Meccanica quantistica (3)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Meccanica quantistica (3)"

Transcript

1 Meccanica quanisica 3 03/11/13 1-MQ-3.oc 0

2 03/11/13 1-MQ-3.oc 1 Equazione i Scröinger La funzione 'ona Ψ, per le paricelle quanisice è soluzione all'equazione i Scröinger: i V m,,, Ψ Ψ + Ψ Se si pone:, ϕ Ψ E si iviono per ϕ enrambi i membri: i V m 1 1 ϕ ϕ + L uguaglianzaè possibile solo quano i ue membri sono cosani i cos V m 1 1 ϕ ϕ + Si possono allora scrivere ue equazioni separae separazione elle variabili cose, a le imesioni i un energia E V m + 1 E i 1 ϕ ϕ

3 Equazione nel empo 1 ϕ i ϕ a soluzione: E ϕ e ie Ψ, e ie La soluzione è una funzione perioica nel empo i frequenza E 03/11/13 1-MQ-3.oc

4 Per escrivere le proprieà i aomi e molecole ineressano gli sai sazionari Sao sazionario: sao inamico in cui l'energia oale non ipene al empo Per uno sao sazionario si consiera la ipenenza alla posizione e l'equazione a la forma: m + V E V poenziale a cui è soggea la paricella: ipene solo alla posizione m massa ella paricella E energia oale ella paricella cineica + poenziale Ψ, e ie La funzione ona oale è perioica nel empo 03/11/13 1-MQ-3.oc 3

5 L'equazione: + V E m è una funzione el ipo: Funzionale i Funzione incognia Cosane Funzione incognia La soluzione ell'equazione consise nel rovare la cosane e la funzione incognia in maemaica: la cosane è ea auovalore la funzione è ea auofunzione in genere il problema ammee più soluzioni nel caso ell'equazione i Scröinger ogni soluzione è uno sao el sisema 03/11/13 1-MQ-3.oc 4

6 Equazione i Scröinger è una funzione i sao: efinisce compleamene lo sao inamico ella paricella Tue le proprieà ello sao ella paricella sono ricavabili alla Se V 0, ovvero se la paricella è soggea a un poenziale sao legao: l'equazione ammee soluzioni fisicamene acceabili solo per valori iscrei i E ovvero non è possibile passare in maniera coninua a un valore i E a un alro. Ricorarsi ella legge i Plank 03/11/13 1-MQ-3.oc 5

7 Paricella libera Per una paricella i massa m non soggea a un poenziale V 0 sao non legao L'energia è solo cineica 1 p m E p mv l'equazione i Scröinger è: m E E si può verificare ce una soluzione è p sin ricorano la relazione i e Broglie: π sin λ p λ 03/11/13 1-MQ-3.oc 6

8 Paricella libera V 0 La paricella può avere qualsiasi lungezza ona e quini qualsiasi velocià La velocià è perfeamene eerminaa la posizione è compleamene ineerminaa 03/11/13 1-MQ-3.oc 7

9 Operaori L equazione i Scröinger per uno sao sazionario + V E m può essere scria nella forma: Hˆ E ove ˆ H + V m Ĥ è un oggeo maemaico eo operaore Un operaore Ô rasforma una funzione in un alra funzione: O ˆf g Sono ei lineari gli operaori per cui: Ô af + bg a Ô f + b Ô g Ô + Pˆ f Ôf + Pˆ f 03/11/13 1-MQ-3.oc 8

10 Operaore Hamiloniano E eviene ce ˆ H + V m è la somma i ue operaori lineari fare la erivaa a e moliplicare per m m V moliplicare per V e quini è lineare percé somma i operaori lineari. Hˆ Tˆ + Vˆ ˆ T m V ˆ V 03/11/13 1-MQ-3.oc 9

11 Auovalori e Auofunzioni L equazione i Scröinger è un equazione el ipo Operaore Funzione incognia Cosane Funzione incognia Aˆ α aα La soluzione ell'equazione consise nel rovare la cosane a e la funzione incognia α in maemaica: la cosane è ea auovalore la funzione è ea auofunzione L equazione è ea equazione agli auovalori in genere il problema ammee più soluzioni cioè più coppie auovalori auofunzioni NB: l equazione è vericaa moliplicano qualsiasi cosane K Aˆ Kα ak α Quini ance Kα è una soluzione α per una 03/11/13 1-MQ-3.oc 10

12 Noare ce con i segueni passaggi Aˆ α aα α * Aˆ α α * aα α * Aˆ α aα * α L auovalore a è la granezza osservabile associaa all operaore Â, vale: α * Aˆ α α * α a Se  è un operaore ce corrispone a un osservabile l auovalore eve essere reale Se a è reale, si può imosrare ce per ogni coppia i auofunzioni isine i  vale la relazione α * β Si ice ce α e β sono orogonali ra loro 0 Si ricori ce: α * a α 1 03/11/13 1-MQ-3.oc 11

