2. Soluzione degli esercizi su: dimostrazioni per induzione. " # œ#

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "2. Soluzione degli esercizi su: dimostrazioni per induzione. " # œ#"

Transcript

1 M Barlotti Soluzioni per gli Esercizi di Algebra v " Capitolo 2 Pag 1 2 Soluzione degli esercizi su: dimostrazioni per induzione Esercizio 21 Si dimostri che per ogni numero naturale si ha " 3 3 Soluzione Procediamo per induzione su Se ³, l uguaglianza da dimostrare diventa " " ossia "" quindi è vera Supponiamo allora che ipotesi di induzione) l uguaglianza sia vera per, e dimostriamola per Vogliamo quindi provare che Si ha in effetti " " " applicando l ipotesi di induzione) 3 3 come si voleva Esercizio 22 Si dimostri che per ogni numero naturale "$ "') " è divisibile per ) Soluzione Procediamo per induzione su Se ³, "$ "') " " " è certamente divisibile per ) Supposto allora che "$ "') " sia divisibile per ), dimostriamo che anche ) "$ "') ") " lo è ) "$ "') ") " "$ "') "') " "$ "$ "') "') " "$ "'* "'* "') "') "') "'* "'* a"$ "') " b "') e questo numero è divisibile per ) "') ) tenendo conto dell ipotesi di induzione

2 M Barlotti Soluzioni per gli Esercizi di Algebra v " Capitolo 2 Pag 2 Esercizio 23 Sia X ³ { B / B '} Si dimostri che $ x per ogni X Soluzione Procediamo per induzione su applicando il teorema 231 con ³ Verifichiamo in primo luogo che $ ") x $ x Adesso supponiamo l'asserto vero per e dimostriamolo per Dobbiamo cioè provare che $ a bx supponendo che sia $ x e ' Si ha $ $ $ $ axb moltiplicando per $ ambo i membri dell'ipotesi di induzione come è lecito fare, perché $ ) D'altro lato, moltiplicando per x ambo i membri della disuguaglianza $ come è lecito fare, perché x ) si trova che $ axb a b axb a bx e dunque come si voleva $ a bx Esercizio 24 Si dimostri che per ogni \{, "} si ha " " Œ Soluzione Procediamo per induzione su Per ³ si ha " " " " " " "" " $ $x $ Œ Œ Œ x "x " " " $ $ Supponiamo adesso ipotesi di induzione) che sia Œ " " a b" " " Œ e proviamo che

3 M Barlotti Soluzioni per gli Esercizi di Algebra v " Capitolo 2 Pag 3 Si ha " " " " a b" " a b" Œ Œ Œ " " " Œ Œ " ) ) ) ) ) ) ) ) e l asserto è completamente provato Esercizio 2 Sia, un numero naturale,, " Si dimostri che, per ogni numero naturale +,, +, +," a" b a" b + Soluzione Procediamo per induzione su + Per + ³, è,,," a" b a" b "a" b Supposto ora l asserto vero per +, dimostriamolo per +" L ipotesi di induzione è dunque Si ha +, +," +" + a" b a" b +,, +", a" b a" b a" b +" +," +", a" b + a" b +" Conviene distinguere il caso in cui + è pari da quello in cui + è dispari Se + è pari, + +" a" b " e a" b ", cosicché l ultima espressione vale,",,"),,") +" ),,") +," ) + +" +,+") +" ),+") +" ),+") +" ),+"),"),+"),") +" +" ),+") +" ),+) a" b," +"

4 M Barlotti Soluzioni per gli Esercizi di Algebra v " Capitolo 2 Pag 4 + +" Se invece + è pari, a" b " e a" b ", cosicché l ultima espressione vale,,",,"),,") +" ) +" + +" ),+") +,+") +" ),+"),"),+"),") +" ),+") +" ),+) " +" a b," +" Esercizio 26 Si dimostri che per ogni numero naturale si ha Œ $ $ " 3 3 Soluzione Procediamo per induzione su Se ³, l uguaglianza da dimostrare " diventa $ $ " ossia $" quindi è vera Supponiamo allora che ipotesi di induzione) l uguaglianza sia vera per, e dimostriamola per Vogliamo quindi provare che Si ha in effetti come si voleva Œ $ $ " 3 3 Œ 3 $ Œ 3 $ $ applicando l ipotesi di induzione) 3 3 $ " $ $ $ "$ " Esercizio 27 Si dimostri che per ogni numero naturale "" " " è divisibile per " Soluzione Procediamo per induzione su Se ³, "" " " " " è certamente divisibile per " Supposto allora che "" " " sia divisibile per ", dimostriamo che anche ) "" " ") " lo è ) "" " ") " "" " " " "" "" " " " "" "" "" " " " "" "" a"" " " b " e questo numero è divisibile per " " ) tenendo conto dell ipotesi di induzione

