teoria cinetica dei gas Problemi di Fisica teoria cinetica dei gas

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "teoria cinetica dei gas Problemi di Fisica teoria cinetica dei gas"

Transcript

1 Problei di Fisica teoria cinetica dei gas

2 Calcolare la pressione esercitata dalle olecole di un gas perfetto sapendo che la elocità quadratica edia è pari a 84 /s e che la densità è uguale a 8,9 - kg/. La pressione esercitata dalle olecole del gas iene calcolata sepliceente attraerso l applicazione diretta della seguente forula: p ρ 8,9 84, Pa at Calcolare a quale teperatura le olecole di idrogeno hanno elocità quadratica edia pari a, /s. Sapendo che la elocità quadratica edia è legata alla teperatura dalla relazione: R O si ricaa che: R (, ) 8, O 7 K doe O g/ol - kg/ol è la assa per ole dell idrogeno. Calcolare la elocità quadratica edia delle olecole di un gas perfetto che si troa a pressione p, at e a teperatura K, sapendo che alla stessa pressione e a teperatura 7 K la densità del gas è ρ, kg/. La elocità quadratica edia è data da: p ρ

3 Per la pria legge di Gay-Lussac, antenendo costante la pressione del gas, il suo olue aria in aniera direttaente proporzionale alla teperatura assoluta. Indicando con il olue alla teperatura e con quello alla teperatura, abbiao: Poiché, per una fissata assa di gas la densità è: otteniao che: ρ ρ ρ ρ ρ ρ ρ, 7,68 kg/ () Infine, sostituendo nella () i relatii alori si ha:,, 669/s,68 A quale teperatura la elocità quadratica edia delle olecole di anidride carbonica (CO ) è uguale alla elocità di un aereo supersonico che iaggia a k/h? Sapendo che la elocità quadratica edia è data da: R la teperatura la ricaiao coe forula inersa: () R La assa della olecola di CO è 44 u, per cui la assa per ole della sostanza è: 44 g/ol 4,4 - kg/ol entre la elocità quadratica edia delle olecole è: k/h /s Sostituendo questi dati nella () si ha: 4,4 8, 96K

4 L'aria è principalente una iscela di azoto N (assa olecolare: 8. u) e di ossigeno O (assa olecolare:. u). Calcolare la elocità quadratica edia dell'azoto e dell'ossigeno quando la teperatura dell'aria è 9 K. Poiché la assa per ole dell azoto è: N 8, g/ol 8, - kg/ol otteniao la elocità quadratica edia delle olecole dell azoto applicando la seguente forula: N R N 8, 9 /s 8, Inece, la assa per ole dell ossigeno è: O, g/ol, - kg/ol per cui la elocità quadratica edia delle olecole dell ossigeno è: N R N 8, 9, 478/s Per confronto, la elocità del suono alla teperatura di 9 K è 4 /s, dello stesso ordine di grandezza delle elocità di agitazione terica delle olecole. Quando nell aria si propaga un suono, tuttaia, le olecole non si spostano per lunghi tratti nella direzione dell onda sonora; ciò che iaggia è l energia associata all onda. Se si auenta da 7, C a 7, C la teperatura di una ole di idrogeno, calcolare la ariazione di energia cinetica di traslazione, espressa in cal/ol, delle olecole L'energia cinetica edia delle olecole in funzione della teperatura assoluta è espressa da: E C nr per cui, la ariazione di energia cinetica è: doe R,99 cal/ol K ΔE EC EC nr ( ),99 ( ) 89, 6 C cal/ol

5 ediante una trasforazione a olue costante un gas perfetto onoatoico, inizialente alla teperatura K, iene portato dalla pressione p 9, at alla pressione p, at. q Calcolare la ariazione di energia cinetica edia per olecola che si ha in seguito alla trasforazione. In una trasforazione a olue costante, la pressione e la teperatura assoluta di un gas perfetto sono direttaente proporzionali (seconda legge di Gay-Lussac), per cui la teperatura che corrisponde alla pressione p è: p, K p 9, Essendo il gas onoatoico, l'energia cinetica edia delle sue olecole in funzione della teperatura assoluta è espressa da: E C k per cui, la ariazione di energia cinetica nella trasforazione è: Δ EC EC EC k ( ),8 ( ) 6,8 J Un serbatoio contiene, oli. Facendo l ipotesi che l elio si coporti coe un gas perfetto, troare l energia cinetica edia totale delle olecole del gas e l energia cinetica edia per olecola. Usando il fatto che la assa per ole dell elio è 4, - kg/ol, calcolare la elocità quadratica edia degli atoi a, C. L'energia cinetica totale del gas, indicando con la assa di una olecola, è: tot E C () doe nhe 4 8g 8 - kg/ol 4, g / ol 4, k / ol He La elocità quadratica edia è data da:

6 R 8, 9 He 4, /s Sostituendo nella () i dati ricaati e quelli del problea, otteniao: tot EC 8 7J L energia cinetica edia per olecola, inece, la calcoliao coe: E tot C N 7 68 J doe: N n N A, 6, olecole Due recipienti contengono lo stesso nuero N di olecole di un gas perfetto onoatoico, le cui elocità quadratiche edie in condizioni di equilibrio sono rispettiaente 4 /s e /s. Se si pongono i due recipienti in counicazione, supponendo che non ci siano scabi di energia con l'abiente, quale sarà la elocità quadratica edia all'equilibrio? Pria di ettere in counicazione i due recipienti, l'energia cinetica totale dei due gas, indicando con la assa di una olecola, è: tot E C N + N () In un gas perfetto le interazioni fra olecole, alle quali sarebbe associata un'energia potenziale, sono assenti. Perciò l'energia eccanica totale delle olecole coincide con l'energia cinetica totale. Poiché i gas contenuti nei due recipienti costituiscono, nel loro coplesso, un sistea isolato, tot l'energia EC si consera. Dopo che i recipienti sono stati essi in counicazione, indicando con l'energia quadratica edia delle olecole all'equilibrio, abbiao: tot E C N () Dal confronto delle relazioni () e () otteniao la elocità quadratica edia all equilibrio: N 4 ( ) N 4 /s