13 Operaori Hamiloniano nel caso ell'equazione i Scröinger ogni soluzione è uno sao el sisema E auovolore i Ĥ energia el sisema auofunzione i Ĥ corrisponene all energia E In meccanica quanisica a ogni osservabile è associao un operaore A esempio all osservabile energia è associao l operaore Ĥ eo operaore Hamiloniano E auovalore energia el sisema auofunzione corrisponene all energia E Esseno Ĥ l operaore energia sarà: Hˆ Tˆ + Vˆ Cioè la somma ell operaore energia cineica e i quello energia poenziale 03/11/13 1-MQ-3.oc 1

14 Operaore momeno cineico Se Tˆ m 1 p m E cin p mv Quini Tˆ m pˆ pˆ m pˆ m E l operaore momeno cineico è: pˆ i 03/11/13 1-MQ-3.oc 13

15 paricella libera Per una paricella libera l Hamiloniano è ˆ H m Ovvero: H ˆ T ˆ Gli auovalori sono E 1 p m E le auofunzioni sono Ma lo sono ance p sin p cos Ci sono soluzioni sin e cos con la sessa energia cineica! 03/11/13 1-MQ-3.oc 14

16 paricella libera Si può verificare ce ance è una soluzione p p sin ± cos Ricorano le formule i Eulero: e iα iα e + e cos α ; sin α i Ance le: e e p ± i iα iα sono soluzioni ell eq. i Scroeinger Si vee ce le soluzioni in forma rigonomerica e quelle in forma esponenziale sono equivaleni In realà qualsiasi combinazione lineare è soluzione con energia E Ae p i + Be p i 03/11/13 1-MQ-3.oc 15

17 Momeno cineico Le funzioni pˆ i e p ± i sono ance auofunzioni i con auovalore ±p Le ue auofunzioni corrisponono a auovalori isini +p e p: il segno sabilisce la irezione el moo. Le ue soluzioni corrisponono allo sesso auovalore E percé l energia è inipenene alla irezione. 03/11/13 1-MQ-3.oc 16

18 Valore meio i un osservabile O * Oˆ O valore aeso: è il valore meio, ovvero il più probabile, i una misura i O quano si fanno mole misure su un sisema o su una collezione i sisemi ce non sono in uno sao puro Quano il sisema è in uno sao puro Oˆ a è un auofunzione iô ovviamene O coincie con un auovalore i Ô 03/11/13 1-MQ-3.oc 17

19 Combinazione i auofunzioni siano α e β soluzioni i Ô Oˆ α aα ; Oˆ β bβ La combinazione lineare i ue soluzioni O * Oˆ + A Aα + Bβ [ A α + Bβ ]* Oˆ [ Aα + Bβ ] AB α * Oˆ α + B α * Oˆ β + BA β * Oˆ β + β * Oˆ α eneno cono ce α e β sono auofunzioni i Ô O A + a α * α + B ABb b α * β + BAa β * β + β * α per l orogonalià i α e β gli inegrali el 3 e 4 ermine sono nulli e per la normalizzazione i primi ue sono 1 O A a + B b La probabilià i misurare un valore a è aa al quarao el coefficiene ella combinazione lineare A Ovviamene si può esenere il proceimeno alla combinazione lineare i un numero qualsiasi i ermini 03/11/13 1-MQ-3.oc 18

Perturbazioni Dipendenti dal tempo

Perturbazioni Dipendenti dal tempo Perurbazioni dipendeni dal empo in Meccanica Quanisica, Perurbazioni Periodiche, Transizioni di Dipolo Elerico, Dipolo Magneico, Quadripolo Elerico e relaive Regole di Selezione Di Giorgio Busoni Perurbazioni

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

Circuiti in regime sinusoidale

Circuiti in regime sinusoidale ircuii in regime sinusoiale are www.ie.ing.unibo.i/pers/masri/iaica.hm versione el -0-03 Funzioni sinusoiali a cos ampiezza fase iniziale raiani, ra pulsazione ra/s f frequenza herz, Hz T perioo seconi,

Dettagli

Sessione ordinaria 12_2 1 M. Vincoli

Sessione ordinaria 12_2 1 M. Vincoli Sessione orinaria 1_ 1 M. Vincoli Per capacià si inene un conuore, o un sisema i conuori, in grao i accumulare carica elerica. onsierano a esempio un sisema i ue conuori e sposano una carica a uno all

Dettagli

90 0 L F s (Lavoro motore- lavoro positivo) n n

90 0 L F s (Lavoro motore- lavoro positivo) n n Lavoro i una Forza. Siano ata una Forza costante F, applicata a corpo i massa m e sia s, il suo spostamento rettilineo el corpo, si chiama lavoro ella forza il prootto scalare tra la forza e lo spostamento.

