie generali sul corso Il corso di Reti di Telecomunicazioni

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

WIRELESSEXPERIENCE. Townet series 200-xx-xx e 300-xx-xx. TDMA e nuovo protocollo wireless NV2 Enrico Grassi CTO Townet Srl

WIRELESSEXPERIENCE. Townet series 200-xx-xx e 300-xx-xx. TDMA e nuovo protocollo wireless NV2 Enrico Grassi CTO Townet Srl WIRELESSEXPERIENCE Townet series 200-xx-xx e 300-xx-xx TDMA e nuovo protocollo wireless NV2 Enrico Grassi CTO Townet Srl 1 NV2 E' un protocollo proprietario wireless sviluppato da MikroTik Basato su TDMA

Dettagli

Sistemi di Controllo per l Automazione Industriale

Sistemi di Controllo per l Automazione Industriale 10 marzo 2015 Ing. foglietta.chiara@gmail.com Università degli Studi di Cassino e del Lazio Meridionale Agenda Eventi Esempi di Eventi 2 Ing. Università degli Studi Roma TRE Email: foglietta.chiara@gmail.com

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

Rete Internet Prova in Itinere Mercoledì 23 Aprile 2008

Rete Internet Prova in Itinere Mercoledì 23 Aprile 2008 Rete Internet Prova in Itinere Mercoledì 23 Aprile 2008 NB: alcune domande hanno risposta multipla: si richiede di identificare TUTTE le risposte corrette. Cognome: Nome: Corso di laurea e anno: Matricola:

Dettagli

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006 PROGETTO OLIMPII I MTEMTI U.M.I. UNIONE MTEMTI ITLIN SUOL NORMLE SUPERIORE IGiochidirchimede-Soluzioniiennio novembre 006 Griglia delle risposte corrette Problema Risposta corretta E 4 5 6 7 8 9 E 0 Problema

Dettagli

Descrizione della struttura e delle funzioni di una stazione radio base TACS

Descrizione della struttura e delle funzioni di una stazione radio base TACS c.so Duca degli Abruzzi 4 1019 Torino (Italy) Fax +39 011 564 4099 pag. /34 Premessa Il seguente capitolo illustra i principi tecnici fondamentali a cui si ispirano le tecnologie utilizzate per i serivizi

Dettagli

RETI DI TELECOMUNICAZIONE

RETI DI TELECOMUNICAZIONE RETI DI TELECOMUNICAZIONE Analisi prestazioni protocolli Allocazione statica Confronto ritardo temporale multiplazione FDM e TDM Ipotesi Numero stazioni: N Capacità canale: C bps Lunghezza coda: infinita

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

Scheduling della CPU. Concetti fondamentali. Concetti fondamentali. Concetti fondamentali. Dispatcher. Scheduler della CPU

Scheduling della CPU. Concetti fondamentali. Concetti fondamentali. Concetti fondamentali. Dispatcher. Scheduler della CPU Scheduling della CPU Concetti fondamentali Criteri di scheduling Algoritmi di scheduling Concetti fondamentali L obiettivo della multiprogrammazione è di avere processi sempre in esecuzione al fine di

Dettagli

Scheduling della CPU. Sistemi multiprocessori e real time Metodi di valutazione Esempi: Solaris 2 Windows 2000 Linux

Scheduling della CPU. Sistemi multiprocessori e real time Metodi di valutazione Esempi: Solaris 2 Windows 2000 Linux Scheduling della CPU Sistemi multiprocessori e real time Metodi di valutazione Esempi: Solaris 2 Windows 2000 Linux Sistemi multiprocessori Fin qui si sono trattati i problemi di scheduling su singola

Dettagli

Programmazione in Rete

Programmazione in Rete Programmazione in Rete a.a. 2005/2006 http://www.di.uniba.it/~lisi/courses/prog-rete/prog-rete0506.htm dott.ssa Francesca A. Lisi lisi@di.uniba.it Orario di ricevimento: mercoledì ore 10-12 Sommario della