7 A quale teperatura la elocità quadratica edia delle olecole di azoto è uguale a quella posseduta dalle olecole di idrogeno a 7 C? L espressione della elocità quadratica edia per le olecole di azoto alla teperatura * è: R * N La stessa relazione per le olecole di idrogeno è: R H Poiché il problea chiede di deterinare a quale teperatura * le olecole di azoto possiedono la stessa dell'idrogeno, dobbiao uguagliare le elocità quadratiche edie dei due gas: R * N R H Da questa uguaglianza ricaiao la teperatura *: * * N H H N 8 4 K sapendo che la assa olecolare dell azoto e dell idrogeno sono: N 8g/ol 4 - kg/ol H g/ol 8 - kg/ol Qual è la elocità quadratica edia delle olecole di argon (Ar), quando il gas si troa in uno stato terodinaico a teperatura 7 K? A quale teperatura * si troa una certa quantità di azoto (N ) le cui olecole possiedono la stessa elocità dell'argon a teperatura? q ODELLO FISICO Poiché le olecole dei due gas hanno la stessa elocità quadratica edia, la diersa energia cinetica edia è douta alle differenti asse delle olecole. Poiché la teperatura dei gas è proporzionale alla loro energia cinetica edia, ci aspettiao, nelle condizioni del problea, che

8 la teperatura del gas costituito da olecole più pesanti sia superiore a quella del gas più leggero. q LEGGI ED EQUAZIONI L'energia cinetica totale di una assa di gas perfetto è legata alla teperatura ediante la relazione: E C nr La assa del gas, riferita al nuero di oli e alla assa olecolare è: n q ALGERICA Sostituendo l espressione per la assa in quella dell energia cinetica, possiao ricaare il alore della elocità delle olecole di argon: nr nr R nar Ar R Ar Scriendo la stessa relazione per l azoto di assa olecolare N e alla teperatura * si ha: R N Poiché il problea chiede di deterinare la teperatura * alla quale si troa una certa quantità di azoto (N ) le cui olecole possiedono la stessa elocità dell'argon a teperatura, dobbiao uguagliare le elocità quadratiche edie dei due gas: R R * Ar N Da questa uguaglianza ricaiao la teperatura *: * N Ar N * Ar q NUERICA Sapendo che la assa olecolare dell argon e dell azoto sono: Ar 4g/ol 4 - kg/ol N 8g/ol 8 - kg/ol ricaiao che: 8, /s * 7 9K 4

9 Calcolare il caino libero edio delle olecole dell'aria atosferica al liello del are (p at, Pa) e a una teperatura di 7, C, assuendo coe raggio olecolare r,. -. Coe aria il caino libero edio con la teperatura? Il caino libero edio, ossia la distanza edia che una olecola percorre con oto rettilineo unifore fra due urti successii, è dato da: doe:.. λ () ns 4 πr n N n rappresenta il nuero di olecole per unità di olue (da non confondere con il nuero di oli) S 4πr la sezione d urto, ossia la superficie di ciascuna sfera Per calcolare n, utilizziao l equazione di stato dei gas perfetti. Se N è il nuero totale di olecole, si ha: p p Nk N () k per cui: n p k k p,,8,4 olecole/ Sostituendo il alore di n nella () insiee ai dati del problea, otteniao: λ 4 π (, 7, ),4 Poiché il nuero n di olecole per unità di olue, in base alla (), è inersaente proporzionale alla teperatura assoluta, il caino libero edio, in base alla (), essendo inersaente proporzionale a n, sarà direttaente proporzionale a. Una certa quantità di elio occupa alla teperatura K e alla pressione p at, un olue, litri. Calcolare: a. il nuero delle olecole b. la elocità quadratica edia c. la elocità più probabile e la elocità edia di una olecola

10 a. Dal principio di Aogadro sappiao che il olue di una ole di gas qualsiasi in condizioni norali, cioè alla teperatura di C e alla pressione di at, è pari a,4 litri (olue olare). entre, il olue che l elio arebbe se enisse portato alla teperatura di C (7 K), antenendo costante la pressione, è: 7,,87litri Pertanto, il nuero di oli che occupano il olue è:,87 n,69ol,4 ol e quindi il nuero di olecole è: N nna,69 6,, olecole b. Osserando che la assa atoica dell elio è 4, u e, quindi, la sua assa per ole è 4, g/ol 4, - kg/ol, la elocità quadratica edia è: R 8,,4 4, /s c. Dalla distribuzione di axwell si possono ricaare, alla teperatura, le seguenti espressioni per la elocità più probabile e la elocità edia di una olecola: k 8 π p 8k π Sostituendo alla il alore calcolato al punto b), si ha: p,4,7 /s 8,4, /s π Il etano CH 4 ( 6 g/ol) in condizioni norali contiene,7 9 olecole per c. Assuendo coe diaetro olecolare,74 -, calcolare: a. la elocità quadratica edia b. il caino libero edio c. il nuero di urti al secondo d. l interallo di tepo edio tra due urti successii

11 a. Quando parliao di condizioni norali ci riferiao alla pressione p at e alla teperatura t C. Pertanto la elocità quadratica edia delle olecole di etano in queste condizioni è: R 8, 7 6 6/s b. Il caino libero edio, ossia la distanza edia che una olecola percorre con oto rettilineo unifore fra due urti successii, è dato da: λ,, c () ns,7,6 doe: N,7 9 olecole/c,7 olecole/ rappresenta il nuero di olecole per unità di olue (da non confondere con il nuero di oli),74 S 4πr 4π,6 rappresenta la sezione d urto, ossia la superficie di ciascuna sfera c. Il nuero di urti al secondo, ossia la frequenza di collisione, si calcola coe: f λ 6,,88 9 urti/secondo d. Poiché tra due urti successii le olecole si uoono di oto rettilineo unifore, dalla cineatica ricaiao che l interallo edio è dato da: τ λ f,88 9,7 9 s Per quale alore del rapporto / la elocità più probabile delle olecole di un gas perfetto, a una teperatura di equilibrio, coincide con la elocità quadratica edia delle olecole dello stesso gas, alla teperatura di equilibrio? Dalla distribuzione di axwell si ricaa, alla teperatura di equilibrio, la seguente espressione per la elocità più probabile: p k Per lo stesso gas, alla teperatura di equilibrio, la elocità quadratica edia è data da: k

12 Uguagliando le due relazioni siao in grado di calcolare il rapporto / in irtù del quale la elocità più probabile e la elocità quadratica edia di un gas perfetto coincidono: k k, Calcolare il olue occupato da, g di gas perfetto antenuto a pressione norale, sapendo che la elocità quadratica edia delle olecole è pari a /s Dai dati del problea si capisce che il olue a calcolato partendo dalla definizione di densità: ρ ρ per cui dobbiao puntare l attenzione sul calcolo della densità del gas. La densità è legata alla pressione dalla seguente relazione: p. p ρ da cui: ρ, kg/ doe p at, Pa (gas in condizioni norali). In definitia:,, d, litri, Una certa quantità di gas occupa un olue litri alla pressione di, at. Sapendo che la elocità più probabile è /s, calcolare la assa del gas contenuto nel recipiente. Calcoliao la assa del gas dalla definizione di densità: ρ ρ La densità è legata alla pressione dalla seguente relazione:

