LEZIONE 17 ESERCIZI-FLUIDI
|
|
|
- Eva Mariani
- 9 anni fa
- Visualizzazioni
Transcript
1 LEZIONE 17 ESERCIZI-FLUIDI Qual è, in at, la pressione a 20 di profondità? (densità dell acqua = 1,0 gr/c ) P = 2 at. Sapendo che la densità del ghiaccio è 0,92 g/c e quella dell acqua di are 1,0 g/c, quale frazione eerge del volue totale di un iceberg? V = 0,11 eerso Per isurare la densità del sangue si usa una iscela di xilene (ρ = 0,87) e di broobenzene ((ρ = 1,50). Le gocce di sangue riangono sospese quando le proporzioni in volue dello xilene e del broobenzene sono rispettivaente del 72 % e del 28%. Calcolare la densità relativa del sangue. ρ = 1,04 Mezzo Qual è la portata (in litri/in) del sangue nell aorta, il cui raggio è 0,9 c, supponendo che la velocità edia sia v = 0,9 /s? Q= 99,2 c /sec Calcolare la caduta di pressione che si verifica in un capillare lungo un 1 c e di raggio 200 µ, sapendo che la velocità del sangue sull'asse è 0.66 /s ed il coefficiente di viscosità del sangue è P a s? P = 2,64P a Che P è necessario applicare per far scorrere 1 c s -1 di acqua in un ago di 2 c e raggio 0,? Caso 1) liquido reale η = 0,01 Poise Caso2) liquido ideale (Bernoulli). Reale: P = 000Pa = 0, 0at Ideale: P = 0 Calcolare la velocità di caduta di una sfera di piobo ρ= 11,5 g/c e R = 1 in un serbatoio di glicerina (densità = 1, g/c e η = 8, poise). Si può applicare stokes? V = 2,5
2 Tubi in serie Se applico P = 9900 barie ad un condotto di sezione variabile percorso da Fluido viscoso η = 0,01 poise 50 c 50 c R 1 = 0,15 c R 2 = 0,075 c S1=0,07 c 2 S2= 0,02 c 2 R 1 idraulica =, R2 idraulica = Portata Q V1 prio tratto V2 secondo tratto P prio tratto 1 P 2 secondo tratto Velocità critica con acqua e glicerina R= 1 c  = 2000 Acqua, Glicerina η η Acqua Glicerina = 10 Pasec ρ = 10 Acqua = 1Pa sec ρ = 1,*10 glicerina kg kg V crit _ acqua = 0,1 V crit _ glice = 77 sec sec Un liquido ρ = 950 kg - scorre in un tubo orizzontale r 1 = 4,5 c. In una sezione ristretta r 2 =,2 c la pressione del liquido è 1,5*10 Pa più bassa di quella presente nella sezione norale. Calcolare le velocità del liquido nelle due sezioni e la portata del tubo. V2 = 2 V1 = 1 Q = 6, 4*10 sec sec sec
3 Flebo Pa Pa S1 h S2 Pi Trascuro gli attriti e applico Bernoulli fra S 1 e S 2 con il SR indicato Il tubicino della flebo è orientata in odo da dover vincere solo la Pi del sangue, senza alcuna pressione cinetica Vi è la velocità di ingresso del liquido nella vena, non la velocità del sangue. Se Pi = Pa + 5Hg h 6,8 c Se h = 6,8c c Vi 0 s Se h > 6,8 V > 0 i