5 M Barlotti Soluzioni per gli Esercizi di Algebra v " Capitolo 2 Pag Esercizio 2 Si dimostri che per ogni \{ } si ha " " Ÿ Soluzione Procediamo per induzione su Per " si deve verificare che " " " Ÿ " cioè " Ÿ" e ciò è immediato Supponiamo allora che l asserto sia vero per e proviamolo per L ipotesi di induzione è " " Ÿ e dobbiamo provare che " " Ÿ Ricordando l ipotesi di induzione possiamo scrivere che " " " " " ) ) Ÿ Per provare l asserto basterà allora mostrare che Ÿ ossia che " " " ) " " " " ) Ÿ a b ma quest ultima disuguaglianza è ovvia perché a b a b per ogni Esercizio 29 " ) Per ogni numero naturale, sia + ³ Si dica, motivando la risposta, se è vero che per ogni si ha + ) ) ' Soluzione L uguaglianza proposta si dimostra facilmente per induzione su 0 " ) " )) ' È vera per ³, perché + +

6 M Barlotti Soluzioni per gli Esercizi di Algebra v " Capitolo 2 Pag 6 Supponiamo allora ipotesi di induzione) che sia dimostriamo che + ) ) $ ) ' + ) ) + ) ) ) ) ) ) $ ) ) + + come si voleva dimostrare ' ' ' ) ) $ ) ) ) ) $ ) ' ' ' e Esercizio 210 Si dimostri che per ogni numero naturale è Soluzione Indichiamo con P ) l uguaglianza proposta, che si deve dimostrare vera per ogni numero naturale Conviene procedere per induzione su Þ Per si deve verificare che ossia che " " " " " " Adesso supponiamo che P ) sia vera, e dimostriamo che è vera anche P ) Si ha ma per l ipotesi di induzione è dunque $ a b ossia la P ) come si doveva dimostrare

7 M Barlotti Soluzioni per gli Esercizi di Algebra v " Capitolo 2 Pag 7 Esercizio 211 Si dimostri che per ogni numero naturale si ha Œ " 3 3 Soluzione Procediamo per induzione su Se ³, l uguaglianza da dimostrare diventa " " ossia " quindi è vera Supponiamo allora che ipotesi di induzione) l uguaglianza sia vera per, e dimostriamola per Vogliamo quindi provare che Si ha in effetti come si voleva Œ " 3 3 Œ 3 Œ 3 applicando l ipotesi di induzione) 3 3 " " " Esercizio 212 Si dimostri che per ogni numero naturale " " è divisibile per Soluzione Procediamo per induzione su Se ³, " """ è certamente divisibile per Supposto allora che " " sia divisibile per, dimostriamo che anche lo è ) " ") " ) " ") " " " " " "' "' "' " " " "' "' a " " b " e questo numero è divisibile per " ) tenendo conto dell ipotesi di induzione

8 M Barlotti Soluzioni per gli Esercizi di Algebra v " Capitolo 2 Pag Esercizio 213 Sia X ³ { B / B )} Si dimostri che x per ogni X Soluzione Procediamo per induzione su applicando il teorema 231 con ³ * Verifichiamo in primo luogo che * ' " $' )) *x * *x Adesso supponiamo l'asserto vero per e dimostriamolo per Dobbiamo cioè provare che a bx supponendo che sia x e ) Si ha axb moltiplicando per ambo i membri dell'ipotesi di induzione come è lecito fare, perché ) D'altro lato, moltiplicando per x ambo i membri della disuguaglianza come è lecito fare, perché x ) si trova che axb a b axb a bx e dunque come si voleva a bx Esercizio 214 Si dimostri che per ogni numero naturale è Soluzione Indichiamo con P ) l uguaglianza proposta, che si deve dimostrare vera per ogni numero naturale Conviene procedere per induzione su Þ Per si deve verificare che ossia che " $ " " $ "

9 M Barlotti Soluzioni per gli Esercizi di Algebra v " Capitolo 2 Pag 9 che Adesso supponiamo che P ) sia vera, e dimostriamo che è vera anche P ), cioè Si ha ma per l ipotesi di induzione è dunque ossia la P ) come si doveva dimostrare Esercizio 21 Si dimostri che per ogni numero naturale si ha ' Œ " 3 3 Soluzione Procediamo per induzione su Se ³, l uguaglianza da dimostrare diventa " ' " ossia '" quindi è vera Supponiamo allora che ipotesi di induzione) l uguaglianza sia vera per, e dimostriamola per Vogliamo quindi provare che ' Œ " 3 3 Si ha in effetti ' Œ 3 ' Œ 3 ' applicando l ipotesi di induzione) come si voleva 3 3 "' " "

10 M Barlotti Soluzioni per gli Esercizi di Algebra v " Capitolo 2 Pag 10 Esercizio 216 Si dimostri che per ogni numero naturale $ ) " è divisibile per ' Soluzione Procediamo per induzione su Se ³, $ ) """ è certamente divisibile per ' Supposto allora che $ ) " sia divisibile per ', dimostriamo che anche lo è ) $ ) ) " ) $ ) ) "$ ))"$ $ ))" $ $ )))" a$ ) b$ )) a$ ) b) a$ " b L espresssione dentro la prima parentesi è divisibile per 6 in base all ipotesi di induzione; dobbiamo dunque dimostrare che ) a$ " b è anch esso divisibile per ', cioè che $ " è divisibile per ) Ma si ha $ " $ ) " ed è ben noto che questa espressione è divisibile per $ ", cioè per ) Esercizio 217 Si dimostri che per ogni numero naturale è ' ' ' Soluzione Indichiamo con P ) l uguaglianza proposta, che si deve dimostrare vera per ogni numero naturale Conviene procedere per induzione su Þ Per si deve verificare che ' " ' ' ossia che $ " '' ' ' " "'' ' ' '$' Adesso supponiamo che P ) sia vera, e dimostriamo che è vera anche P ), cioè che ' ' Si ha ' ' ' '