13 p ρ da cui: ρ p Però ci anca la elocità quadratica edia, che è legata alla elocità più probabile, che conosciao coe dato del problea, dalla seguente relazione: p 6/s p per cui: Pertanto, la assa del gas è:, ρ,8kg/ 6,8 8, kg 8, g Un recipiente aente un olue di, contiene alla pressione di, at e alla teperatura di 7, C delle olecole di azoto N ( 8, g/ol). Considerando l azoto gas perfetto, calcolare l energia cinetica totale delle olecole. L energia cinetica totale di n oli di gas biatoico è data da: C nr doe E tot n Però ci anca la assa del gas, che è legata alla densità dalla relazione: ρ A sua olta, la densità la ricaiao dalla relazione della pressione: p, p ρ ρ,4 kg/ 7 R 8, doe: 7 /s 8 Nota la densità, siao in grado di calcolare assa e nuero di oli del gas:

14 ,8,4,8 kg n 8, 4ol 8 Infine, abbiao tutti i dati per calcolare l energia cinetica totale delle olecole di azoto: tot EC 8,4 8,,7 J

CAPITOLO 20 IL MODELLO MICROSCOPICO DELLA MATERIA ( ) ( ) ( ) " ( 1,50 "10 #3 m 3 ) ( ) ( ) = 1,0!10 5 Pa 3! 0,20 m 3 = 3,0 "10 2 K.

CAPITOLO 20 IL MODELLO MICROSCOPICO DELLA MATERIA ( ) ( ) ( )  ( 1,50 10 #3 m 3 ) ( ) ( ) = 1,0!10 5 Pa 3! 0,20 m 3 = 3,0 10 2 K. Problei di paragrafo 1 Perché la assa inerziale di un granello di polline per quanto piccola è olto aggiore di quella di una olecola di acqua Perché gli urti sono nuerosissii e la loro intensità e frequenza

Dettagli

TESTI E SOLUZIONI DEI PROBLEMI

TESTI E SOLUZIONI DEI PROBLEMI Uniersità degli Studi di Udine, Corso di Laurea in Ingegneria Gestionale A.A. 206/207, Sessione di Gennaio/Febbraio 207, Esae di FISICA GENERALE (2 CFU) Prio Appello, PROVA SCRITTA, 27 Gennaio 207 TESTI

Dettagli

leggi dei gas perfetti Problemi di Fisica leggi dei gas perfetti

leggi dei gas perfetti Problemi di Fisica leggi dei gas perfetti Problei di Fisica leggi dei gas erfetti In un reciiente sono contenute N3, 4 olecole di anidride carbonica (CO ). Calcolare la assa del gas e il corrisondente nuero di oli. La assa olecolare della olecola

Dettagli

La lezione di oggi. Il comportamento microscopico dei gas. Il 1 principio della termodinamica

La lezione di oggi. Il comportamento microscopico dei gas. Il 1 principio della termodinamica 1 La lezione di oggi Il coportaento icroscopico dei gas Il 1 principio della terodinaica ! Equazione di stato dei gas! Applicazioni dell equazione di stato! La teoria cinetica dei gas! Il 1 principio della

Dettagli

Descrizione del modello

Descrizione del modello Teoria cinetica Descrizione del odello Calcolo della pressione Calcolo del laoro Distribuzione delle elocità di Mawell Flusso delle olecole attraerso una superficie Caino libero edio Descrizione del odello

Dettagli

Aria compressa e respirazione nelle attività subacquee. Fisica Medica

Aria compressa e respirazione nelle attività subacquee. Fisica Medica Aria copressa e respirazione nelle attività subacquee Coposizione dell aria L aria è una iscela di olti gas; i più abbondanti sono Azoto, Ossigeno e Argon. Nei calcoli possiao trascurare i gas rari e la

Dettagli

Nome Cognome Numero di matricola Coordinata posizione. Quarto compito di Fisica Generale 1 + Esercitazioni, a.a Settembre 2018

Nome Cognome Numero di matricola Coordinata posizione. Quarto compito di Fisica Generale 1 + Esercitazioni, a.a Settembre 2018 Noe Cognoe Nuero di atricola Coordinata posizione Quarto copito di isica Generale + Esercitazioni, a.a. 207-208 3 Settebre 208 ===================================================================== Preesse

Dettagli

Liceo Scientifico Statale Severi Salerno

Liceo Scientifico Statale Severi Salerno Liceo Scientifico Statale Seeri Salerno VERIFICA SCRITTA DI FISICA Docente: Pappalardo Vincenzo Data: 8/05/09 Classe: 3B. Esercizio Una massa di ghiaccio di 50g e alla temperatura di 0 C iene posta in

Dettagli

mv x +MV x = 0. V x = mv x

mv x +MV x = 0. V x = mv x Università degli Studi di Udine, Corso di Laurea in Ingegneria Gestionale A.A. 15/16, Sessione di Gennaio/Febbraio 16, Esae di FISICA GENEALE 1 1 CFU Prio Appello, POVA SCITTA, 1 Febbraio 16 TESTI E SOLUZIONI

Dettagli

Consideriamo un corpo di massa m libero di muoversi senza attrito lungo una

Consideriamo un corpo di massa m libero di muoversi senza attrito lungo una MECCANICA CLASSICA LA DINAMICA DEGLI URTI. QuantitÄ di oto Consideriao un corpo di assa libero di uoersi senza attrito lungo una sola direzione, sottoposto all azione di una forza continua intesa coe successioni

Dettagli

Fluidodinamica applicata Esercizi Finali

Fluidodinamica applicata Esercizi Finali ESERCZO (NS MENSONE CONOTTO) U Condotto infinito di sezione x Usando l analisi diensionale, studiao la dipendenza del gradiente della pressione dagli altri paraetri del flusso: f (,, U, ) dove U velocità

Dettagli

La teoria cinetica dei gas

La teoria cinetica dei gas La teoria cinetica dei gas Giuseppe Dalba Sommario Questi appunti sono un bree riassunto della teoria del moto di un insieme di molecole confinate, in debole interazione fra di loro, trattato con strumenti

Dettagli

Liceo Scientifico Statale Severi Salerno

Liceo Scientifico Statale Severi Salerno Liceo Scientiico Statale Seeri Salerno VERIFICA SCRITTA DI FISICA Docente: Pappalardo Vincenzo Data: 8/05/09 Classe: 3B. Esercizio Una massa di piombo di kg alla temperatura iniziale di 300 C iene immersa

Dettagli

Liceo Scientifico Statale Severi Salerno

Liceo Scientifico Statale Severi Salerno Liceo Scientifico Statale Severi Salerno VERIFICA SCRITTA DI FISICA Docente: Pappalardo Vincenzo Data: 08//208 Classe: 4D. Esercizio Una massa di piombo di 2 kg alla temperatura iniziale di 00 C viene

Dettagli

Urti in una dimensione.