Dettagli

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t)

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t) Assumiamo la variabile emporale discrea; sia f lineare. Si consideri la seguene rappresenazione implicia: 1 x f x,u Ax Bu, x x R y η x,u Cx Du n 1 1 Rappresenazioni equivaleni Si consideri la rasformazione:

Dettagli

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione n. (es di ingresso). Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come 2. L argomeno, espresso in radiani,

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1 Universià Carlo Caaneo Ingegneria gesionale Analisi maemaica aa 07/08 EQUAZIONI DIFFERENZIALI ESERCIZI CON SOLUZIONE Trovare l inegrale generale dell equazione ' Si raa di un equazione differenziale lineare

Dettagli

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata Meccanica Applicata Alle Macchine (Ingegneria Energetica) Elementi i Meccanica Teorica e Applicata (Scienze per l Ingegneria) Università egli Stui i oma La Sapienza Una traccia egli argomenti el Corso

Dettagli

PARTICELLA LIBERA IN UNA DIMENSIONE. L equazione di Schrödinger per una particella libera in una dimensione è. t (x) = 2m t.

PARTICELLA LIBERA IN UNA DIMENSIONE. L equazione di Schrödinger per una particella libera in una dimensione è. t (x) = 2m t. 4/ PARTICELLA LIBERA 09/0 PARTICELLA LIBERA IN UNA DIMENSIONE L equazione i Schröinger per una particella libera in una imensione è ) i ħ t ψ ˆp t x) = m ψ t x). Poiché Ĥ ) i πħ) exp / ħ px = p m ) i πħ)

Dettagli

Geometria analitica del piano pag 1 Adolfo Scimone

Geometria analitica del piano pag 1 Adolfo Scimone Geomeria analiica del piano pag Adolfo Scimone GEOMETRIA ANALITICA Lo scopo della geomeria analiica è quello di individuare i puni di una rea, di un piano, dello spazio, o più in generale gli eni geomerici

Dettagli

Fondamenti di Automatica Test di autovalutazione. può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione. può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione PARTE A A. Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come A2. L argomeno, espresso in radiani, del

Dettagli

Proprietà della Trasformata. Funzioni trasformabili (1/3) L {af(t) + bg(t)} (s) = (af(t) + bg(t))e st dt. Tabella 1. = a f(t)e st dt + b g(t)e st dt

Proprietà della Trasformata. Funzioni trasformabili (1/3) L {af(t) + bg(t)} (s) = (af(t) + bg(t))e st dt. Tabella 1. = a f(t)e st dt + b g(t)e st dt Ouline La rasformaa di Laplace La rasformaa di Laplace (Meodi Maemaici e Calcolo per Ingegneria) Enrico Berolazzi DIMS Universià di reno anno accademico 27/28 (aggiornaa al 8//27) 2 Proprieà della rasformaa

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Sapienza - Universià di Roma - Corso di Laurea in Ingegneria Eleroecnica Soluzioni degli esercizi di Analisi Maemaica I A.A. 6 7 - Docene: Luca Baaglia Lezione del Dicembre 6 Argomeno: Equazioni differenziali,

Dettagli

Esercizi proposti di Fondamenti di Automatica - Parte 2

Esercizi proposti di Fondamenti di Automatica - Parte 2 Esercizi proposti i Fonamenti i Automatica - Parte Febbraio 5 Es. Dimostrare che le matrici A, a elementi reali, e A D, a elementi complessi, sono simili. α ω α + ω A, A ω α D α ω Es. Calcolare e A t e

Dettagli

Dielettrici Si consideri anzitutto il potenziale dovuto ad un dipolo elettrico. Dalla legge di sovrapposizione;

Dielettrici Si consideri anzitutto il potenziale dovuto ad un dipolo elettrico. Dalla legge di sovrapposizione; Dielettrici Si consieri anzitutto il potenziale ovuto a un ipolo elettrico. Dalla legge i sovrapposizione; + e se a

Dettagli

Outline. La trasformata di Laplace. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi

Outline. La trasformata di Laplace. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi Ouline La rasformaa di Laplace La rasformaa di Laplace (Meodi Maemaici e Calcolo per Ingegneria) Enrico Berolazzi DIMS Universià di reno anno accademico 28/29 (aggiornaa al 2/9/28) 2 Proprieà della rasformaa

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

GEOMETRIA svolgimento di uno scritto del 12 Gennaio 2011

GEOMETRIA svolgimento di uno scritto del 12 Gennaio 2011 GEOMETRIA svolgimeno di uno scrio del Gennaio ) Trovare una base per lo spaio delle soluioni del seguene sisema omogeneo: + + 9 + 6. Il sisema può essere scrio in forma mariciale nel modo seguene : 9 6

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

[8.1] [8.1,a] Nel caso di uno spostamento angolare (moto di un pendolo) ξ = (coordinata angolare) [8.1.b]

[8.1] [8.1,a] Nel caso di uno spostamento angolare (moto di un pendolo) ξ = (coordinata angolare) [8.1.b] U n i v e r s i à d e g l i S u d i d i C a a n i a - C o r s o d i s u d i o i n I n g e g n e r i a I n f o r m a i c a - D i p a r i m e n o d i F i s i c a e s r o n o m i a MOI OSCILLOI - Moo armonico

Dettagli

Interazione tra i modelli quasi stazionari: il risuonatore

Interazione tra i modelli quasi stazionari: il risuonatore Interazione tra i moelli quasi stazionari: il risuonatore Il sistema in esame è un cavo coassiale chiuso alle ue estremità, che geometricamente può essere rappresentato tramite ue cilinri come in fig.1.