Dettagli

REGOLAZIONE (E TASSAZIONE OTTIMALE) DI UN MONOPOLIO CON PIÙ LINEE DI PRODUZIONE

REGOLAZIONE (E TASSAZIONE OTTIMALE) DI UN MONOPOLIO CON PIÙ LINEE DI PRODUZIONE REGOLAZIONE (E TASSAZIONE OTTIMALE) DI UN MONOPOLIO CON PIÙ LINEE DI PRODUZIONE Nella Sezione 16.5 abbiamo visto come un regolatore che voglia fissare il prezzo del monopolista in modo da minimizzare la

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

Simulazione di una catena logistica

Simulazione di una catena logistica Simulazione di una catena logistica La logistica aziendale richiede l organizzazione di approvvigionamento e trasporto dei prodotti e dei servizi. La catena di distribuzione, supply chain, comprende il

Dettagli

SISTEMI DI TELECOMUNICAZIONI

SISTEMI DI TELECOMUNICAZIONI SISTEMI DI TELECOMUNICAZIONI MODI DI TRASFERIMENTO SERVIZI DI TRASFERIMENTO DELL INFORMAZIONE L informazione da trasferire si ipotizza strutturata in IU Costituita da b bit Da consegnare in t secondi Se

Dettagli

Reti combinatorie: Codificatori

Reti combinatorie: Codificatori Reti combinatorie: Codificatori P. Marincola (Rev..2) Come si ricorderà, i decodificatori hanno essenzialmente il compito di convertire un codice binario a n bit in un codice -su-m, dovem =2 n. In molte

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

Economia Intermediari Finanziari 1

Economia Intermediari Finanziari 1 Economia Intermediari Finanziari Il rischio, inteso come possibilità che il rendimento atteso da un investimento in strumenti finanziari, sia diverso da quello atteso è funzione dei seguenti elementi:

Dettagli

RETI DI CALCOLATORI Lucidi delle Lezioni Capitolo VI

RETI DI CALCOLATORI Lucidi delle Lezioni Capitolo VI Prof. Giuseppe F. Rossi E-mail: giuseppe.rossi@unipv.it Homepage: http://www.unipv.it/retical/home.html UNIVERSIA' DEGLI SUDI DI PAVIA A.A. 2009/10 - II Semestre REI DI CALCOLAORI Lucidi delle Lezioni

Dettagli

Soluzioni verifica 3 2009-10 parte 4

Soluzioni verifica 3 2009-10 parte 4 Soluzioni verifica 3 2009-10 parte 4 1 Si consideri una rete ethernet a mezzo condiviso, costituita da un unico dominio di collisione in cui vi sono tre segmenti (costituiti da cavi diversi di

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

2 - Canali e Multiplazione

2 - Canali e Multiplazione Università degli studi di Bergamo Università degli studi di Bergamo Dipartimento di Ingegneria dell Informazione e Metodi Matematici Reti di Calcolatori prof. F. Martignon 2 - Canali e Multiplazione 1

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

LA CRESCITA DELLE POPOLAZIONI ANIMALI

LA CRESCITA DELLE POPOLAZIONI ANIMALI LA CRESCITA DELLE POPOLAZIONI ANIMALI Riccardo Scipioni Generalmente, con il termine crescita di una popolazione si intende l aumento, nel tempo, del numero di individui appartenenti ad una stessa popolazione.

Dettagli

Note su quicksort per ASD 2010-11 (DRAFT)

Note su quicksort per ASD 2010-11 (DRAFT) Note su quicksort per ASD 010-11 (DRAFT) Nicola Rebagliati 7 dicembre 010 1 Quicksort L algoritmo di quicksort è uno degli algoritmi più veloci in pratica per il riordinamento basato su confronti. L idea

Dettagli

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 00 Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Esercizio. Un corpo parte da fermo con accelerazione

Dettagli

Esercizi Multiplazione TDM Accesso Multiplo TDMA

Esercizi Multiplazione TDM Accesso Multiplo TDMA Esercizi Multiplazione TDM Accesso Multiplo TDMA Esercizio 1 Un sistema di multiplazione TDM presenta una trama di 10 slot e in ciascuno slot vengono trasmessi 128 bit. Se il sistema è usato per multiplare

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

La Programmazione Lineare

La Programmazione Lineare 4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi

Dettagli

PLL (anello ad aggancio di fase)

PLL (anello ad aggancio di fase) PLL (anello ad aggancio di fase) Il PLL ( Phase Locked Loop, anello ad aggancio di fase) è un circuito integrato a reazione negativa. E un componente molto versatile e può essere usato come: demodulatore