Urti in una dimensione. Noe studenti: Matilde Del Pio e rianna Luise Data: 16/01/13 Luogo: Laboratorio di fisica del liceo. Materiali utilizzati: - guida etallica; - carrellini seoenti; - plastilina; - 2 asse da 50g; - respingenti.

Dettagli

Urti e Momento Angolare

Urti e Momento Angolare Urti e Moento Angolare Urti e Moento Angolare Urti Urti Elastici Urti Anelastici Moento Angolare Conserazione del Moento Angolare Moento di nerzia Urti L'urto è il terine fisico con cui si identifica una

Dettagli

Urti tra due punti materiali

Urti tra due punti materiali Urti tra due punti ateriali URTO: eento isolato nel quale una orza relatiaente intensa agisce per un tepo relatiaente bree su due o più corpi in contatto tra loro r risultato di un contatto isico F F r

Dettagli

Urti. Urti elastici Urti anelastici

Urti. Urti elastici Urti anelastici Urti Urti elastici Urti anelastici Applicazione del concetto di urto una palla di assa cade da una altezza h, e ribalza ad una altezza h. Il rapporto delle elocità, poco pria e poco dopo il contatto con

Dettagli

Liceo Scientifico Statale Severi Salerno

Liceo Scientifico Statale Severi Salerno Liceo Scientifico Statale Severi Salerno VERIFICA SCRITTA DI FISICA Docente: Pappalardo Vincenzo Data: 08/11/2018 Classe: 4D 1. Esercizio Una massa di ghiaccio di 50g e alla temperatura di 0 C viene posta

Dettagli

Esame 20 Luglio 2017

Esame 20 Luglio 2017 Esae 0 Luglio 07 Roberto Bonciani e Paolo Dore Corso di Fisica Generale Dipartiento di ateatica Università degli Studi di Roa La Sapienza Anno Accadeico 06-07 Esae - Fisica Generale I 0 Luglio 07 R. Bonciani,

Dettagli

Scheda di Lavoro relativa all'esperienza di laboratorio: LA TAVOLA DEI LEGUMI

Scheda di Lavoro relativa all'esperienza di laboratorio: LA TAVOLA DEI LEGUMI Scheda di Lavoro relativa all'esperienza di laboratorio: LA TAVOLA DEI LEGUMI Scopo dell'esperienza: si vuole deterinare la assa relativa di sei diversi e il nuero di sei contenuti in una certa quantità

Dettagli

Primo Appello Estivo del corso di Fisica del

Primo Appello Estivo del corso di Fisica del Prio ppello Estio del corso di Fisica del 4.06.04 Corso di Laurea in Inforatica.. 0-04 (Prof. Paolo Caarri) Cognoe: Noe: Matricola: nno di iatricolazione: Problea n. Una guida liscia seicircolare di raggio

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 21 Settembre 2004

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 21 Settembre 2004 ORSO I LURE IN SIENZE IOLOGIHE Proa di ISI del Settebre 4 ) Un babo, partendo da ero, sciola senza attrito da un altezza h lungo uno sciolo curo. l tere dello sciolo il babo iene lanciato acqua da un altezza

Dettagli

*LXVWLILFDUHLOSURFHGLPHQWRVHJXLWRVRVWLWXLUHLYDORULQXPHULFLDOODILQHQRQGLPHQWLFDUHOH XQLWjGLPLVXUDVFULYHUHLQPRGRFKLDUR

*LXVWLILFDUHLOSURFHGLPHQWRVHJXLWRVRVWLWXLUHLYDORULQXPHULFLDOODILQHQRQGLPHQWLFDUHOH XQLWjGLPLVXUDVFULYHUHLQPRGRFKLDUR &56',/$85($,6&,((%,/*,&+( Pria proa in itinere di FISICA 9 aprile 3 7(67$ *LXVWLILFDUHLOSURFHGLPHQWRVHJXLWRVRVWLWXLUHLYDORULQXPHULFLDOODILQHQRQGLPHQWLFDUHOH XQLWjGLPLVXUDVFULYHUHLQPRGRFKLDUR ) Due corpi

Dettagli

Termodinamica Chimica

Termodinamica Chimica Uniersita degli Studi dell Insubria Termodinamica Chimica Teoria Cinetica dei Gas dario.bressanini@uninsubria.it http://scienze-como.uninsubria.it/bressanini I Padri della Teoria Cinetica Boltzmann e Maxwell,

Dettagli

Teoria cinetica dei Gas. Gas Ideali Velocità quadratica media Termodinamica dei gas ideali

Teoria cinetica dei Gas. Gas Ideali Velocità quadratica media Termodinamica dei gas ideali Teoria cinetica dei Gas Gas Ideali Velocità quadratica media Termodinamica dei gas ideali Definizione di Gas Perfetto. Un gas perfetto è un grand ensemble di particelle indistinguibili, identiche e puntiformi

Dettagli

Unità Didattica N 16. Il comportamento dei gas perfetti

Unità Didattica N 16. Il comportamento dei gas perfetti Unità Didattica N 16 Il coportaento dei gas perfetti Unità Didattica N 16 Il coportaento dei gas perfetti 1) Alcune considerazioni sullo studio dei sistei gassosi 2) Dilatazione terica degli aerifori 3)

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 18 Luglio 2005

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 18 Luglio 2005 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 18 Luglio 005 1 Un corpo di aa 0.5 kg e elocità iniziale 10 i uoe u un piano orizzontale cabro, con coeiciente di attrito dinaico µ 0.1. Dopo aere

Dettagli

Definizione di temperatura e calore

Definizione di temperatura e calore Fisica Facoltà di Scienze MM FF e, Uniersità Sannio Definizione di teperatura e calore Gioanni Filatrella (filatrella@unisannio.it) 1 Sistei di olte particelle In dinaica si studiano sistei di pochi corpi:

Dettagli

disponibile in rete all'indirizzo

disponibile in rete all'indirizzo ESERCIZI di FLUIDODINAMICA a cura di Paolo Massioni passio@hotail.co disponibile in rete all indirizzo http://passio.alterista.org Queste pagine sono protette dalle leggi sul diritto d autore. L Autore

Dettagli

Meccanica Dinamica dei sistemi: urti

Meccanica Dinamica dei sistemi: urti Meccanica 08-09 Daica dei sistei: urti 4 Assuiao: 50 g 0 50 /s R c Forze ipulsie Qual è l tensità della forza che agisce durante l urto? Forza edia: J F fale J τ J F( t) dt F τ p iziale Durata del «colpo»

Dettagli

Esercizio 15 Capitolo 3 Pagina 73

Esercizio 15 Capitolo 3 Pagina 73 Esercizio 15 Capitolo 3 Pagina 73 Le due auto in figura, di assa = 1400 kg ed = 1800 kg, entrano in collisione con le elocità ostrate. seguito dell urto restano agganciate tra loro e scorrono sul anto