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

P suolo in P; 2. la distanza d, dall uscita dello

P suolo in P; 2. la distanza d, dall uscita dello acolà di Ingegneria Prova Generale di isica I 1.07.004 Compio A Esercizio n.1 Uno sciaore di massa m = 60 Kg pare da fermo da un alezza h = 8 m rispeo al suolo lungo uno scivolo inclinao di un angolo α

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

PROCESSI D URTO IN UNA DIMENSIONE

PROCESSI D URTO IN UNA DIMENSIONE 4/5 PROCESSI D URTO IN UNA DIMENSIONE 9/1 1 PROCESSI D URTO IN UNA DIMENSIONE Consideraa una paricella che si muove in un poenziale che si annulla per x ±, siamo ineressai a discuere paricolari soluzioni

Dettagli

Lezione 2. F. Previdi - Automatica - Lez. 2 1

Lezione 2. F. Previdi - Automatica - Lez. 2 1 Lezione 2. Sisemi i dinamici i i a empo coninuo F. Previdi - Auomaica - Lez. 2 Schema della lezione. Cos è un sisema dinamico? 2. Modellisica dei sisemi dinamici 3. Il conceo di dinamica 4. Sisemi dinamici

Dettagli

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1 I sistemi termici La resistenza termica Se ue corpi aventi temperature iverse vengono messi a contatto, si ha un passaggio i quantità i calore al corpo a temperatura maggiore verso quello a temperatura

Dettagli

Soluzioni di reti elettriche lineari PAS Introduzione

Soluzioni di reti elettriche lineari PAS Introduzione Soluzioni di rei eleriche lineari PAS Inroduzione Domanda: Cosa sono le rei eleriche lineari in regime Periodico Alernao Sinusoidali PAS? Risposa: Sono rei lineari in cui i generaori hanno dipendenza dal

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondameni di elecomunicazioni - SEGNALI E SPERI Prof. Mario Barbera [pare ] Sruura della lezione Proprieà dei segnali Valore medio, valore efficace, poenza, energia rasformaa di Fourier e speri

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n + a n d n y

Dettagli

(c) Determinare per quali valori di h la varietà lineare delle soluzioni del sistema ha dimensione 2:

(c) Determinare per quali valori di h la varietà lineare delle soluzioni del sistema ha dimensione 2: CORSO DI GEOMETRIA E ALGEBRA Cognome e Nome: Corso di Laurea: 8 gennaio 6 Maricola: Anno di corso: x. (6 p) Si consideri il sisema lineare AX = B, dovex = @ z A è i l v e o r e d e l l e incognie, A e

Dettagli

FORMULE 2 p 4 l formula diretta per calcolare il perimetro conoscendo il lato

FORMULE 2 p 4 l formula diretta per calcolare il perimetro conoscendo il lato Caratteristice ˆ Bˆ Cˆ Dˆ 90 ˆ Bˆ Cˆ Dˆ 60 B BC CD D C BD iagonale () IL QUDRTO lato (l) Ciascuna iagonale ivie il quarato in ue triangoli rettangoli uguali i cui cateti corrisponono ai lati el quarato

Dettagli

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 10 Settembre 2008 Cognome Nome Matricola

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 10 Settembre 2008 Cognome Nome Matricola PROVA SCRITTA DI AUTOMATICA I (Prof. Biani, BIO A-K) Seembre 8 Cognome Nome Maricola............ Verificare che il fascicolo sia cosiuio da 9 pagine. Scrivere le rispose ai singoli esercizi negli spazi

Dettagli

= R. 4πε 0. R contiene valori costanti che descrivono caratteristiche fisiche(il dielettrico ε

= R. 4πε 0. R contiene valori costanti che descrivono caratteristiche fisiche(il dielettrico ε I conensatori. onsieriamo il potenziale per un conensatore sferico: Possiamo scrivere Il fattore Q π R Q π R π R contiene valori costanti che escrivono caratteristiche fisiche(il ielettrico ) e geometriche

Dettagli

Legame fra l azione della forza agente sul punto durante l intervallo dt e la variazione della sua quantita di moto

Legame fra l azione della forza agente sul punto durante l intervallo dt e la variazione della sua quantita di moto Seconda legge di Newon: Fd = dp Legame fra l azione della forza agene sul puno durane l inervallo d e la variazione della sua quania di moo Casi in cui F() e noa: relaivamene rari Spesso per conoscere

Dettagli

Meccanica Introduzione

Meccanica Introduzione Meccanica 23-24 Inroduzione FISICA GENERALE Meccanica: -Sudio del moo dei corpi -Forza di gravià Termodinamica: - Calore, fenomeni ermici, applicazioni Eleromagneismo: - Cariche eleriche, magnei FISICA

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gesione ella prouzione e ella supply chain Logisica isribuiva Paolo Dei Diparimeno i ngegneria ell nformazione Universià i Siena Programmazione ella prouzione e gesone elle score: Pianificazione a lungo