4 Il plasa scorre, attraverso un tubicino, dal contenitore alla vena di un paziente. Se il contenitore viene tenuto ad un altezza di 1.5 rispetto al braccio del paziente: a) con quale pressione il sangue entra nella vena? b) se il sangue nella vena ha una pressione relativa di 12 Hg., qual è la inia altezza alla quale si deve tenere il contenitore affinché il plasa possa entrare? (ρ plasa = 1025 Kg/ : ρ ercurio = 1600 Kg/ ) Ipotizziao che il plasa sia un liquido ideale e che si possa trascurare l'attrito nel tubicino. P = 98 Hg 106Pa sangue Altezza inia della colonna che perette ingresso fluido h = 16 ch O 2 Se h = 150 c Pa = 760 Hg Pi = ( ) Hg la velocità di ingresso del sangue c Vi = 511 s Qual è la pressione all altezza della nuca e dei piedi di una persona alta la cui pressione arteriosa nell aorta è di 100 Hg? Ipotesi : Distanza Cuore-Nuca= 0 c Distanza Cuore-Piedi=10 c Pressione nuca 78 Hg Pressione piedi 196 Hg Una pressione negativa rispetto alla atosferica (di aspirazione) viene spesso utilizzata per togliere liquidi dalle cavità del corpo. Aspirando nella regione gastrointestinale da un punto 42 c sopra il corpo, è applicata una pressione d aspirazione di 100 Hg. Calcolare la pressione di aspirazione applicata alla parte inferiore del tubo. Assuendo ρ = 1 e h = 42 c, la pressione idrostatica della colonna nel tubo è: P1 100 Hg 42c P2
5 Sulla sezione S 1 = 0.8 2, grava una assa di 500 Kg. Un pistone di sezione S 2 = 10 c 2 esercita una forza F. I vasi counicanti sono riepiti di olio densità d = 0.78 g c -. Deterinare la forza F all equilibrio quando h =.5. S 2 =10c 2 F P 1 M 1 =500 kg h=,5 S 1 =0,8 2 h 1 P 2 F = 1.6 Kg p. Un arteriola con raggio interno 2, è percorsa dal sangue con velocità edia di 5 c/s. A causa di una copressione il raggio dell arteria si riduce a 0,1. Calcolare, nelle due situazioni se il flusso è lainare o turbolento. Sangue a 7 C ρ = 1,05 g/c e ή = 2,08 c P. Il flusso è certaente lainare per R < 1000 è sicuraente turbolento per R > 000. R = 100 Lainare La copressione provocata dal anicotto dello sfigoanoetro riduce il raggio dell arteria a 0,1 c. A portata costante, la velocità edia nell arteria diviene V ' = c 20 sec Nella seconda situazione Reynolds R = 2000 instabile Un globulo rosso può essere approssiato ad una sfera di diaetro c e ρ = 1, g / c Si calcoli la velocità di sedientazione a 25 C dei globuli rossi nel plasa S sapendo che a tale teperatura il plasa ha densità, ρ 1 = 1,0 g / c e viscosità 1,65 cp. Quanto tepo deve trascorrere perché le particelle sedientino di 5 c? La velocità di sedientazione: v= 1,4 10^-4 c/sec La velocità di eritrosedientazione, si esegue riepiendo con sangue reso incoagulabile, un tubicino graduato di 20 c di altezza e isurando, dopo ogni ora l altezza della colonna di plasa lasciata libera dalle eazie. Noralente dopo 1 ora altezza è 2-5 uoo e 8 donna dopo 2 ore altezza è 6-1 uoo e 8-20 donna. Con la velocità di sedientazione trovata le altezze della colonna lasciata libera dai globuli rossi dopo 1 ora e dopo 2 ore sarebbero: S1 = 5 S2 = 10 in accordo con i valori riscontrati.