Dettagli

Lavoro delle forze nei fluidi

Lavoro delle forze nei fluidi aoro delle forze nei fluidi + + + EC P G att est S S C D C D l t h EC P G P S gh t P S gh ρ t ρ B B l t ( P P ) P h ( ρgh ρgh ) - EP att est ( P P ) + ( ρgh ρgh ) + + ρ ρ att est EP + P + + EC Fluidi ideali:

Dettagli

1. Quale delle seguenti affermazioni è corretta? (riscrivere la risposta corretta per esteso e solo sul foglio protocollo, non qui sotto): [4 punti]

1. Quale delle seguenti affermazioni è corretta? (riscrivere la risposta corretta per esteso e solo sul foglio protocollo, non qui sotto): [4 punti] Problea Un uoo di assa si trova sul bordo estreo di una piattafora di assa, a fora di disco di raggio, che ruota attorno al suo asse verticale con velocità angolare costante ω i. L uoo è inizialente fero

Dettagli

m O Esercizio (tratto dal Problema 4.29 del Mazzoldi 2)

m O Esercizio (tratto dal Problema 4.29 del Mazzoldi 2) Esercizio tratto dal Problea 4.29 del Mazzoldi 2) Un corpo di assa 0.5 Kg è agganciato ad un supporto fisso traite una olla di costante elastica 2 N/; il corpo è in quiete nel punto O di un piano orizzontale,

Dettagli

I moti. Daniel Gessuti

I moti. Daniel Gessuti I oti Daniel Gessuti 1 introduzione Uno dei problei che ha interessato gli scienziati fin dall antichità e che costituisce un notevole capo d indagine della Fisica è senza dubbio quello che riguarda il

Dettagli

34 Tonzig La fisica del calore

34 Tonzig La fisica del calore 34 Tonzig La fisica del calore molecola): ad ogni grado di libertà corrisponde, in media, un energia cinetica pari a kt/. Le molecole monoatomiche, schematizzate come punti materiali, hanno tre gradi libertà

Dettagli

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA REGIMI DI FUNZIONAMENTO DEI CIRCUITI ELETTRICI: CORRENTE ALTERNATA SINUSOIDALE

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA REGIMI DI FUNZIONAMENTO DEI CIRCUITI ELETTRICI: CORRENTE ALTERNATA SINUSOIDALE APPUNTI DL CORSO DI SISTMI IMPIANTISTICI SICURA Per far produrre laoro elettrico ad un utilizzatore (anche detto bipolo), usando i generatori elettrici (per esepio gli alternatori) engono innanzitutto

Dettagli

FISICA per SCIENZE BIOLOGICHE, A.A. 2007/2008 Prova scritta del 21 luglio 2008

FISICA per SCIENZE BIOLOGICHE, A.A. 2007/2008 Prova scritta del 21 luglio 2008 FISI per SIENZE IOLOGIHE,.. 007/008 Prova scritta del 1 luglio 008 1) Meccanica Un corpo di assa 0.4 kg poggia su un gradino d orizzontale di altezza H 1 e coprie di un tratto d 10 c una olla di costante

Dettagli

Eserciziario di Fisica

Eserciziario di Fisica Eserciziario di Fisica Matteo Parriciatu Problea 1 In uno spettroetro di Depster dei fasci colliati di ioni con carica q = 1 18 C attraversano un selettore di velocitá costituito da due piastre etalliche

Dettagli

Fisica generale II Esercitazione F-tutorato PROBLEMI CON SOLUZIONE

Fisica generale II Esercitazione F-tutorato PROBLEMI CON SOLUZIONE Fisica generale II Esercitazione F-tutorato 10-003 1 PROBLEMI CON SOLUZIONE 1. Un filo d'acciaio lungo 30.0 e un filo di rae lungo 0.0, entrabi di diaetro 1, sono uniti per un estreo e tesi con una tensione

Dettagli

TEORIA CINETICA DEI GAS (CENNI)

TEORIA CINETICA DEI GAS (CENNI) TEORIA CINETICA DEI GAS (CENNI) G. Pugliese 1 Teoria cinetica Ø a teoria cinetica stabilisce un collegamento tra il comportamento macroscopico di un gas e il suo comportamento microscopico. Ø e grandezze

Dettagli

bande di energia in un conduttore La banda di energia più alta è parzialmente vuota livello di Fermi

bande di energia in un conduttore La banda di energia più alta è parzialmente vuota livello di Fermi g(e) va a zero sia al bordo inferiore che a quello superiore della banda bande di energia in un conduttore La banda di energia più alta è parzialente vuota livello di Feri Overlap di bande di energia in

Dettagli

I gas. Le caratteristiche dei gas. La legge di Boyle

I gas. Le caratteristiche dei gas. La legge di Boyle I gas Le caratteristiche dei gas Lo stato aeriforme è definito come uno dei tre stati della materia. Lo stato aeriforme può essere costituito da vapore o da gas. Un vapore è diverso da un gas in quanto

Dettagli

Maurizio Piccinini A.A Fisica Generale A. Urti. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico

Maurizio Piccinini A.A Fisica Generale A. Urti. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Fisica Generale A Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accadeico 05 06 Definizione Si ha un urto quando due corpi, che si uoono a elocità dierse, interagiscono (p.es. engono a contatto)

Dettagli

Meccanica dei Fluidi. m V. P p s [p s ]=[ML -2 T -2 ] N/m 3 (S.I.) V. stati di aggregazione della materia: solidi liquidi gas

Meccanica dei Fluidi. m V. P p s [p s ]=[ML -2 T -2 ] N/m 3 (S.I.) V. stati di aggregazione della materia: solidi liquidi gas Meccanica dei Fluidi stati di aggregazione della ateria: solidi liquidi gas fluidi assuono la fora del contenitore densità o assa oluica V [] = [M -3 ] kg/ 3 (S.I.) densità relatia (T = 4 C) rel H O H

Dettagli

= cost a p costante V 1 /T 1 =V 2 /T 2 LEGGE DI GAY-LUSSAC: Un sistema allo stato gassoso è definito da 4. mmhg (torr), bar.