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

Analisi delle serie storiche parte IV Metodi di regressione

Analisi delle serie storiche parte IV Metodi di regressione Analisi delle serie soriche pare IV Meodi di regressione a.a. 16/17 Saisica Economica -Laurea in Relazioni Economiche Inernazionali 1 Meodo della regressione La componene di fondo, Trend o Ciclo-Trend,

Dettagli

Coppia differenziale con BJT e carico passivo

Coppia differenziale con BJT e carico passivo oppia ifferenziale con BJ e carico passivo tensione ifferenziale e i moo comune: v v v B1 B v M v + v B1 B risposta al segnale i moo comune G. Martines 1 oppia ifferenziale con BJ e carico passivo Saturazione

Dettagli

*5$1'(==(3(5,2',&+( W GW

*5$1'(==(3(5,2',&+( W GW *51'((3(5'&+( 3UQFSDOGQ]RQ Una grandezza empodipendene D) si definisce SURGFD quando ad uguali inervalli T assume valori uguali cioè quando vale la relazione (con n inero qualsiasi): ( ) D( Q) D + (1)

Dettagli

= x + x 0 2x 0 per x x 0,

= x + x 0 2x 0 per x x 0, Lezione el 17 ottobre. Derivate 1. Derivata i una funzione in un punto Definizione 1 Sia f una funzione efinita in un intorno I i un punto x 0. Per ciascun x I con x = x 0 consieriamo: l incremento a x

Dettagli

TECNICHE DI PILOTAGGIO DELL INVERTER TRIFASE

TECNICHE DI PILOTAGGIO DELL INVERTER TRIFASE TECNICHE DI PILOTAGGIO DELL INERTER TRIFASE NOZIONI DI BASE Lo schema i un inerer rifase a ensione impressa è illusrao in Fig... Esso è composo a re rami (insiemi i ue inerruori biirezionali collegai in

Dettagli

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI . ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI Dao il sisema illusrao in Figura, consisene in due barre rigide connesse da un giuno di roazione orizzonale ; la prima barra è vincolaa a ruoare

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Ailio Sanocchia Ø Ufficio presso il Diparimeno di Fisica (Quino Piano) Tel. 075-585 708 Ø E-mail: ailio.sanocchia@pg.infn.i Ø Web: hp://www.fisica.unipg.i/~ailio.sanocchia

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercizi ESERCIZIO (6 PUNTI) METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 4 SETTEMBRE 4 Si calcoli l integrale S = Γ Re(z) z 4 + z, con Γ = {z : z = Re iθ, θ [, π]}

Dettagli

Fluidodinamica Applicata. 3.3 Esercizio 2 (Bernoulli Il Tubo a U)

Fluidodinamica Applicata. 3.3 Esercizio 2 (Bernoulli Il Tubo a U) Poliecnico i Torino Flioinamica pplicaa 3.3 Esercizio (Bernolli Il Tbo a U) ESERCIZIO (Bernolli il bo a U ) Fig.5 Si consieri il sisema in figra, in ci n bo a U, i sezione, viene riempio con n volme i

Dettagli

Lezione XII Analisi Formale

Lezione XII Analisi Formale SCENZA DE MATERAL Chimica Fisica Lezione X Analisi Formale Dr. Fabio Mavelli Dipartimento i Chimica Università egli Stui i Bari Analisi Cinetica Fenomenologica Analisi Cinetica Fenomenologica Meccanismo

Dettagli

(b) Determinare l equazione parametrica della retta r passante per O e ortogonale

(b) Determinare l equazione parametrica della retta r passante per O e ortogonale SCRIVERE IN MODO LEGGIBILE NOME E COGNOME! CORSO DI GEOMETRIA E ALGEBRA Cognome: Nome: 6 febbraio 8 Maricola: Corso di Laurea: (8 p) Si fissi un riferimeno caresiano R(O î ĵ ˆk) nello spaio euclideo Si

Dettagli

Studio del comportamento. Esercitazione 02

Studio del comportamento. Esercitazione 02 DINAMICA DELLE MACCHINE E DEGLI IMPIANTI ELETTRICI: Stuio el comportamento inamico i i un elettromagnete t Esercitazione Moellizzazione i un sistema i inuttori Sistema i inuttori: i è un multiporta Legame

Dettagli

Soluzione degli esercizi del Capitolo 3

Soluzione degli esercizi del Capitolo 3 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Ricordando dal Paragrafo A.6 dell Appendice A che è facile oenere ẋ () d d ( (e A e A x + Ae (e A A x + ( A e A( ) x + Ax () + Bu () d ( e

Dettagli

), dove K è una costante positiva della quale si richiede l unità di

), dove K è una costante positiva della quale si richiede l unità di Simulazione di prova scria di MATEMATICA-FISICA - MIUR -..019 PROBLEMA 1 - soluzione con la calcolarice grafica TI-Nspire CX della Texas Insrumens Soluzione a cura di: Formaori T Ialia - Teachers Teaching