6 Il tepo necessario per sedientare di 5 c t = 9,72 ore Un tubo pulito di vetro di diaetro interno 0.5 pesca verticalente in una scodella d acqua. Di quanto sale l acqua nel tubo? Τ = 72,8 dine/c θ = 0 h = 2,96 c A quale altezza arriva l etanolo (τ = N/; ρ = 791 Kg/ ) in un capillare di raggio r = 0.5, se l angolo di raccordo è zero? H = 1,17 c In un capillare di diverso ateriale a dello stesso raggio, si trova che l etanolo sale fino ad un altezza di 1,09 c. Quanto vale l angolo di raccordo tra l etanolo e la parete del nuovo capillare? Θ = 0
Lavoro delle forze nei fluidi
aoro delle forze nei fluidi + + + EC P G att est S S C D C D l t h EC P G P S gh t P S gh ρ t ρ B B l t ( P P ) P h ( ρgh ρgh ) - EP att est ( P P ) + ( ρgh ρgh ) + + ρ ρ att est EP + P + + EC Fluidi ideali:
La lezione di oggi. I fluidi reali La viscosità Flussi laminare e turbolento. La resistenza idrodinamica
1 La lezione di oggi I fluidi reali La viscosità Flussi laminare e turbolento La resistenza idrodinamica 2 La lezione di oggi Forze di trascinamento nei fluidi La legge di Stokes La centrifuga 3 ! Viscosità!
STATICA E DINAMICA DEI FLUIDI
STATICA E DINAMICA DEI FLUIDI Pressione Principio di Pascal Legge di Stevino Spinta di Archimede Conservazione della portata Teorema di Bernoulli Legge di Hagen-Poiseuille Moto laminare e turbolento Stati
è completamente immerso in acqua. La sua
In un tubo scorre in regime stazionario un liquido ideale con densità 1.00 10 3 kg/m 3 ; in un punto A il tubo ha raggio R A = 2.00 cm, la velocità di scorrimento è v A = 5.00 m/se la pressione è P A =
Dinamica dei Fluidi. Moto stazionario
FLUIDODINAMICA 1 Dinamica dei Fluidi Studia il moto delle particelle di fluido* sotto l azione di tre tipi di forze: Forze di superficie: forze esercitate attraverso una superficie (pressione) Forze di
Chimica e Tecnologia Farmaceutiche Esercitazioni di Fisica a.a Emanuele Biolcati
Esercitazione 5 Dr. Monica Casale Chimica e Tecnologia Farmaceutiche Esercitazioni di Fisica a.a. 2010-2011 Emanuele Biolcati Ringraziamenti speciali a Monica Casale per la preparazione delle slides Fluidi
I fluidi Approfondimento I
I fluidi Approfondimento I statica dei fluidi Legge di Stevino, Principio di Pascal, Principio di Archimede e applicazioni dinamica dei fluidi ideali Flusso di un fluido e continuità Equazione di Bernoulli
Esercitazioni di fisica I fluidi
Corso di Laurea in Scienze e Tecnologie Biologiche Esercitazioni di fisica I fluidi (pt. 1: fluidostatica e fluidi ideali) Luca Brombal [email protected] 16/11/2017 #1 Legno e granito Un blocco
ENERGIA DI PRESSIONE TEOREMA DI BERNOULLI PRESSIONE IDROSTATICA SPINTA DI ARCHIMEDE
CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE L ENERGIA NEI FLUIDI ENERGIA DI PRESSIONE TEOREMA DI BERNOULLI PRESSIONE IDROSTATICA SPINTA DI ARCHIMEDE A. A. 014-015 Fabrizio
La circolazione del sangue
La circolazione del sangue elemento caratteristica approssimazione sangue fluido reale e non omogeneo fluido reale omogeneo moto pulsatile (valvola aortica) stazionario condotti distensibili rigidi Fisica
Esperienza 1/3: viscosità. della glicerina. Laboratorio di Fisica 1 A. Baraldi, M. Riccò. Università di Parma. a.a. 2012/2013
Esperienza 1/3: viscosità Università di Parma della glicerina a.a. 2012/2013 Laboratorio di Fisica 1 A. Baraldi, M. Riccò Coefficiente di viscosità La viscosità è quella grandezza fisica che ci permette
La corrente di un fluido
Dinamica dei Fluidi Dinamica dei fluidi La corrente di un fluido La corrente di un fluido è il movimento ordinato di un liquido o di un gas. La portata q è il rapporto tra il volume di fluido ΔV che attraversa
IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio
IL MOTO DEI FLUIDI con applicazione al sistema circolatorio Portata Pressione Moto stazionario: equazione di continuità Applicazione al sistema circolatorio: pressione e velocità del sangue Moto laminare
Se la curvatura è minore, la tensione totale deve essere più grande per mantenere la stessa componente della tensione verso il basso
Le Pressioni in emodinamica sono: Pressione di propulsione Pa Pv, responsabile del flusso Pressione transmurale (P tm ). Poiché i vasi sono distensibili la P tm può influenzare il raggio del vaso e per
Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1
Dall idrostatica alla idrodinamica Fisica con Elementi di Matematica 1 Concetto di Campo Insieme dei valori che una certa grandezza fisica assume in ogni punto di una regione di spazio. Esempio: Consideriamo
La lezione di oggi. La densità La pressione L equazione di continuità Il teorema di Bernoulli. Stenosi e aneurismi
La lezione di oggi La densità La pressione L equazione di continuità Il teorema di Bernoulli Stenosi e aneurismi ! Densità, pressione! La portata di un condotto! Il teorema di Bernoulli! Applicazioni dell
Fisica Applicata, Area Infermieristica, M. Ruspa MECCANICA DEI FLUIDI. Fluidostatica: fluidi in quiete Fluidodinamica: fluidi in moto
MECCANICA DEI FLUIDI Fluidostatica: fluidi in quiete Fluidodinamica: fluidi in moto I diversi stati di aggregazione della materia dipendono dalle forze di legame interatomiche o intermolecolari. SOLIDI
Meccanica dei FLUIDI
Meccanica dei FLUIDI Densità Portata Pressione Moto stazionario: equazione di continuità Legge di Stevino Pressione idrostatica Spinta di Archimede Teorema di Bernoulli Viscosità Moto laminare: equazione
La corrente di un fluido
La corrente di un fluido 0 La corrente di un fluido è il movimento ordinato di un liquido o di un gas. 0 La portata q è il rapporto tra il volume di fluido V che attraversa una sezione in un tempo t ed
Applicazione equazione di Bernoulli: stenosi arteriosa(restringimento arteria)
Applicazione equazione di Bernoulli: stenosi arteriosa(restringimento arteria) Applicazione equazione di Bernoulli: Aneurisma (dilatazione arteria) Liquidi reali attrito interno-viscosita' la velocita'
PORTATA DI UN CONDOTTO. Portata Q: volume di fluido che attraversa la sezione di un condotto nell unità di tempo. V v t. = t
PORTATA DI UN CONDOTTO Portata Q: volume di fluido che attraversa la sezione di un condotto nell unità di tempo. A vt V A v t Q = = = A v t t 1 MOTO STAZIONARIO Un moto si dice stazionario quando le principali
1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido.
UNITÀ 8 LA MECCANICA DEI FLUIDI 1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido. 3. La pressione atmosferica. 4. La legge di Stevino. 5. La legge di Pascal. 6. La forza di Archimede.
Densita. FLUIDI : liquidi o gas. macroscop.:
6-SBAC Fisica 1/10 FLUIDI : liquidi o gas macroscop.: microscop.: sostanza che prende la forma del contenitore che la occupa insieme di molecole tenute insieme da deboli forze di coesione (primi vicini)
15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 15
Serway, Jewett Principi di Fisica IV Ed. Capitolo 15 Un fluido è un insieme di molecole tenute insieme da deboli forze di coesione e da forze esercitate dalla parete del contenitore (possono essere sia
Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore
Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore Legge di Stevino La pressione in un liquido a densità costante cresce linearmente con la profondità Il principio di
1 bar = 10 Pa = 10 barie PRESSIONE PRESSIONE. N 10 dyn dyn. m 10 cm cm. Solido. Liquido. Gassoso. (pascal) m. kg 1000.