= cost a p costante V 1 /T 1 =V 2 /T 2 LEGGE DI GAY-LUSSAC: Un sistema allo stato gassoso è definito da 4. mmhg (torr), bar. GAS IDEALI Un sistema allo stato gassoso è definito da 4 parametri: OLUME () l, m 3 PRESSIONE (p) Pa, atm, mmhg (torr), bar QUANTITA DI SOSTANZA (n) mol TEMPERATURA (T) K Sperimentalmente sono state determinate

Dettagli

Esercizio (tratto dal Problema 2.6 del Mazzoldi)

Esercizio (tratto dal Problema 2.6 del Mazzoldi) Esercizio (tratto dal Problea 2.6 del Mazzoldi) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica 70 N/, che si trova alla lunghezza

Dettagli

Tonzig Fondamenti di Meccanica classica

Tonzig Fondamenti di Meccanica classica Capitolo 14 Urti 1 Il significato del terine «urto» non è, in Fisica, rigidaente codificato, a, quanto eno a liello acroscopico, è sostanzialente quello stesso del linguaggio corrente: si pensi all urto

Dettagli

03a_Combustione Calorimetri

03a_Combustione Calorimetri Università degli studi di Bologna D.I.E.M. Dipartiento di Ingegneria delle Costruzioni Meanihe, Nuleari, Aeronautihe e di Metallurgia a_cobustione Calorietri rev. sett. 9 1 Calolo assa d ossigeno per la

Dettagli

- In un moto circolare uniforme perché la forza centripeta è sempre diretta verso il centro? è la base del triangolo isoscele di lati v = v1 = v2

- In un moto circolare uniforme perché la forza centripeta è sempre diretta verso il centro? è la base del triangolo isoscele di lati v = v1 = v2 Doande: - In un oto irolare unifore perhé la forza entripeta è sepre diretta erso il entro? Perhé si onsidera un interallo di tepo Ottengo he il ettore α tende a zero e r r r t e il relatio interallo di

Dettagli

03a_Combustione Calorimetri

03a_Combustione Calorimetri Università degli studi di Bologna D.I.E.M. Dipartiento di Ingegneria delle Costruzioni Meanihe, Nuleari, Aeronautihe e di Metallurgia a_cobustione Calorietri rev. sett. 9 1 Calolo assa d ossigeno per la

Dettagli

Il prodotto della pressione per il volume di una determinata massa gassosa è direttamente proporzionale alla temperatura assoluta: PV = KT

Il prodotto della pressione per il volume di una determinata massa gassosa è direttamente proporzionale alla temperatura assoluta: PV = KT ESERCITAZIONE 5 LEGGI DEI GAS Le leggi che governano i rapporti che si stabiliscono tra massa, volume, temperatura e pressione di un gas, sono leggi limite, riferite cioè ad un comportamento ideale, cui

Dettagli

Soluzioni. Capitolo. Soluzioni F Per il lavoro delle due forze relativamente al tratto s. uguagliando al valore fornito dal testo si ha:

Soluzioni. Capitolo. Soluzioni F Per il lavoro delle due forze relativamente al tratto s. uguagliando al valore fornito dal testo si ha: Capitolo Soluzioni Soluzioni 8. Per il laoro delle due forze relatiaente al tratto s : L L L F s cos 5.0 F s cos 5.0 ot uguagliando al alore fornito dal to si ha: s F cos 5.0 F cos 5.0 5.00 0 J 5.000 J

Dettagli

0. Il processo si ripete nella fase di discesa, con valori negativi della velocità dato che qui le particelle viaggiano verso l equilibrio.

0. Il processo si ripete nella fase di discesa, con valori negativi della velocità dato che qui le particelle viaggiano verso l equilibrio. Capitolo Soluzioni. La brusca pendenza del fronte dell ipulso suggerisce un repentino allontanaento dall equilibrio ed un passaggio di velocità da zero (posizione alla base) fino al valore assio positivo

Dettagli

Richiami moto circolare uniforme

Richiami moto circolare uniforme Esercizi oto piano Richiai oto circolare unifore an Velocità orbitale: Costante in odulo, a non in direzione e erso = R/T = R Con: R= raggio della traiettoria circolare, T=periodo, = elocità angolare Accelerazione

Dettagli

POLITECNICO DI TORINO DIPLOMI UNIVERSITARI TELEDIDATTICI

POLITECNICO DI TORINO DIPLOMI UNIVERSITARI TELEDIDATTICI POLITECNICO DI TORINO DIPLOMI UNIVERSITARI TELEDIDATTICI Esae di Fisica I 21/10/98 1. Un lago alpino, a quota 2560, ha una superficie di circa 25 000 2. Durante l'inverno esso è coperto da uno strato di

Dettagli

Soluzione del compito di Fisica 2. 2 febbraio 2012 (Udine)

Soluzione del compito di Fisica 2. 2 febbraio 2012 (Udine) del copito di isica febbraio 1 (Udine) Elettrodinaica E` data una spira conduttrice quadrata di lato L e resistenza R, vincolata sul piano xy, in oto lungo x con velocita` iniziale v. Nel punto x la spira

Dettagli

Esercizio (tratto dal Problema 2.6 del Mazzoldi)

Esercizio (tratto dal Problema 2.6 del Mazzoldi) 1 Esercizio (tratto dal Problea 2.6 del Mazzoldi) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica 70 N/, che si trova alla lunghezza

Dettagli

2. calcolare l energia cinetica del corpo e tracciare il suo andamento nel tempo;

2. calcolare l energia cinetica del corpo e tracciare il suo andamento nel tempo; 1 Esercizio (tratto dal Problea 4.29 del Mazzoldi 2) Un corpo di assa = 1.5 Kg è agganciato ad una olla di costante elastica k = 2 N/, di lunghezza a riposo = 50 c, fissata ad una parete verticale in x

Dettagli

La conservazione dell Energia e la Quantità di Moto - 1. Energia e Lavoro

La conservazione dell Energia e la Quantità di Moto - 1. Energia e Lavoro Energia e Lavoro La conservazione dell Energia e la Quantità di Moto - 1 Il livello energetico di un sistea è un indice delle sue potenzialità nel copiere lavoro e nel produrre altre fore di energia. In

Dettagli

Lezioni del Corso di Misure Meccaniche e Termiche

Lezioni del Corso di Misure Meccaniche e Termiche Facoltà di Ingegneria Lezioni del Corso di Misure Meccaniche e Teriche 02. Aria Uida Aria atosferica L'aria atosferica é costituita da un insiee di coponenti gassosi e da altre sostanze che possono presentarsi

Dettagli

Università degli Studi di Milano. Corso di Laurea in Informatica. Anno accademico 2013/14, Laurea Triennale FISICA. Lezione n.