Dettagli

Terza lezione: Processi stazionari

Terza lezione: Processi stazionari Teoria dei processi casuali a empo coninuo Terza lezione: Concei inroduivi Il conceo di sazionarieà Sazionarieà in senso lao Esempi e modelli 005 Poliecnico di Torino 1 Concei inroduivi Significao di sazionarieà

Dettagli

S.Barbarino - Esercizi svolti di Campi Elettromagnetici. Esercizi svolti di Campi elettromagnetici - Anno 2012

S.Barbarino - Esercizi svolti di Campi Elettromagnetici. Esercizi svolti di Campi elettromagnetici - Anno 2012 S.Barbarino - Esercizi svolti i Campi Elettromagnetici Esercizi svolti i Campi elettromagnetici - Anno 2012 12-1) Esercizio n. 1 el 4/7/2012 Un ona elettromagnetica piana, viaggiante in aria e i frequenza

Dettagli

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO Auomaion Roboics and Sysem CONTROL Corso di laurea in Ingegneria Meccaronica CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI CA - 03 FUNZIONE DI TRASFERIMENTO Universià degli Sudi di Modena e Reggio Emilia

Dettagli

0.1 Formula di Gauss e formula di Stokes

0.1 Formula di Gauss e formula di Stokes 1.1 Formula di Gauss e formula di Sokes Siano Ω un apero di R 3, F un campo veoriale definio su Ω, S una superficie la cui chiusura è conenua in Ω. Supponiamo inolre che in S si possano disinguere due

Dettagli

Esperimentazioni di Fisica 1. Prova d esame del 22 gennaio 2019 SOLUZIONI

Esperimentazioni di Fisica 1. Prova d esame del 22 gennaio 2019 SOLUZIONI Esperimentazioni i Fisica 1 Prova esame el 22 gennaio 2019 SOLUZIONI Esp-1-Soluzioni - - Page 2 of 7 22/06/2018 1. (12 Punti) Quesito. Una misura ell accelerazione i gravità in un certo luogo è eseguita

Dettagli

Dispense di Fisica Matematica. Prof. Maura Ughi

Dispense di Fisica Matematica. Prof. Maura Ughi Dispense i Fisica Matematica Prof. Maura Ughi 13 febbraio 2005 Capitolo 1 Equazioni ella Dinamica 1.1 Introuzione, Principio i D Alembert Una grossa scorciatoia mentale valia in Meccanica Classica è il

Dettagli

Il moto in una o più dimensioni

Il moto in una o più dimensioni Il moo in una o più dimensioni Rappresenazione Grafica e esempi Piccolo riepilogo Moo: posizione in funzione del empo (grafico P-). Necessia della scela di un sisema di riferimeno ( ) Velocià media v m

Dettagli

B. C. D. A B C. d 2. d 1 B. C. 4. Il campo elettrico nella Regione II ha modulo A. 0 A Il campo elettrico nella Regione III è un vettore

B. C. D. A B C. d 2. d 1 B. C. 4. Il campo elettrico nella Regione II ha modulo A. 0 A Il campo elettrico nella Regione III è un vettore Facoltà i Ingegneria a prova in itinere i Fisica II 9.. Esercizio n. Tra ue piani isolanti, inefiniti e paralleli, aventi ensità i carica superficiale rispettivamente e, viene introotta una lastra metallica

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Fondameni di Segnali e Trasmissione Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale, deo ingresso, generando il segnale,

Dettagli

Perturbazione armonica : teoria generale

Perturbazione armonica : teoria generale Perurbazione armonica : eoria generale Absrac Queso documeno rispecchia buona pare del capiolo XIII del Cohen. Si raa dapprima la ransizione ra due sai dello spero discreo di un non meglio specificao sisema,

Dettagli

UNIONI SALDATE: TORSIONE E TAGLIO ESERCIZIO 1: metodo dello J polare e metodo delle due forze.

UNIONI SALDATE: TORSIONE E TAGLIO ESERCIZIO 1: metodo dello J polare e metodo delle due forze. UNIONI SLDE: ORSIONE E LIO ESERIZIO 1: meoo ello polare e meoo elle ue orze. alcolare il valore massimo ella orza (consierano l acciaio S5) per la giunzione in igura, rispeivamene: 1. con il meoo ello

Dettagli

Teoria dei Sistemi Dinamici

Teoria dei Sistemi Dinamici Teoria ei Sistemi Dinamici 01GTG - 0GTG Esame el 9/01/008 Esercizio 1 Sistema meccanico (33 punti) TESTO Si consieri il sistema meccanico planare schematizzato nella Fig. 1, composto a una slitta A i massa

Dettagli

Lezione 2. Sistemi dinamici a tempo continuo. F. Previdi - Fondamenti di Automatica - Lez. 2 1

Lezione 2. Sistemi dinamici a tempo continuo. F. Previdi - Fondamenti di Automatica - Lez. 2 1 Leione. Sisemi dinamici a empo coninuo F. Previdi - Fondameni di Auomaica - Le. Schema della leione. Cos è un sisema dinamico?. Modelli di sisemi dinamici 3. Il conceo di dinamica 4. Variabili di sao 5.