STATI DI AGGREGAZIONE DELLA MATERIA Solido Liquido Gassoso Il coro ha volume e forma ben definiti Il coro ha volume ben definito, ma assume la forma del reciiente che lo contiene Il coro occua tutto lo
DINAMICA DEI FLUIDI con applicazioni al sistema circolatorio
CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE DINAMICA DEI FLUIDI con applicazioni al sistema circolatorio PORTATA PRESSIONE MOTO STAZIONARIO APPLICAZIONI AL SISTEMA CIRCOLATORIO
Dinamica dei fluidi. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1
Dinamica dei fluidi Universita' di Udine 1 Caratteristiche di un fluido In generale: FLUIDO sostanza senza forma propria (assume la forma del recipiente che la contiene) liquido volume limitato dalla superficie
MECCANICA DEI FLUIDI
MECCANICA DEI FLUIDI Un fluido è un corpo che non ha una forma propria. La sua forma dipende da altri corpi che lo contengono (per esempio un recipiente, una condotta, ). Un fluido è composto da molte
IDROSTATICA leggi dell'equilibrio. IDRODINAMICA leggi del movimento
IDROSTATICA leggi dell'equilibrio IDRODINAMICA leggi del movimento La materia esite in tre stati: SOLIDO volume e forma propri LIQUIDO volume proprio ma non una forma propria (forma del contenitore) AERIFORME
DINAMICA DEI FLUIDI G. ROBERTI
DINAMICA DEI FLUIDI G. ROBERTI Dinamica dei Fluidi Studia il moto delle particelle di fluido* sotto l azione di tre tipi di forze: Forze di superficie: forze esercitate attraverso una superficie (pressione)
PRESSIONE ATMOSFERICA
PRESSIONE ATMOSFERICA Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera p atm = d g h con d densita aria h altezza atmosfera 197 MISURA DELLA PRESSIONE ATMOSFERICA:
ESCLUSIVO USO DIDATTICO INTERNO - CENNI DI DINAMICA DEI FLUIDI Elio GIROLETTI - Università degli Studi di Pavia, Dip. Fisica nucleare e teorica
UNIVERSITÀ DEGLI STUDI DI PAVIA dip. Fisica nucleare e teorica via Bassi 6, 700 Pavia, Italy - tel. 038/98.7905 [email protected] - www.unipv.it/webgiro 004 elio giroletti dinamica dei fluidi RISCHI FISICI,
Caratteristiche energetiche di un onda
Caratteristiche energetiche di un onda Potenza P di una sorgente [W] È l energia emessa da una sorgente nell unità di tempo. Intensità di un onda I [W/m 2 ] Rappresenta l'energia trasportata dall onda
PER ESERCITARSI Parte 2. Esercizi su Corpo rigido, variabili angolari, momenti, fluidi, termodinamica
PER ESERCITARSI Parte 2 Esercizi su Corpo rigido, variabili angolari, momenti, fluidi, termodinamica ESERCIZIO n.1 Due forze uguali ed opposte sono applicate ad un oggetto lungo rette di azione tra loro
Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli).
Meccanica dei fluidi! definizioni;! statica dei fluidi (principio di Archimede);! dinamica dei fluidi (teorema di Bernoulli). [importanti applicazioni in biologia / farmacia : ex. circolazione del sangue]
PRESSIONE IN UN FLUIDO IN QUIETE
PRESSIONE IN UN FLUIDO IN QUIETE P p 0 Quali e quante pressioni in P? 1) pressione esterna (tipicamente pressione atmosferica) 2) pressione idrostatica Pressione totale = p 0 + dgh LEGGE di STEVINO 156
Fluidodinamica. Q=V/Δt=costante
Liquido perfetto o ideale: Fluidodinamica Incomprimibile (densità costante sia nel tempo che nello spazio) Assenza di attrito interno (in un liquido reale si conserva la caratteristica dell incompressibilità
Eq. bilancio quantità di moto
Eq. bilancio quantità di moto Contributo relativo alle superfici permeabili, ovvero interessate da flussi di massa (nullo, dato che il fluido è macroscopicamente in quiete) Integrale degli sforzi superficiali
MECCANICA dei FLUIDI nei SISTEMI BIOLOGICI
MECCANICA dei FLUIDI nei SISTEMI BIOLOGICI parte II a parte I! - EQUAZIONE DI CONTINUITA - PRESSIONE IDROSTATICA Lucidi del Prof. D. Scannicchio MASSA, PESO, DENSITA' m kg massa g massa p = m g kg peso
IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio
IL MOTO DEI FLUIDI con applicazione al sistema circolatorio Portata Pressione Moto stazionario: equazione di continuità Applicazione al sistema circolatorio: pressione e velocità del sangue Moto laminare
a) Calcolare il modulo di F.