Università degli Studi di Milano. Corso di Laurea in Informatica. Anno accademico 2013/14, Laurea Triennale FISICA. Lezione n. Uniersità degli Studi di Milano Corso di aurea in Inforatica Anno accadeico 3/4, aurea Triennale FISICA ezione n. 6 (4 ore) aoro ed energia (cinetica e potenziale) Flaia Maria Groppi (A-G) & Carlo Pagani

Dettagli

Soluzioni. Capitolo. Soluzioni

Soluzioni. Capitolo. Soluzioni Capitolo 7 Soluzioni Soluzioni. Fissiao un asse delle ascisse nella direzione in cui sta aanzando l auto ed eguagliao l ipulso della forza esercitata alla differenza di quantità di oto fra l istante in

Dettagli

Esercizio (tratto dal Problema 4.7 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.7 del Mazzoldi 2) 1 Esercizio (tratto dal Problea 4.7 del Mazzoldi 2) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica = 70 N/, che si trova alla lunghezza

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica I

Facoltà di Ingegneria Prova scritta di Fisica I Facoltà di Ingegneria Prova scritta di Fisica I 6..6 CMPIT C Esercizio n. Un blocco, assiilabile ad un punto ateriale di assa = kg, partendo da fero, scivola da un altezza h = 7 lungo una guida priva di.

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Viione d iniee DMANDE E RISPSE SULL UNIÀ A che coa ere la legge oraria del oto? La legge oraria del oto unifore è: = 0 + t doe 0 rappreenta lo pazio percoro dal corpo al tepo t = 0. Ea perette di tabilire

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 16 Gennaio 2008

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 16 Gennaio 2008 CORSO DI LURE IN SCIENZE BIOLOGICE Proa critta di FISIC 6 Gennaio 008 ) eccanica: Due cori di aa k ed ono colleati ediante una une inetenibile ed una carrucola, entrabe di aa tracurabile, coe otrato in

Dettagli

Onde. Fisica Generale - L.Venturelli

Onde. Fisica Generale - L.Venturelli Onde Per descriere olti fenoeni fisici si ricorre a concetti (antitetici): particella onda Utili soprattutto per descriere i diersi odi in cui l energia iene trasferita: particella La ptc è pensata coe

Dettagli

Leggi ricavate da osservazioni sperimentali : mantenendo costante due dei 4 parametri, come variano gli altri due?

Leggi ricavate da osservazioni sperimentali : mantenendo costante due dei 4 parametri, come variano gli altri due? Le leggi dei gas Lo stato gassoso è caratterizzato da mancanza di forma e volume propri, e dalla tendenza a occupare tutto il volume disponibile. Lo stato di un gas dipende da 4 parametri: Volume (V) Pressione

Dettagli

LAVORO DI UNA FORZA (1)

LAVORO DI UNA FORZA (1) LAVORO ED ENERGIA INTRODUZIONE L introduzione dei concetto di lavoro, energia cinetica ed energia potenziale ci perettono di affrontare i problei della dinaica in un odo nuovo In particolare enuncereo

Dettagli

PROBLEMI E QUESITI DI TERMOLOGIA (SOLUZIONI)

PROBLEMI E QUESITI DI TERMOLOGIA (SOLUZIONI) 1 PROBLEMI E QUESITI DI TERMOLOGIA (SOLUZIONI) Qui di seguito viene riportata la risoluzione dei problemi presentati nel file Unità omonimo (enunciati). Si raccomanda di prestare molta attenzione ai ragionamenti

Dettagli

Fisica Generale - Modulo Fisica I Ingegneria Meccanica Edile Informatica Esercitazione 4 DINAMICA DEL PUNTO MATERIALE

Fisica Generale - Modulo Fisica I Ingegneria Meccanica Edile Informatica Esercitazione 4 DINAMICA DEL PUNTO MATERIALE isica Generale - Modulo isica I Ingegneria Meccanica Edile Inforatica Esercitazione 4 DINAMICA DEL PUNTO MATEIALE Da1. Una particella di assa si uoe lungo l asse x sottoposta all azione di una forza (t)

Dettagli

Lo stato gassoso gas. Caratteristiche dello stato gassoso. liquido. solido. assenza di volume proprio forma fluida

Lo stato gassoso gas. Caratteristiche dello stato gassoso. liquido. solido. assenza di volume proprio forma fluida Lo stato gassoso gas liquido solido assenza di volume proprio forma fluida Caratteristiche dello stato gassoso Capacità di occupare tutto lo spazio a disposizione Distanze molto grandi tra le particelle

Dettagli

x (m) -1-2 m 4 01 m 2 m 1

x (m) -1-2 m 4 01 m 2 m 1 Fisica (A.A. 4/5) Esercizi Meccanica ) Lo spostaento nel tepo di una certa particella che si uoe lungo l asse x è ostrato in figura. Troare la elocità edia negli interalli di tepo: a) da a s b) da a 4

Dettagli

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2014

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2014 Preparazione alle gare di II livello delle Olipiadi della Fisica 014 Incontro su tei di fisica oderna Soario dei quesiti e problei discussi durante l incontro. Testi e soluzioni sono estratti dal sito

Dettagli

Stati di aggregazione della materia. dal microscopico al macroscopico: struttura. interazioni GASSOSO. proprietà SOLIDO LIQUIDO

Stati di aggregazione della materia. dal microscopico al macroscopico: struttura. interazioni GASSOSO. proprietà SOLIDO LIQUIDO Stati di aggregazione della materia GASSOSO dal microscopico al macroscopico: struttura interazioni proprietà SOLIDO LIQUIDO Lo stato gassoso È uno dei tre stati di aggregazione della materia, caratterizzato

Dettagli

BIOLOGIA A. A CHIMICA

BIOLOGIA A. A CHIMICA Laurea triennale in BIOLOGIA A. A. 3-4 4 CHIMICA Lezioni di Chiica Fisica Principio e 3 3 Principio Prof. Antonio offoletti Alcune equazioni della lezione precedente Reazione chiica scritta in fora generale

Dettagli

7. Descrizione molecolare della diffusione

7. Descrizione molecolare della diffusione 7. Descrizione olecolare della diffusione Sisea odello: diffusione di soluo in una soluzione diluia conenua in un ubicino di sezione φ e lunghezza L ( L), descria dall equazione di diffusione per la concenrazione

Dettagli

Strumenti matematici. La forza intermolecolare. Introduzione al problema fisico Base di uno spazio vettoriale Serie di Fourier

Strumenti matematici. La forza intermolecolare. Introduzione al problema fisico Base di uno spazio vettoriale Serie di Fourier Struenti ateatici Struenti ateatici Introduzione al problea fisico Base di uno spazio vettoriale Serie di Fourier Serie di Taylor Nueri coplessi Stru. at. Stru. at. Forza di attrazione Forza di repulsione

Dettagli

FORMULARIO DI MECCANICA

FORMULARIO DI MECCANICA Forulario di Meccanica Pagina 1 di 8 FOMULAIO DI MECCANICA NOTA: le grandezze ettoriali sono indicate in neretto. CINEMATICA Vettore posizione del punto ateriale r(t) x i + y j + z k (nel SI etri ) Vettore

Dettagli

Compito di febbraio 2004

Compito di febbraio 2004 Copito di febbraio 004 Una laina oogenea di assa, avente la fora di un disco di raggio da cui è stato asportato il triangolo equilatero inscritto ABC, rotola senza strisciare lungo l asse delle ascisse

Dettagli

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso GLI STATI DI AGGREGAZIONE DELLA MATERIA Lo stato gassoso Classificazione della materia MATERIA Composizione Struttura Proprietà Trasformazioni 3 STATI DI AGGREGAZIONE SOLIDO (volume e forma propri) LIQUIDO

Dettagli

Compito di Fisica Generale I di Ingegneria CIVILE Giugno 2009

Compito di Fisica Generale I di Ingegneria CIVILE Giugno 2009 Copito di Fisica Generale I di Ingegneria CIVILE 009 Giugno 009 Esercizio : Un asse è disposto orizzontalente e passante per il punto O in figura L'asse è perpendicolare al piano della figura Una barretta

Dettagli

Determinazione della densità di solidi.