Dettagli

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) =

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) = Esercizio [puni 4] Prova scria di SEGNALI E SISTEMI 5 seembre 2003 Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 2002-2003) Teso e Soluzione (redaa da L. Finesso) Si racci il grafico dei segnali a. x

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica CONTROLLI AUTOMATICI Ingegneria Meccaronica TRASFORMATE DI LAPLACE Prof. Cesare Fanuzzi Ing. Crisian Secchi e-mail: cesare.fanuzzi@unimore.i, crisian.secchi@unimore.i hp://www.auomazione.ingre.unimore.i

Dettagli

2. Analisi di un sistema caotico

2. Analisi di un sistema caotico . Analisi i un sistema caotico. Ricostruzione ello spazio elle fasi Il primo problema a risolvere nell analisi i un sistema caotico è la ricostruzione ello spazio elle fasi a partire a un segnale monoimensionale.

Dettagli

Lagrangiana e Hamiltoniana di una particella carica in campo elettromagnetico

Lagrangiana e Hamiltoniana di una particella carica in campo elettromagnetico Lagrangiana e Hamiltoniana i una partiella aria in ampo elettromagnetio L equazione el moto i una partiella i massa m e aria q in un ampo elettrio E e magnetio B é t m v = q E + q ) v B 1) NOTA -Nel sistema

Dettagli

Geometria BAER A.A Foglio esercizi 1

Geometria BAER A.A Foglio esercizi 1 Geomeria BAER A.A. 16-17 Foglio esercii 1 Eserciio 1. Risolvere le segueni equaioni lineari nelle variabili indicae rovando una parameriaione dell insieme delle soluioni. a) + 5y = 3 nelle incognie, y.

Dettagli

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio METODI DECISIONALI PER L'AZIENDA www.lvprojec.com Do. Loi Nevio Generalià sui sisemi dinamici. Variabili di sao, di ingresso, di uscia. Sisemi discrei. Sisemi lineari. Paper: Dynamic Modelling Do. Loi

Dettagli

2. Determinare la velocità v di impatto al suolo del sasso, e commentare se è maggiore o minore di quella di lancio;

2. Determinare la velocità v di impatto al suolo del sasso, e commentare se è maggiore o minore di quella di lancio; 1 Esercizio Un uomo lancia in alo, vericalmene luno l asse z, un sasso da un alezza h 0 = m dal suolo, con una velocià di 10 m/s. Il sasso si muove di moo uniformemene accelerao, con un accelerazione di

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi periodici Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/ Un carico p() si dice periodico quando assume indefiniamene

Dettagli

12. Teoria qualitativa

12. Teoria qualitativa 12. Teoria qualitativa Si esaminano le conizioni i regolarità per un campo vettoriale, che garantiscono esistenza e unicità ella soluzione per l equazione ifferenziale associata. La conizione i Lipschitz,

Dettagli

Affidabilità dei sistemi

Affidabilità dei sistemi dei sisemi Un sisema (o uno qualsiasi dei suoi componeni) può essere soggeo a sress casuali. Es: un fusibile in un circuio; una rave di acciaio soo carico; l ala di un aereo soo l influenza di forze Collasso

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Inroduzione e modellisica dei sisemi Modellisica dei sisemi eleromeccanici Principi fisici di funzionameno Moore elerico in correne coninua (DC-moor) DC-moor con comando di armaura DC-moor con comando

Dettagli

Elettronica dei Sistemi Digitali Elementi parassiti (continuazione); Progetto delle porte logiche CMOS

Elettronica dei Sistemi Digitali Elementi parassiti (continuazione); Progetto delle porte logiche CMOS Eleronica ei Sisemi Digiali Elemeni parassii (coninuazione); Progeo elle pore logiche CMOS alenino Liberali Diparimeno i Tecnologie ell Informazione Universià i Milano, 26013 Crema e-mail: liberali@i.unimi.i

Dettagli

L equazione di Schrödinger

L equazione di Schrödinger 1 Forma dell equazione L equazione di Schrödinger Postulato - ψ r, t 0 ) definisce completamente lo stato dinamico del sistema al tempo t 0. L equazione che regola l evoluzione di ψ r, t) deve essere:

Dettagli

Modello del sistema di conversione a ponte trifase in condizioni Ideali

Modello del sistema di conversione a ponte trifase in condizioni Ideali ppuni el Corso i Conversione saica negli impiani elerici Moello el sisema i conversione a pone rifase in conizioni eali. Generalià.... Moello in assenza i commuazione... -Riaro all'accensione nullo...

Dettagli

Caratterizzazione degli autovalori (cfr. Lez. VII, punto 2). Gli autovalori di A sono le radici del polinomio caratteristico det(a λi) di A.