1. (1-2-2011, 3-10-2011, 23-7-2013) Un getto d acqua che cade da un rubinetto si restringe verso il basso. Se l area di una sezione del flusso di acqua è A 1 =1.2 cm 2 e diventa A 2 = 0.35 cm 2 45 mm più
ESCLUSIVO USO DIDATTICO INTERNO - Meccanica dei fluidi nei sistemi biologici
UNIVERSITÀ DEGLI STUDI DI PAVIA dip. Fisica nucleare e teorica via Bassi 6, 700 Pavia, Italy - tel. 03898.7905 [email protected] - www.unipv.it/webgiro webgiro elio giroletti fluidi nei sistemi biologici
Alcuni valori della densita'
Fluidi Comprendono liquidi e gas La distanza tra le particelle non è fissata Il liquido non è facilmente comprimibile Il gas si può comprimere facilmente e non ha forma propria Solidi, liquidi e gas sono
ESERCITAZIONE 6. Dr.ssa Valeria Monti Corso di Laurea in Chimica e Tecnologia Farmaceutiche Fisica a.a
ESERCITAZIONE 6 Dr.ssa Valeria Monti Corso di Laurea in Chimica e Tecnologia Farmaceutiche Fisica a.a. 2016 2017 Fluidi : Esercizio 1 Un arteria di raggio R 1 = 2.5 mm è parzialmente bloccata da una placca.
Meccanica dei Fluidi: statica e dinamica
Meccanica dei Fluidi: statica e dinamica Stati della materia (classificazione assai approssimativa!) Solido: ha una forma propria, poco compressibile, alta densità Liquido: non ha una forma propria, poco
Esempi di esercizi per la preparazione al primo compito di esonero
Esempi di esercizi per la preparazione al primo compito di esonero 1. Quanto sangue è approssimativamente presente in un essere umano? Esprimere il risultato in ml. 2. La densità dell etanolo e pare a
Bilanci macroscopici. Esercizi dal libro Fenomeni di Trsporto, Bird, Stewart, Lightfoot
Bilanci macroscopici Esercizi dal libro Fenomeni di Trsporto, Bird, Stewart, Lightfoot 7A 7B 7C 7D 7E 7F Esercizio 1 Due recipienti, le cui basi si trovano su uno stesso piano, sono messi in comunicazione
Le resistenze dei singoli segmenti della circolazione sistemica si sommano e determinano la Resistenza vascolare totale del circolo sistemico.