11 M Barlotti Soluzioni per gli Esercizi di Algebra v " Capitolo 2 Pag 11 ma per l ipotesi di induzione è dunque ' ' ' ' ' ' ' ossia la P ) come si doveva dimostrare ' ' ' ' ' ' ' ' ' ' Esercizio 21 Si dimostri che per ogni numero naturale è ) ) ) Soluzione Indichiamo con P ) l uguaglianza proposta, che si deve dimostrare vera per ogni numero naturale Conviene procedere per induzione su Þ Per si deve verificare che ) " ) ) ossia che $ " )) ) ) " ") ) ) )' Adesso supponiamo che P ) sia vera, e dimostriamo che è vera anche P ), cioè che ) ) ) Si ha ma per l ipotesi di induzione è dunque ) ) ) ) ) ) ) ) ) ) ossia la P ) come si doveva dimostrare ) ) ) ) ) ) ) ) ) )

Esercizi sul Principio d Induzione

Esercizi sul Principio d Induzione AM110 - ESERCITAZIONI I - II - 4 OTTOBRE 01 Esercizi sul Principio d Induzione Esercizio svolto 1. Dimostrare che per ogni n 1, il numero α(n) := n 3 + 5n è divisibile per 6. Soluzione. Dimostriamolo usando

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Principio di induzione: esempi ed esercizi Principio di induzione: Se una proprietà P n dipendente da una variabile intera n vale per n e se, per ogni n N vale P n P n + allora P vale su tutto N Variante

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esercizi per il corso Matematica clea Daniele Ritelli anno accademico 008/009 Lezione : Numeri naturali e principio di induzione Esercizi svolti. Provare che + + + n. Provare che + + + n n(n + ) n(n +

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

Massimo limite e minimo limite di una funzione

Massimo limite e minimo limite di una funzione Massimo limite e minimo limite di una funzione Sia f : A R una funzione, e sia p DA). Per ogni r > 0, l insieme ) E f p r) = { fx) x A I r p) \ {p} } è non vuoto; inoltre E f p r ) E f p r ) se 0 < r r.

Dettagli

Dispense del corso di Algebra 1. Soluzioni di alcuni esercizi

Dispense del corso di Algebra 1. Soluzioni di alcuni esercizi Dispense del corso di Algebra 1 Soluzioni di alcuni esercizi Esercizio 1.1. 1) Vero; ) Falso; 3) V; 4) F; 5) F; 6) F (infatti: {x x Z,x < 1} {0}); 7) V. Esercizio 1.3. Se A B, allora ogni sottoinsieme

Dettagli

DAI NUMERI NATURALI AI NUMERI RAZIONALI

DAI NUMERI NATURALI AI NUMERI RAZIONALI DAI NUMERI NATURALI AI NUMERI RAZIONALI 1. L insieme dei numeri naturali Nel sistema assiomatico ZF, l Assioma dell infinito stabilisce che: Esiste un insieme A, i cui elementi sono insiemi e tale che

Dettagli

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Il Principio di induzione matematica è una tecnica di dimostrazione che permette la dimostrazione simultanea di infinite affermazioni.

Dettagli

3. Successioni di insiemi.

3. Successioni di insiemi. 3. Successioni di insiemi. Per evitare incongruenze supponiamo, in questo capitolo, che tutti gli insiemi considerati siano sottoinsiemi di un dato insieme S (l insieme ambiente ). Quando occorrerà considerare

Dettagli

z =[a 4 a 3 a 2 a 1 a 0 ] 10

z =[a 4 a 3 a 2 a 1 a 0 ] 10 Esercizio 1. Sia z =[a 4 a 3 a 2 a 1 a 0 ] 10 un numero intero (la notazione significa che le cifre con cui rappresento z in base 10 sono a 4,..., a 0 {0, 1,..., 9}, ecioè z = a 4 10 4 + a 3 10 3 + a 2

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Analisi asintotica e Ricorrenze Esercizi Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 Notazioni O, Ω e Θ Parte I Notazioni

Dettagli

2. La misura secondo Peano-Jordan.

2. La misura secondo Peano-Jordan. 2. La misura secondo Peano-Jordan. La teoria della misura secondo Peano-Jordan è già nota agli studenti dai corsi di Analisi 1 e 2. Lo scopo principale di questo capitolo è quello di richiamarne le definizioni

Dettagli

1.5 DIVISIONE TRA DUE POLINOMI

1.5 DIVISIONE TRA DUE POLINOMI Matematica C Algebra. Le basi del calcolo letterale.5 Divisione tra due polinomi..5 DIVISIONE TRA DUE POLINOMI Introduzione Ricordiamo la divisione tra due numeri, per esempio 47:4. Si tratta di trovare

Dettagli

2 non è un numero razionale

2 non è un numero razionale 2 non è un numero razionale 1. Richiami: numeri pari e dispari. Un numero naturale m è pari (rispettivamente dispari) se e solo se esiste un numero naturale r tale che m = 2r (rispettivamente m = 2r +