Caratterizzazione degli autovalori (cfr. Lez. VII, punto 2). Gli autovalori di A sono le radici del polinomio caratteristico det(a λi) di A. Esercizi III Priima di dare la risoluzione dei segueni esercizi su auoveori, auovalori, diagonalizzabilià e diagonalizzazione, ricordiamo alcune definizioni, eoremi e fai su queso argomeno Sia A una marice

Dettagli

1 ANTENNE IN TRASMISSIONE SU PIANO DI MASSA

1 ANTENNE IN TRASMISSIONE SU PIANO DI MASSA 1 ANTENNE IN TRASMISSIONE SU PIANO DI MASSA Per una serie i applicazioni legate allo stuio elle antenne interessa valutare come si moifica il comportamento i una antenna in presenza el suolo. Per frequenze

Dettagli

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica Esercizi di Fisica Matematica 3, anno 014-015, parte di meccanica hamiltoniana e quantistica Dario Bambusi 09.06.015 Abstract Gli esercizi dei compiti saranno varianti dei seguenti esercizi. Nei compiti

Dettagli

Esercitazioni di Elettrotecnica: circuiti in evoluzione dinamica

Esercitazioni di Elettrotecnica: circuiti in evoluzione dinamica Uniersià degli Sudi di assino serciazioni di leroecnica: circuii in eoluzione dinamica nonio Maffucci er seembre ircuii dinamici del primo ordine S onsiderao il seguene circuio che o all isane laora in

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Prima prova Intermedia

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Prima prova Intermedia Milano, 4//003 Corso di Laurea in Ingegneria Informaica (Laurea on Line) Corso di Fondameni di Segnali e rasmissione Prima prova Inermedia Carissimi sudeni, scopo di quesa prima prova inermedia è quello

Dettagli

Problemi di Meccanica Quantistica. Capitolo VIII. Campo Elettromagnetico

Problemi di Meccanica Quantistica. Capitolo VIII. Campo Elettromagnetico Problemi i Meccanica Quantistica Capitolo VIII Campo Elettromagnetico a cura i Feele Lizzi, Gennaro Miele e Francesco Nicoemi http://people.na.infn.it/%7epq-qp Un sistema escritto all Hamiltoniana Problema

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n +a n d n y

Dettagli

4 COERENZA Introduzione tecniche interferometriche interferenza correlazione coerenza coerenza treni d onda analisi di Fourier

4 COERENZA Introduzione tecniche interferometriche interferenza correlazione coerenza coerenza treni d onda analisi di Fourier 4 COERENZA nrouzione Alcune ecniche oiche che si basano su specifiche proprieà ella luce o più in generale elle one eleromagneiche, vengono uilizzae sempre più spesso grazie alla loro esrema sensibilià,

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n +a n d n y

Dettagli

Meccanica Applicata alle Macchine Compito 27/12/99

Meccanica Applicata alle Macchine Compito 27/12/99 page 1a Meccanica Applicaa alle Macchine Compio 27/12/99 1. Il disposiivo mosrao in figura serve per il sollevameno di veicoli. Il corpo indicao con 1 si appoggia al erreno (considerarlo solidale con il

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale x(), deo ingresso, generando il segnale

Dettagli

La cicloide. Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche, Ancona

La cicloide. Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche, Ancona La cicloide Flaviano Baelli Diparimeno di Scienze Maemaiche Universià Poliecnica delle Marche, Ancona In una circonferenza γ di raggio r che poggia su una rea fissiamo un puno P e facciamo roolare senza

Dettagli

OSCILLAZIONI TORSIONALI

OSCILLAZIONI TORSIONALI OSCILLAZIONI TORSIONALI Introuzione Come è noto, per un corpo i imensione estesa vincolato a ruotare attorno a un asse (volano), vale la seguente relazione tra l'accelerazione angolare e il momento ella

Dettagli

Principi di Ingegneria Chimica Anno Accademico Cognome Nome Matricola Firma

Principi di Ingegneria Chimica Anno Accademico Cognome Nome Matricola Firma Principi i Ingegneria Chimica Anno Accaemico 5 Cognome Nome Maricola Firma E mail: Problema. Un erbaoio ferico, i raggio inerno e coruio in maeriale plaico conucibilià, peore, è compleamene pieno i acqua

Dettagli

E sem pi di E serci zi e Qui z d E sam e

E sem pi di E serci zi e Qui z d E sam e E sem pi i E serci zi e Qui z E sam e Eser cit azion i i Cont r olli Au t om at ici Quiz. Il segnale x(t), antitrasformata i Laplace i X(s) = s(s+a) : è nullo per t=0 [x(0) = 0]; ha erivata nulla per t=0

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici Equilibrio e sabilià di sisemi dinamici Sabilià inerna di sisemi dinamici Sabilià inerna di sisemi dinamici Inroduzione allo sudio della sabilià Sabilià inerna di sisemi dinamici TC Sabilià inerna di sisemi

Dettagli

OSCILLAZIONI TORSIONALI

OSCILLAZIONI TORSIONALI OSCILLAZIONI TORSIONALI Introuzione Come è noto, per un corpo i imensione estesa vincolato a ruotare attorno a un asse (volano), vale la seguente relazione tra l'accelerazione angolare e il momento ella

Dettagli

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE.

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE. UNITA. LE DISEQUAZIONI GONIOMETRICHE.. Generalià sulle disequazioni goniomeriche.. Disequazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Disequazioni riconducibili a disequazioni goniomeriche

Dettagli