RESISTENZA VASCOLARE E DISPOSIZIONE DEI VASI: IN SERIE O IN PARALLELO RESISTENZE IN CONDOTTI POSTI IN SERIE R 1 R 2 R 3 Pi F Pu Il flusso F, generato dal P, deve vincere una Resistenza totale, che è la
Compiti estivi di fisica per la classe 2C
Compiti estivi di fisica per la classe 2C Per essere adeguatamente preparati alle richieste della terza liceo scientifico, è necessario per tutti un serio lavoro di ripasso estivo sull intero programma
Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera
PRESSIONE ATMOSFERICA Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera p atm = d g h con d densita aria h altezza atmosfera 1 MISURA DELLA PRESSIONE ATMOSFERICA:
In un vaso sanguigno si forma un aneurisma dove la sezione aumenta del 15%. Si calcoli la conseguente variazione percentuale della velocita del sangue
Esercizio In un vaso sanguigno si forma un aneurisma dove la sezione aumenta del 15%. Si calcoli la conseguente variazione percentuale della velocita del sangue 1 MOTO DI FLUIDI REALI 2 MOTO DI UN FLUIDO
FISICA DEL SISTEMA CARDIOCIRCOLATORIO
FISICA DEL SISTEMA CARDIOCIRCOLATORIO Conferenza organizzata dalla Fondazione Livia Tonolini e dalla Sezione Mathesis di Bergamo, a cura di F. Tonolini il 22 aprile 2005 A. Fondamenti di reologia B. Il
Idraulica e macchine idrauliche
Scheda riassuntiva 5 capitoli 0- Idraulica e acchine idrauliche Idrostatica Pressione nei fluidi 1 La pressione esercitata su un punto del contorno si trasette uguale in tutta la assa fluida. In un punto
Meccanica dei fluidi
Programma Parte I Meccanica dei Fluidi Proprietà generali dei Fluidi; Il Principio di Pascal; La legge di Stevino per i liquidi pesanti; Il Principio di Archimede; Il moto dei fluidi; Legge di Bernoulli;
Tratti (capillari) che consentono la fuoriuscita e l ingresso di liquido
Le leggi dell idrostatica e dell idrodinamica spiegano i principi fisici che sono alla base del funzionamento del sistema cardio circolatorio, ma le caratteristiche particolari di questo sistema impediscono
Idrodinamica prova scritta 12/03/ Compito A
Idrodinamica prova scritta 1/03/007 - Compito Calcolare la spinta S esercitata dal liquido in movimento sulla superficie laterale del gomito illustrato in figura, avente sezione circolare, posto su un
Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero
Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente
Esame 20 Luglio 2017
Esae 0 Luglio 07 Roberto Bonciani e Paolo Dore Corso di Fisica Generale Dipartiento di ateatica Università degli Studi di Roa La Sapienza Anno Accadeico 06-07 Esae - Fisica Generale I 0 Luglio 07 R. Bonciani,
Esercizi svolti di Statica e Dinamica
Esercizi svolti di Statica e Dinaica 1. La assa è sospesa coe in figura. Nota la costante elastica k della olla, deterinarne l allungaento in condizioni di equilibrio. 1.6 Kg ; θ 30 ; k 10 N -1 θ Il diagraa
Corso di Laurea in Medicina e Chirurgia Prova scritta di Fisica del 7/7/2017
Corso di Laurea in Medicina e Chirurgia Prova scritta di Fisica del 7/7/2017 Nome: Cognome: N. matricola: * Segnare con una x la risposta corretta, svolgere i problemi nei fogli allegati scrivendo le formule
Solido. Liquido. Gassoso STATI DI AGGREGAZIONE DELLA MATERIA. Il corpo ha volume e forma ben definiti
FLUIDI Stati aggregazione materia Pressione Portata Moto stazionario Equazione di continuità Applicazione al sistema circolatorio Moto laminare e turbolento Legge Pascal Legge Stevino Legge Bernulli Legge
Meccanica dei Fluidi. stati di aggregazione della materia: solidi liquidi gas. fluidi assumono la forma del contenitore
Meccanica dei luidi stati di aggregazione della materia: solidi liquidi gas fluidi assumono la forma del contenitore Caratteristiche di un fluido LUIDO sostanza senza forma propria (assume la forma del