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

8. Completamento di uno spazio di misura.

8. Completamento di uno spazio di misura. 8. Completamento di uno spazio di misura. 8.1. Spazi di misura. Spazi di misura completi. Definizione 8.1.1. (Spazio misurabile). Si chiama spazio misurabile ogni coppia ordinata (Ω, A), dove Ω è un insieme

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Esercizio L1 L2 L3. Il numero 1152 scomposto in fattori primi si scrive [1] [2] [3] 7 31 [4] Risposta

Esercizio L1 L2 L3. Il numero 1152 scomposto in fattori primi si scrive [1] [2] [3] 7 31 [4] Risposta Il numero 1152 scomposto in fattori primi si scrive [1] 2 7 3 2 [2] 2 5 11 [3] 7 31 [4] 1152 Il numero 1152 termina con la cifra 2 e, di conseguenza, è divisibile per 2. Questo significa che ha il numero

Dettagli

Geometria analitica del piano pag 12 Adolfo Scimone

Geometria analitica del piano pag 12 Adolfo Scimone Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due

Dettagli

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x.

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x. ALGEBRE DI BOOLE Un insieme parzialmente ordinato è una coppia ordinata (X, ) dove X è un insieme non vuoto e " " è una relazione binaria definita su X tale che (a) x X x x (riflessività) (b) x, y, X se

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi Sia p 5 un numero primo. Allora, p è sempre divisibile per 4. Scriviamo p (p ) (p + ). Ora, p 5 è primo e, quindi, dispari. Dunque, p e p + sono entrambi pari. Facciamo vedere anche che uno tra p e p +

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze

Dettagli

Appunti su Z n. Alessandro Ghigi. 2 febbraio Operazioni 1. 2 Gruppi 4. 4 Permutazioni 12. Riferimenti bibliografici 19

Appunti su Z n. Alessandro Ghigi. 2 febbraio Operazioni 1. 2 Gruppi 4. 4 Permutazioni 12. Riferimenti bibliografici 19 Appunti su Z n Alessandro Ghigi 2 febbraio 2006 Indice 1 Operazioni 1 2 Gruppi 4 3 La somma su Z n 9 4 Permutazioni 12 5 Il prodotto su Z n 13 Riferimenti bibliografici 19 1 Operazioni Definizione 1 Una

Dettagli

Teorema di Ceva. Tesina per il corso di Didattica dell algebra e della geometria. Francesco Biccari 23 gennaio 2013

Teorema di Ceva. Tesina per il corso di Didattica dell algebra e della geometria. Francesco Biccari 23 gennaio 2013 Teorema di Ceva Tesina per il corso di Didattica dell algebra e della geometria Francesco Biccari 23 gennaio 2013 Il teorema di Ceva è un teorema di geometria euclidea piana dimostrato nel 1678 dall italiano

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

1 I numeri naturali. 1.1 Gli assiomi di Peano

1 I numeri naturali. 1.1 Gli assiomi di Peano 1 I numeri naturali I numeri naturali sono il punto di partenza per la costruzione degli altri insiemi numerici: numeri interi, razionali, reali e quindi complessi, interi modulo n. Il concetto di numero

Dettagli

Cenni di Topologia Generale

Cenni di Topologia Generale Alfonso Villani Cenni di Topologia Generale per il corso di Complementi di Analisi Matematica per gli studenti di Fisica (a.a. 2006-07) Università degli studi di Catania Dipartimento di Matematica e Informatica

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

Il Teorema di Mountain-Pass

Il Teorema di Mountain-Pass Capitolo 4 Il Teorema di Mountain-Pass Descriviamo ora un altro metodo per trovare soluzioni non nulle di alcuni tipi di problemi, per esempio { u = u p 1 u in u = 0 su (4.1) con p > 1, utilizzando dei

Dettagli

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI 1. GLI ASSIOMI DI PEANO Come puro esercizio di stile voglio offrire una derivazione delle proprietà elementari dei numeri naturali e delle operazioni

Dettagli

Elezione di un leader in una rete ad anello

Elezione di un leader in una rete ad anello Elezione di un leader in una rete ad anello Corso di Algoritmi Distribuiti Prof. Roberto De Prisco Lezione n a cura di Rosanna Cassino e Sergio Di Martino Introduzione In questa lezione viene presentato

Dettagli

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16 Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana - 015/16 Esercizio 1 Per quali valori n Z \ {0} l espressione è un numero intero positivo? (n + 5)(n + 6) 6n Soluzione. Il problema

Dettagli

LEZIONI Dispense a cura del Docente.