Dettagli

Formulario. Legge di capitalizzazione dell Interesse semplice (CS)

Formulario. Legge di capitalizzazione dell Interesse semplice (CS) Formulario Legge di capitalizzazione dell Interesse semplice (CS) Il montante M è una funzione lineare del capitale iniziale P. Di conseguenza M cresce proporzionalmente rispetto al tempo. M = P*(1+i*t)

Dettagli

Esercizi sul moto rettilineo uniformemente accelerato

Esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 010 Esercizi sul moto rettilineo uniformemente accelerato Esercizio 1. Un corpo parte da fermo con accelerazione pari a

Dettagli

Introduzione al Corso di Reti di Telecomunicazioni pag. 1. Network Organization pag. 1 2. NETWORK ORGANIZATION pag. 2

Introduzione al Corso di Reti di Telecomunicazioni pag. 1. Network Organization pag. 1 2. NETWORK ORGANIZATION pag. 2 RETI DI TELECOMUNICAZIONI INDICE CAPIITOLO 1 Introduzione al Corso di Reti di Telecomunicazioni pag. 1 Presentazione del corso di Reti di Telecomunicazioni pag. 2 Argomenti trattati nel corso di Reti di

Dettagli

Sistemi Operativi SCHEDULING DELLA CPU

Sistemi Operativi SCHEDULING DELLA CPU Sistemi Operativi SCHEDULING DELLA CPU Scheduling della CPU Concetti di Base Criteri di Scheduling Algoritmi di Scheduling FCFS, SJF, Round-Robin, A code multiple Scheduling in Multi-Processori Scheduling

Dettagli

Riassunto di Sistemi in Tempo Reale LS

Riassunto di Sistemi in Tempo Reale LS Riassunto di Sistemi in Tempo Reale LS Silvia Cereda July 10, 2007 1 Schedulazione di processi periodici Condizione necessaria (ma non sufficiente) affinché un insieme di N processi sia schedulabile è

Dettagli

SCHEDULATORI DI PROCESSO

SCHEDULATORI DI PROCESSO Indice 5 SCHEDULATORI DI PROCESSO...1 5.1 Schedulatore Round Robin...1 5.2 Schedulatore a priorità...2 5.2.1 Schedulatore a code multiple...3 5.3 Schedulatore Shortest Job First...3 i 5 SCHEDULATORI DI

Dettagli

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 I CODICI 1 IL CODICE BCD 1 Somma in BCD 2 Sottrazione BCD 5 IL CODICE ECCESSO 3 20 La trasmissione delle informazioni Quarta Parte I codici Il codice BCD

Dettagli

Guide d onda. Cerchiamo soluzioni caratterizzate da una propagazione lungo z

Guide d onda. Cerchiamo soluzioni caratterizzate da una propagazione lungo z GUIDE D ONDA Guide d onda Cerchiamo soluzioni caratterizzate da una propagazione lungo z Onde progressive e regressive Sostituendo nell equazione d onda ( essendo Valido anche per le onde regressive Equazione

Dettagli

Sistemi Operativi. Scheduling della CPU SCHEDULING DELLA CPU. Concetti di Base Criteri di Scheduling Algoritmi di Scheduling

Sistemi Operativi. Scheduling della CPU SCHEDULING DELLA CPU. Concetti di Base Criteri di Scheduling Algoritmi di Scheduling SCHEDULING DELLA CPU 5.1 Scheduling della CPU Concetti di Base Criteri di Scheduling Algoritmi di Scheduling FCFS, SJF, Round-Robin, A code multiple Scheduling in Multi-Processori Scheduling Real-Time

Dettagli

Sistemi Operativi SCHEDULING DELLA CPU. Sistemi Operativi. D. Talia - UNICAL 5.1

Sistemi Operativi SCHEDULING DELLA CPU. Sistemi Operativi. D. Talia - UNICAL 5.1 SCHEDULING DELLA CPU 5.1 Scheduling della CPU Concetti di Base Criteri di Scheduling Algoritmi di Scheduling FCFS, SJF, Round-Robin, A code multiple Scheduling in Multi-Processori Scheduling Real-Time