Determinazione della densità di solidi. Deterinazione della densità di solidi. Scopo dell esperienza Lo scopo di questa esperienza è quello di deterinare la densità di alcuni corpi solidi, per poi confrontare il valore ottenuto sperientalente

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 07-08 7 VARIAZIOE DELLA VELOCITA accelerazione Principio d inerzia Un corpo perane nel suo stato di oto rettilineo unifore (o di quiete) a eno che non intervenga una forza esterna (I Legge di

Dettagli

Risultati esame scritto Fisica 1-01/09/2015 orali: alle ore presso aula M

Risultati esame scritto Fisica 1-01/09/2015 orali: alle ore presso aula M Risultati esae scritto Fisica - /9/ orali: 7-9- alle ore 9. resso aula M gli studenti interessati a isionare lo scritto sono regati di resentarsi il giorno dell'orale Nuoo ordinaento atricola oto 98 nc

Dettagli

G Mm 2. otteniamo R = 11 Perché la forza di gravitazione è diretta parallelamente. 12 Falso. Lo sarebbero se fosse costante il rapporto

G Mm 2. otteniamo R = 11 Perché la forza di gravitazione è diretta parallelamente. 12 Falso. Lo sarebbero se fosse costante il rapporto La gravitazione. La gravitazione Doande sui concetti er la terza legge di Keplero, il rapporto fra la distanza Sole-pianeta e quella Sole-erra è pari alla radice cubica del rapporto fra i quadrati dei

Dettagli

GAS IDEALI (o gas perfetti )

GAS IDEALI (o gas perfetti ) GAS IDEALI (o gas perfetti ) TEORIA CINETICA DEI GAS (modello di gas ideale ) molecole puntiformi moto rettilineo ed urti elastici forze attrattive - repulsive intermolecolari nulle PARAMETRI DELLO STATO

Dettagli

Meccanica dei Fluidi con Fondamenti di Ingegneria Chimica Trasporto di calore e materia 29 Febbraio 2016

Meccanica dei Fluidi con Fondamenti di Ingegneria Chimica Trasporto di calore e materia 29 Febbraio 2016 Meccanica dei Fluidi con Fondaenti di Ingegneria Chiica Trasporto di calore e ateria 9 Febbraio 6 Esercizio Stoccaggio elio Si prenda considerazione un contenitore sferico adibito allo stoccaggio di elio

Dettagli

ELEMENTI DI FLUIDODINAMICA

ELEMENTI DI FLUIDODINAMICA Capitolo 6 ELEMENTI DI FLUIDODINAMICA Il coportaento della ateria in astrofisica può essere solo in pochi casi ridotto a processi a particella singola. La ateria stellare, le corone e i venti stellari,

Dettagli

LEZIONE 17 ESERCIZI-FLUIDI

LEZIONE 17 ESERCIZI-FLUIDI LEZIONE 17 ESERCIZI-FLUIDI Qual è, in at, la pressione a 20 di profondità? (densità dell acqua = 1,0 gr/c ) P = 2 at. Sapendo che la densità del ghiaccio è 0,92 g/c e quella dell acqua di are 1,0 g/c,

Dettagli

Cinematica in una dimensione

Cinematica in una dimensione Capitolo 3 Cineatica in una diensione. Distanza, spostaento e elocità edia La elocità edia, coe tutte le frazioni, dee essere interpretata coe il quantitatio del nueratore che iene associato ad una unità

Dettagli

I fluidi. Marina Cobal - Dipt.di Fisica -

I fluidi. Marina Cobal - Dipt.di Fisica - I fluidi Marina Cobal - Dipt.di Fisica - Esercizio n Una stanza ha dimensioni: 3.5 m (larghezza) e 4. m (lunghezza) ed una altezza di.4 m. (a) Quanto pesa l aria nella stanza se la pressione e.0 atm? SOLUZIONE:

Dettagli

LE PROPRIETA DEI GAS

LE PROPRIETA DEI GAS LE PROPRIETA DEI GAS Per definire lo stato di un gas, bisogna definire le tre grandezze fisiche, chiamate variabili di stato, che lo caratterizzano: volume, pressione e temperatura. E' possibile descrivere

Dettagli

I fluidi. Alberto Barbisan - Meccanica ITIS FERMI

I fluidi. Alberto Barbisan - Meccanica ITIS FERMI I fluidi Esercizio Una stanza ha dimensioni: 3.5 m (larghezza) e 4. m (lunghezza) ed una altezza di.4 m. (a) Quanto pesa l aria nella stanza se la pressione e.0 atm? SOLUZIONE: mg ( ρv)g (. kg / 48 N m

Dettagli

INTRODUZIONE ALLA TEORIA DEL TRAFFICO

INTRODUZIONE ALLA TEORIA DEL TRAFFICO INTRODUZIONE ALLA TEORIA DEL TRAFFICO IC3N 2000 N. 1 Definizioni preliinari Sistea soggetto a traffico: astrazione definita convenzionalente di un sistea reale (o di una parte di esso in cui entrano ed

Dettagli

Le leggi di conservazione

Le leggi di conservazione apitolo Le leggi di conserazione VRSO L SM ue carrelli si uoono lungo una retta e si urtano. I dati relatii sono presentati nella figura (in alto). opo la collisione i due carrelli si uoono coe si ede

Dettagli

Raffreddamento evaporativo

Raffreddamento evaporativo Fabiola Coppola atr. 78 lezione del //00 ora 0:0-:0 Giuseppe Spedale atr. 79 Indice Raffreddaento evaporativo... Esercizio (raffreddaento evaporativo di una piscina labita dal vento)... Caso : piscina

Dettagli

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2015

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2015 Preparazione alle gare di II livello delle Olipiadi della Fisica 015 Incontro su tei di fisica oderna Riccardo Urigu Liceo Europeo Spinelli di Torino Soario dei quesiti e problei discussi durante l incontro.

Dettagli