LEZIONI Dispense a cura del Docente. LEZIONI 06-07-08 Contents 5. INTRODUZIONE ALLO STUDIO QUALITATIVO DELLE FUNZIONI. 5.. Operazioni elementari sui grafici di funzioni. 5.. Funzione composta. Monotonia della funzione composta. 5 5.. Grafico

Dettagli

Esercizi riguardanti limiti di successioni e di funzioni

Esercizi riguardanti limiti di successioni e di funzioni Esercizi riguardanti iti di successioni e di funzioni Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 0 Novembre 20. Come tali sono ben lungi dall essere esenti da errori,

Dettagli

Una successione numerica è una funzione : che associa ad ogni numero naturale un numero reale :. In simboli:

Una successione numerica è una funzione : che associa ad ogni numero naturale un numero reale :. In simboli: Successioni numeriche Successioni Una successione numerica è una funzione : che associa ad ogni numero naturale un numero reale :. In simboli:. = Una successione è un insieme ordinato e infinito di numeri,

Dettagli

1 Principio di Induzione

1 Principio di Induzione 1 Principio di Induzione Per numeri naturali, nel linguaggio comune, si intendono i numeri interi non negativi 0, 1,, 3, Da un punto di vista insiemistico costruttivo, a partire dall esistenza dell insieme

Dettagli

1 Numeri reali. Esercizi.

1 Numeri reali. Esercizi. Politecnico di Milano. Scuola di Ingegneria Industriale. Corso di Analisi e Geometria 1 (Docente: Federico Lastaria) Settembre 2012 1 Numeri reali. Esercizi. Esercizio 1.1 (Un numero moltiplicato per zero

Dettagli

Il teorema di Schwarz

Il teorema di Schwarz Il teorema di Schwarz 1. Quante sono le derivate parziali seconde, terze,...? Il procedimento di derivazione parziali applicato ad una funzione f(x, y) di due variabili raddoppia il numero di derivate

Dettagli

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica

Dettagli

Spazi vettoriali di dimensione infinita e basi: due esempi

Spazi vettoriali di dimensione infinita e basi: due esempi Spazi vettoriali di dimensione infinita e basi: due esempi Emanuele Bottazzi Versione aggiornata al 2 novembre 2015 Indice 1 Introduzione 1 2 Lo spazio vettoriale dei polinomi a coefficienti reali 2 2.1

Dettagli

Lezione 1 Insiemi. Donato A. Ciampa

Lezione 1 Insiemi. Donato A. Ciampa Lezione 1 Insiemi Donato A. Ciampa In questa prima lezione introdurremo i simboli fondamentali del linguaggio matematico, quali l implicazione logica = e la doppia implicazione, e i concetti di Teorema

Dettagli

Soluzioni delle Esercitazioni I 19-23/09/2016

Soluzioni delle Esercitazioni I 19-23/09/2016 Esercitazioni di Matematica Esercitazioni I 9-3/09/06 Soluzioni delle Esercitazioni I 9-3/09/06 A. Polinomi Si ha:. (x+y)(3xy xy) = 6x y x y +3xy 3 xy.. (x y) = 4x 4xy +y. 3. Se non ci si ricorda lo sviluppo

Dettagli

10. Esercizi su: equazioni esponenziali in 8. ( si calcoli il resto della divisione di

10. Esercizi su: equazioni esponenziali in 8. ( si calcoli il resto della divisione di M. Barlotti Esercizi di Algebra v.!". Capitolo 10 Pag. 1 10. Esercizi su: equazioni esponenziali in 8. Esercizio 10.1 "!!!!! Calcolare il resto della divisione per (( di #. Esercizio 10.2 Risolvere uno

Dettagli

Capitolo 1. Spazi quoziente. 1.1 Spazi quoziente

Capitolo 1. Spazi quoziente. 1.1 Spazi quoziente Capitolo 1 Spazi quoziente 1.1 Spazi quoziente Siano (S, A ) uno spazio topologico, Σ una relazione di equivalenza definita in S e p la proiezione canonica di S su S/Σ. Posto S = S/Σ definiamo topologia

Dettagli

17. Il teorema di Radon-Nikodym.

17. Il teorema di Radon-Nikodym. 17. Il teorema di Radon-Nikodym. Nel Capitolo 13 (n. 13.10) abbiamo introdotto il concetto di misura con segno dotata di densità rispetto ad una data misura µ. In questo capitolo ci occupiamo della ricerca

Dettagli

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo.

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo. Capitolo 3 Il campo Z n 31 Introduzione Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo 32 Le classi resto Definizione

Dettagli

Minimi quadrati vincolati e test F

Minimi quadrati vincolati e test F Minimi quadrati vincolati e test F Impostazione del problema Spesso, i modelli econometrici che stimiamo hanno dei parametri che sono passibili di interpretazione diretta nella teoria economica. Consideriamo

Dettagli

Algoritmi e Strutture Dati - II modulo Soluzioni degli esercizi

Algoritmi e Strutture Dati - II modulo Soluzioni degli esercizi Algoritmi e Strutture Dati - II modulo Soluzioni degli esercizi Francesco Pasquale 6 maggio 2015 Esercizio 1. Su una strada rettilinea ci sono n case nelle posizioni 0 c 1 < c 2 < < c n. Bisogna installare

Dettagli

Esercizi sulle radici

Esercizi sulle radici Esercizi sulle radici Semplificazione Per semplificare una radice utilizzando, quando necessario, i valori assoluti, dobbiamo ricordare che se una radice ha indice pari, il suo radicando (il numero che

Dettagli

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( )

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( ) Esercizio proposto N 1 Verificare che ESERCIZI SUI LIMITI DI FUNZIONE Si ricordi la definizione di ite finito in un punto: Pertanto, applicando la definizione al caso concreto, si ha: o, ciò che è lo stesso:

Dettagli

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI DERIVABILI Sia f : domf R una funzione e sia 0 domf di accumulazione per domf Chiamiamo derivata prima di