Dettagli

Disegni di Ricerca e Analisi dei Dati in Psicologia Clinica. Indici di Affidabilità

Disegni di Ricerca e Analisi dei Dati in Psicologia Clinica. Indici di Affidabilità Disegni di Ricerca e Analisi dei Dati in Psicologia Clinica Indici di Affidabilità L Attendibilità È il livello in cui una misura è libera da errore di misura È la proporzione di variabilità della misurazione

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stima puntuale per la proporzione Da un lotto di arance se ne estraggono 400, e di queste 180

Dettagli

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S Teoria delle code Sistemi stazionari: M/M/1 M/M/1/K M/M/S Fabio Giammarinaro 04/03/2008 Sommario INTRODUZIONE... 3 Formule generali di e... 3 Leggi di Little... 3 Cosa cerchiamo... 3 Legame tra N e le

Dettagli

Scheduling della CPU

Scheduling della CPU Scheduling della CPU Sistemi multiprocessori e real time Metodi di valutazione Esempi: Solaris 2 Windows 2000 Linux 6.1 Sistemi multiprocessori simmetrici Fin qui si sono trattati i problemi di scheduling

Dettagli

Histogram of C1 Normal

Histogram of C1 Normal Soluzioni domande ed esercizi Fondamenti di Affidabilità Capitolo 2. La vita di un cambio ad ingranaggi può essere fortemente influenzata nelle fasi iniziali della sua vita da problemi derivanti principalmente

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella Equazione di Ohm nel dominio fasoriale: Legge di Ohm:. Dalla definizione di operatore di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, dove Adesso sostituiamo nella

Dettagli

Utilizzo efficiente del canale di comunicazione

Utilizzo efficiente del canale di comunicazione Il problema 2 Utilizzo efficiente del canale di comunicazione Prof. Roberto De Prisco TEORIA - Lezione 4 Multiplexing Un singolo utente (del canale) potrebbe non utilizzare tutta la capacità Lasciare l

Dettagli

è decidere sulla verità o falsità

è decidere sulla verità o falsità I test di ipotesi I test di ipotesi Il test delle ipotesi consente di verificare se, e in quale misura, una determinata ipotesi (di carattere sociale, biologico, medico, economico, ecc.) è supportata dall

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

Le scale di riduzione

Le scale di riduzione Le scale di riduzione Le dimensioni di un oggetto, quando sono troppo grandi perché siano riportate sul foglio da disegno, si riducono in scala. Scala 1 a 200 (si scrive 1 : 200) rappresenta una divisione.

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione

Dettagli

Utilizzo efficiente del canale di comunicazione

Utilizzo efficiente del canale di comunicazione Autunno 2002 Prof. Roberto De Prisco -04: Multiplexing Università degli studi di Salerno Laurea e Diploma in Informatica Il problema 04.2 Utilizzo efficiente del canale di comunicazione Un singolo utente

Dettagli

Utilizzo efficiente del canale di comunicazione

Utilizzo efficiente del canale di comunicazione Il problema 04.2 Utilizzo efficiente del canale di comunicazione -04: Multiplexing Autunno 2002 Prof. Roberto De Prisco Un singolo utente (del canale) potrebbe non utilizzare tutta la capacità Lasciare

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Successioni ESEMPI: Matematica con Elementi di Statistica, Anna Torre a.a. 2013-2014

Successioni ESEMPI: Matematica con Elementi di Statistica, Anna Torre a.a. 2013-2014 Successioni Vi sono fenomeni naturali e situazioni concrete che presentano sviluppi significativi in tempi discreti. Vale a dire è naturale che i controlli per quei dati fenomeni o per quelle date situazioni

Dettagli

Parte II Indice. Operazioni aritmetiche tra valori rappresentati in binario puro. Rappresentazione di numeri con segno

Parte II Indice. Operazioni aritmetiche tra valori rappresentati in binario puro. Rappresentazione di numeri con segno Parte II Indice Operazioni aritmetiche tra valori rappresentati in binario puro somma sottrazione Rappresentazione di numeri con segno modulo e segno complemento a 2 esercizi Operazioni aritmetiche tra