EFFETTI FISIOLOGICI DELLA PRESSIONE IDROSTATICA
LEZIONE n.5 ENERGIA NEI FLUIDI TEOREMA DI BERNOULLI E APPLICAZIONI PRESSIONE IDROSTATICA EFFETTI FISIOLOGICI DELLA PRESSIONE IDROSTATICA TEOREMA DI BERNOULLI IL TEOREMA DI BERNOULLI, ESPRIME LA LEGGE DI
Meccanica dei Fluidi
Meccanica dei Fluidi F.Fabrizi e P. Pennestrì Liceo Scientifico I. Newton - Roma Classe III D 15 marzo 2013 1 Definizione di Fluido Un fluido è un insieme di particelle che interagiscono tra loro con una
Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica
Dall idrostatica alla idrodinamica 1 Concetto di Campo Insieme dei valori che una certa grandezza fisica assume in ogni punto di una regione di spazio. Esempio: Consideriamo il valore della pressione atmosferica
ATTRITO VISCOSO NEI FLUIDI
ATTRITO VISCOSO NEI FLUIDI DOWNLOAD Il pdf di questa lezione (0319a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 19/03/2012 VISCOSITÀ La viscosità è un fenomeno che si manifesta in
HRW 14.8 HRW 14.9 HRW HRW HRW 14.28
HRW 14.8 I marinai di un sottomarino danneggiato cercano di scappare a 100 m di profondità. Quale forza devono esercitare sul portellone di uscita di dimensioni 1.2 m per 0.6 m per aprirlo? La densità
COMPITO DI IDRAULICA DEL 16 febbraio 2004
COMPITO DI IDRULIC DEL 6 febbraio 004 9.0 m M 8.0 m P 50.0 m L M =5000m L M =0000m R La condotta che collega i serbatoi a livello costante e ha diametro d=900mm e una lunghezza complessiva di 5 km. Nelle
Sesta esercitazione di Fisica I Fluidodinamica 1 PROBLEMI RISOLTI
Sesta esercitazione di Fisica I Fluidodinamica 1 PROBLEMI RISOLTI 1. Un secchio colmo d'acqua pesa complessivamente 2 kg. Se è pesato mentre è sotto un rubinetto con una portata di 0.5 litri/s ed è raggiunto
Prova Parziale 2 Su un piano inclinato con un angolo θ = 60 rispetto all orizzontale è posto un blocco di peso P = 1.0 N. La forza di contatto F che i
Su un piano inclinato con un angolo θ = 60 rispetto all orizzontale è posto un blocco di peso P = 1.0 N. La forza di contatto F che il piano esercita sul blocco vale in modulo: F = 9.8 N F = 0.5 N F =
Unità didattica 4. Quarta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia
Unità didattica 4 Fisica dei fluidi Stati della materia 2 Condizione di riposo di un liquido 3 La pressione idrostatica. 4 Principio di Pascal. 5 Esercizio 7 Variazione di pressione con la profondità..
Dinamica dei fluidi viscosi
a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Dinamica dei fluidi viscosi 14/3/2006 Ripartizione del sangue portata totale NQ diametro iniziale D diametro d dei rami secondari
Lezione 11. Fluido dinamica
Lezione 11 Fluido dinamica Equazione di Bernoulli per un fluido ideale L equazione di Bernoulli esprime la legge di conservazione dell energia totale di un fluido ideale che si muove in un condotto: Le
STATICA DEI FLUIDI G. ROBERTI
STATICA DEI FLUIDI G. ROBERTI FLUIDI G. Roberti Definizione:sostanze che assumono la forma dei recipienti che le contengono oppure Definizione: sostanze che si deformano senza che si compia lavoro ΔV /
IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO
A - IDRAULICA IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO' SUBIRE RILEVANTI VARIAZIONI
Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica
Fluidi I Stati della materia Densità e pressione Idrostatica Idrodinamica Stati della materia 1. Solido: indeformabile e incomprimibile 2. Liquido: deformabile e incomprimibile 3. Gassoso: deformabile
Meccanica dei fluidi. Fluidostatica (fluidi in quiete) Fluidodinamica (fluidi in movimento) Trasporto in regime viscoso
Meccanica dei fluidi Fluidostatica (fluidi in quiete) Fluidodinamica (fluidi in movimento) Trasporto in regime viscoso Densità m Unità di misura (S.I.): kg/m d = 3 V Funzione scalare di ogni punto del