Dettagli

ALGEBRA 1 PB-Z X. 25 V 2012

ALGEBRA 1 PB-Z X. 25 V 2012 ALGEBRA 1 PB-Z X. 25 V 2012 Esercizio 1. Sia A un dominio d integrità unitario e a ideali principali. Si mostri che, per un ideale di A, esser massimale è equivalente a esser primo ( 1 ). Soluzione. La

Dettagli

6. Soluzione degli esercizi su: massimo comun divisore e minimo comune multiplo.

6. Soluzione degli esercizi su: massimo comun divisore e minimo comune multiplo. M. Barlotti Soluzioni per gli Esercizi di Algebra v.!". Capitolo 6 Pag. 1 6. Soluzione degli esercizi su: massimo comun divisore e minimo comune multiplo. Esercizio 6.1 Sia A ³ Ö"", %( $**, #%$ """. Rispetto

Dettagli

TEORIA DEI NUMERI. 1. Numeri naturali, interi relativi e principi d induzione

TEORIA DEI NUMERI. 1. Numeri naturali, interi relativi e principi d induzione TEORIA DEI NUMERI. Numeri naturali, interi relativi e principi d induzione Le proprietà dell insieme N = {0,, 2, } dei numeri naturali possono essere dedotte dai seguenti assiomi di Peano:. C è un applicazione

Dettagli

14. Confronto tra l integrale di Lebesgue e l integrale di Riemann.

14. Confronto tra l integrale di Lebesgue e l integrale di Riemann. 4. Confronto tra l integrale di Lebesgue e l integrale di Riemann. Lo scopo di questo capitolo è quello di mettere a confronto i vari tipi di integrale (di Riemann, generalizzato e improprio) di funzioni

Dettagli

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA Foglio 4 Esempio. Sia V = P 5 (R) lo spazio dei polinomi di grado strettamente minore di 5. Si considerino i seguenti sottoinsiemi di V (i) Dimostrare

Dettagli

BOZZA :26

BOZZA :26 BOZZA 27..20 23:26 Università di Roma Tor Vergata Corso di Laurea in Scienze e Tecnologie per i Media Esempi sulla stima dell'errore negli sviluppi di Taylor Massimo A. Picardello CAPITOLO Stima numerica

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Laurea Magistrale in Scienze della Nutrizione Umana Corso di Statistica Medica, anno 2015-16 P.Baldi Lista di esercizi 4, 11 febbraio 2016. Esercizio 1 Una v.a.

Dettagli

DAC Digital Analogic Converter

DAC Digital Analogic Converter DAC Digital Analogic Converter Osserviamo lo schema elettrico riportato qui a lato, rappresenta un convertitore Digitale-Analogico a n Bit. Si osservino le resistenze che di volta in volta sono divise

Dettagli

Prodotto interno (prodotto scalare definito positivo)

Prodotto interno (prodotto scalare definito positivo) Contenuto Prodotto scalare. Lunghezza, ortogonalità. Sistemi e basi ortonormali. Somma diretta: V = U U. Proiezioni. Teorema di Pitagora, disuguaglianza di Cauchy-Schwarz. Angoli. Federico Lastaria. Analisi

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

Svolgimento degli esercizi del Capitolo 1

Svolgimento degli esercizi del Capitolo 1 Analisi Matematica a edizione Svolgimento degli esercizi del Capitolo a) Si ha perciò si distinguono due casi: I) se x < 7,siha x 7 se x 7 x 7 7 x se x < 7, x 7 7 x x x 5 x 5, e poiché 5 > 7 la disequazione

Dettagli

EQUAZIONI CARTESIANE DELLA CIRCONFERENZA

EQUAZIONI CARTESIANE DELLA CIRCONFERENZA EQUAZIONI CARTESIANE DELLA CIRCONFERENZA G. MEZZETTI Definizione. Siano dati un punto C e un numero r R, r 0; si dice circonferenza di centro C e raggio r l insieme di quei punti del piano la cui distanza

Dettagli

Equazioni di secondo grado

Equazioni di secondo grado Equazioni di secondo grado Un equazione di secondo grado può sempre essere ridotta nella forma: a + bx + c 0 forma normale con a 0. Le lettere a, b, c sono rappresentano i coefficienti. Solo b e c possono

Dettagli

AUTOVALORI. NOTE DI ALGEBRA LINEARE

AUTOVALORI. NOTE DI ALGEBRA LINEARE AUTOVALORI. NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 GENNAIO 2011 1. Il polinomio minimo Sia f : V V un endomorfismo lineare di uno spazio vettoriale di dimensione finita sul campo K. Per ogni

Dettagli

Il teorema di Lagrange e la formula di Taylor

Il teorema di Lagrange e la formula di Taylor Il teorema di Lagrange e la formula di Taylor Il teorema del valor medio di Lagrange, valido per funzioni reali di una variabile reale, si estende alle funzioni reali di più variabili. Come si vedrà, questo

Dettagli

nota 1. Aritmetica sui numeri interi.

nota 1. Aritmetica sui numeri interi. nota 1. Aritmetica sui numeri interi. Numeri interi. Numeri primi. L algoritmo di Euclide per il calcolo del mcd. Equazioni diofantee di primo grado. Congruenze. Il Teorema Cinese del Resto. 1 0. Numeri

Dettagli

SISTEMI LINEARI ULTIMO AGGIORNAMENTO M.M. 25-1-2010

SISTEMI LINEARI ULTIMO AGGIORNAMENTO M.M. 25-1-2010 SISTEMI LINEARI ULTIMO AGGIORNAMENTO M.M. 25-1-2010 Introduzione 1. Sistemi lineari In un cortile ci sono conigli e polli tutti integri ed in ottima salute. Sapendo che ci sono 10 teste e 30 zampe dire

Dettagli

Tot

Tot Università degli studi di Verona Corsi di laurea in Informatica e in Tecnologie dell Informazione Prova scritta di Matematica di Base 14 settembre 2005 matricola...................... nome..........................

Dettagli

NUMERI REALI. x(y + z) = xy + xz. Nel seguito faremo uso delle seguenti notazioni. IR+ 0 = {x IR : 0 x} IR 0 = {x IR : 0 x}

NUMERI REALI. x(y + z) = xy + xz. Nel seguito faremo uso delle seguenti notazioni. IR+ 0 = {x IR : 0 x} IR 0 = {x IR : 0 x} NUMERI REALI In quanto segue non diremo che cosa è un numero reale ma definiremo per via assiomatica l insieme dei numeri reali. Insieme che denotiamo con IR. L insieme dei numeri reali è un campo totalmente

Dettagli

3. Risoluzone dei triangoli rettangoli 4. Decomposizione di una forza in due componenti ortogonali (perpendicolari tra loro)

3. Risoluzone dei triangoli rettangoli 4. Decomposizione di una forza in due componenti ortogonali (perpendicolari tra loro) Formule di prostaferesi Riduzione alla tangente dell angolo metà Teorema del coseno Identità + t = per t + k Riepilogo 0 Il concetto di funzione Definizione di seno coseno e tangente Relazione fra seno

Dettagli

Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti. April 5, 2006

Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti. April 5, 2006 Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti April 5, 6 ESERCIZI. Studiare la convergenza della serie numerica al variare di γ IR.. Calcolare l integrale π n=

Dettagli

Capitolo 1. Gli strumenti. 1.1 Relazioni

Capitolo 1. Gli strumenti. 1.1 Relazioni Capitolo 1 Gli strumenti Consideriamo un insieme X. In geometria siamo abituati a considerare insiemi i cui elementi sono punti ad esempio, la retta reale, il piano cartesiano. Più in generale i matematici

Dettagli

Il principio d induzione Unità Il principio d induzione. Verifiche. Una breve sintesi per domande e risposte.

Il principio d induzione Unità Il principio d induzione. Verifiche. Una breve sintesi per domande e risposte. Prerequisiti: - Conoscenze approfondite degli insiemi numerici. - Conoscenze adeguate di calcolo algebrico. L unità riguarda il biennio di tutte le scuole superiori. OBIETTIVI DI APPRENDIMENTO Una volta

Dettagli

Lezione 3 - Teoria dei Numeri

Lezione 3 - Teoria dei Numeri Lezione 3 - Teoria dei Numeri Problema 1 Trovare il più piccolo multiplo di 15 formato dalle sole cifre 0 e 8 (in base 10). Il numero cercato dev'essere divisibile per 3 e per 5 quindi l'ultima cifra deve

Dettagli

nota 1. Aritmetica sui numeri interi.

nota 1. Aritmetica sui numeri interi. nota 1. Aritmetica sui numeri interi. Numeri interi. Numeri primi. L algoritmo di Euclide per il calcolo del mcd. Equazioni diofantee di primo grado. Congruenze. Il Teorema Cinese del Resto. 1 0. Numeri

Dettagli

Appunti sui Codici di Reed Muller. Giovanni Barbarino

Appunti sui Codici di Reed Muller. Giovanni Barbarino Appunti sui Codici di Reed Muller Giovanni Barbarino Capitolo 1 Codici di Reed-Muller I codici di Reed-Muller sono codici lineari su F q legati alle valutazioni dei polinomi sullo spazio affine. Per semplicità

Dettagli

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h.

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h. LEZIONE 15 15.1. Polinomi a coefficienti complessi e loro e loro radici. In questo paragrafo descriveremo alcune proprietà dei polinomi a coefficienti complessi e delle loro radici. Già nel precedente

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Appunti del Corso Analisi 1

Appunti del Corso Analisi 1 Appunti del Corso Analisi 1 Anno Accademico 2011-2012 Roberto Monti Versione del 5 Ottobre 2011 1 Contents Chapter 1. Cardinalità 5 1. Insiemi e funzioni. Introduzione informale 5 2. Cardinalità 7 3.

Dettagli

Esercitazioni di geometria /2009 (Damiani) Il polinomio minimo. I) Definizione del polinomio minimo.

Esercitazioni di geometria /2009 (Damiani) Il polinomio minimo. I) Definizione del polinomio minimo. Esercitazioni di geometria 2-2008/2009 (Damiani) Il polinomio minimo I) Definizione del polinomio minimo. Siano k un campo, A un anello (associativo) unitario, k Z(A) A un omomorfismo di anelli unitari

Dettagli

Prova scritta di Algebra 9 settembre x 5 mod 7 11x 1 mod 13 x 3 mod 9

Prova scritta di Algebra 9 settembre x 5 mod 7 11x 1 mod 13 x 3 mod 9 Prova scritta di Algebra 9 settembre 2016 1. Si risolva il seguente sistema di congruenze lineari x 5 mod 7 11x 1 mod 13 x 3 mod 9 Si determini la sua minima soluzione positiva. 2. In S 9 sia α = (4, 9)(9,

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

Ciclo do while in FORTRAN

Ciclo do while in FORTRAN Ciclo do while in FORTRAN Vogliamo tradurre in linguaggio FORTRAN un algoritmo che risponde a questo tipo di struttura: Fino a quando e vera questa espressione logica allora: fai questo fai quest altro

Dettagli

La costruzione dei numeri reali

La costruzione dei numeri reali Indice 1 Nozione di campo Archimedeo ordinato..................... 1 2 Richiami sui numeri razionali........................... 3 3 Inadeguatezza dei razionali e completezza di un insieme numerico.......

Dettagli

Forme bilineari simmetriche

Forme bilineari simmetriche Forme bilineari simmetriche Qui il campo dei coefficienti è sempre R Definizione 1 Sia V uno spazio vettoriale Una forma bilineare su V è una funzione b: V V R tale che v 1, v 2, v 3 V b(v 1 + v 2, v 3

Dettagli

Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008

Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008 Analisi 1 Polo di Savona Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008 1- PrA1.TEX [] Analisi 1 Polo di Savona Prima prova Parziale 21/10/1998 Prima prova Parziale 21/10/1998 Si consideri

Dettagli

Osservazione 1.1 Si verifica facilmente che esiste un unica relazione d ordine totale su Q che lo renda un campo ordinato.

Osservazione 1.1 Si verifica facilmente che esiste un unica relazione d ordine totale su Q che lo renda un campo ordinato. 1 Numeri reali Definizione 1.1 Un campo ordinato è un campo K munito di una relazione d ordine totale, compatibile con le operazioni di somma e prodotto nel senso seguente: 1. a, b, c K, a b = a + c b

Dettagli

SPAZI METRICI COMPLETI

SPAZI METRICI COMPLETI Capitolo 1 SPAZI METRICI COMPLETI Sia dato uno spazio metrico (X, d). Definizione 1.1 Una successione {x n } si dice successione di Cauchy se ε > 0 n 0 n, m n 0 = d(x n x m ) < ε (1.1) Esercizio 1.1 Dimostrare

Dettagli

210 Limiti. (g) lim. (h) lim. x 3 + ln ; x 3 3. (i) lim. x 2 + ln(x + 2)(x 2) ; (j) lim. 6 (Prodotti di limiti non necessariamente finiti).

210 Limiti. (g) lim. (h) lim. x 3 + ln ; x 3 3. (i) lim. x 2 + ln(x + 2)(x 2) ; (j) lim. 6 (Prodotti di limiti non necessariamente finiti). 0 Limiti Diamoci da fare... (Soluzioni a pagina 47) Sia f () =, determinare δ affinché perogni + nell intervallo ( δ, + δ) f () 3 < oppure 0 f () 3 < 000. Dimostrare quindi che + = 3. Dimostrare, utilizzando

Dettagli

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2 CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I ESERCIZI SUI LIMITI CALCOLARE IL VALORE DEI SEGUENTI LIMITI sine 4 log e e sin e 5 tan sin 5 7 tan 9 sin + e e + 4 6 8 + 0 n + log +

Dettagli

Calcolo algebrico e polinomi 1 / 48

Calcolo algebrico e polinomi 1 / 48 Calcolo algebrico e polinomi 1 / 48 2 / 48 Introduzione In questa lezione esporremo i principali concetti relativi al calcolo algebrico elementare e ai polinomi. In particolare, illustreremo: Prodotti

Dettagli

Cenni di teoria dei numeri

Cenni di teoria dei numeri Cenni di teoria dei numeri 6 ottobre 2011 AVVISO: I presenti appunti possono contenere (anzi sicuramente conterranno) errori e/o ripetizioni. Essi sono infatti opera di vari collage e, per ovvie questioni

Dettagli

Parte III. Incontro del 26 gennaio 2012

Parte III. Incontro del 26 gennaio 2012 Parte III Incontro del 6 gennaio 01 17 Alcuni esercizi Esercizio (Giochi di Archimede 011). Un canguro e una rana si trovano inizialmente sullo stesso vertice di un poligono regolare di 41 lati, e cominciano

Dettagli

Elementi di Analisi Matematica. Prova in itinere del 19 dicembre 2011

Elementi di Analisi Matematica. Prova in itinere del 19 dicembre 2011 Elementi di Analisi Matematica Prove in itinere dal 211 Prova in itinere del 19 dicembre 211 Esercizio 1 Si consideri la serie n= (2n)! (n!) 2 xn, x R. (i) Stabilire per quali x R la serie è assolutamente

Dettagli

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica G. Pareschi COMPLEMENTI ED ESEMPI SUI NUMERI INTERI. 1. Divisione con resto di numeri interi 1.1. Divisione con resto. Per evitare fraintendimenti nel caso in cui il numero a del Teorema 0.4 sia negativo,

Dettagli