Dettagli

[ dbm] = 0 dbm " 0,2 #100 db = " 20 dbm

[ dbm] = 0 dbm  0,2 #100 db =  20 dbm Esercizi di comunicazioni ottiche (SNR, Q, BER) Consideriamo il caso di una linea in fibra ottica lunga 00 km con attenuazione di 0, db/km e dispersione cromatica compensata. Supponiamo poi di avere una

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

Sistemi Di Misura Ed Equivalenze

Sistemi Di Misura Ed Equivalenze Sistemi Di Misura Ed Equivalenze (a cura Prof.ssa M.G. Gobbi) Una mamma deve somministrare al figlio convalescente 150 mg di vitamina C ogni giorno. Ha a disposizione compresse da 0,6 g: quante compresse

Dettagli

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1 UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Filippo Romano 1 1. Introduzione 2. Analisi Multicriteri o Multiobiettivi 2.1 Formule per l attribuzione del

Dettagli

Sistemi di Servizio e Simulazione

Sistemi di Servizio e Simulazione Sistemi di Servizio e Simulazione Soluzioni degli esercizi di esame proposti negli appelli dell a.a.2004-05 Sono stati distribuiti sul sito web i testi di tre appelli di esame dell anno accademico 2004-05:

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Livello di trasporto: meccanismi trasferimento dati affidabile

Livello di trasporto: meccanismi trasferimento dati affidabile Livello di trasporto: meccanismi trasferimento dati affidabile Gaia Maselli maselli@di.uniroma1.it Queste slide sono un adattamento delle slide fornite dal libro di testo e pertanto protette da copyright.

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

lezione 18 AA 2015-2016 Paolo Brunori

lezione 18 AA 2015-2016 Paolo Brunori AA 2015-2016 Paolo Brunori Previsioni - spesso come economisti siamo interessati a prevedere quale sarà il valore di una certa variabile nel futuro - quando osserviamo una variabile nel tempo possiamo

Dettagli

Parte II: Reti di calcolatori Lezione 24

Parte II: Reti di calcolatori Lezione 24 Università di Roma Tor Vergata Corso di Laurea triennale in Informatica Sistemi operativi e reti A.A. 2013-14 Pietro Frasca Parte II: Reti di calcolatori Lezione 24 Martedì 27-05-2014 1 Una volta che una

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Università di Napoli Parthenope Facoltà di Ingegneria Corso di rasmissione Numerica docente: Prof. Vito Pascazio 18 a Lezione: 13/1/4 19 a Lezione: 14/1/4 Sommario rasmissione di segnali PM numerici su

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

Fairness & Quality of Service

Fairness & Quality of Service Fairness & Quality of Service Lezione16 Controllo della congestione vs (Fairness & QoS) Nelle lezioni precedenti abbiamo imparato le tecniche principali per la gestione della congestione. In questa lezioni

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

ELEMENTI DI DEMOGRAFIA

ELEMENTI DI DEMOGRAFIA ELEMENTI DI DEMOGRAFIA 2. Caratteristiche strutturali della popolazione Posa Donato k posa@economia.unisalento.it Maggio Sabrina k s.maggio@economia.unisalento.it UNIVERSITÀ DEL SALENTO DIP.TO DI SCIENZE

Dettagli

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla Il metodo della regressione può essere esteso dal caso in cui si considera la variabilità della risposta della y in relazione ad una sola variabile indipendente X ad una situazione più generale in cui

Dettagli

Strato di Col o l l e l g e a g m a e m n e t n o

Strato di Col o l l e l g e a g m a e m n e t n o Strato di Collegamento Romeo Giuliano romeo.giuliano@uniroma2.it 1 Argomenti Principi di funzionamento dello strato di collegamento Rivelazione e correzione degli errori Protocolli data link elementari

Dettagli

A.1 Rappresentazione geometrica dei segnali

A.1 Rappresentazione geometrica dei segnali Appendice A Rappresentazione dei segnali A.1 Rappresentazione geometrica dei segnali Scomporre una generica forma d onda s(t) in somma di opportune funzioni base è operazione assai comune, particolarmente

Dettagli

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete Corso di Calcolo delle Probabilità e Statistica Esercizi su variabili aleatorie discrete Es.1 Da un urna con 10 pallina bianche e 15 palline nere, si eseguono estrazioni con reimbussolamento fino all estrazione

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli