Lavoro. Teorema delle forze vive. Forze conservative. Teorema di conservazione dell energia meccanica.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lavoro. Teorema delle forze vive. Forze conservative. Teorema di conservazione dell energia meccanica."

Transcript

1 Lavoro. Teorema delle forze vive. Forze conservative. Teorema di conservazione dell energia meccanica. In Fisica, parlando di forze e di spostamenti, si fa ampio riferimento ad una grandezza scalare, il lavoro (compiuto da una forza). Tale grandezza si indica, generalmente, col simbolo LL e vale LL = FF ss = FFFF cccccc θθ, dove FF è la forza (o la risultante delle forze agenti), ss è lo spostamento del punto di applicazione della forza e θθ e l angolo compreso tra FF e ss. Stante la suddetta definizione di lavoro, risulta di semplice verifica che: se θθ = 0, allora LL = FF ss ; se θθ = 90 (θθ = 270 ), allora LL = 0; se θθ = 180, allora LL = FF ss ; supposto FF 0, allora LL 0 ss 0. Qualora si affronti il problema di calcolare il lavoro quando FF e (o) ss non sono costanti, ovvero lungo un generico percorso mistilineo, è possibile procedere nel seguente modo: si suddivide il tratto del percorso sul quale si intende calcolare il lavoro in elementi infinitesimali di lunghezza, dddd. Per ogni elemento di lunghezza è possibile assumere con precisione (tanto più elevata quanto più è minuziosa la suddivisione di ) FF ed ss costanti. A questo punto, si possono calcolare i corrispondenti elementi infinitesimali di lavoro δδδδ = FF ddss. La somma di tutti i contributi infinitesimi fornirà, evidentemente, il lavoro compiuto sull intero percorso. Tale somma vale: nn LL = δδll ii ii=1 nn = FF ddss ii ii=1 = FF ddss

2 Questo modo di calcolare il lavoro compiuto da una forza lungo un percorso qualsiasi torna utile nell ambito della verifica del cosiddetto Teorema delle forze vive. Il nome del teorema, oggi sostituito frequentemente da Teorema dell energia cinetica, deriva dall antica denominazione del semiprodotto della massa per il quadrato della velocità, definito vis viva, ovvero forza viva. Il teorema afferma che il lavoro compiuto da una qualunque forza FF su un corpo di massa mm, che si sposta da un punto ad un punto, è uguale alla variazione di energia cinetica KK = mm 2 vv2 tra il punto iniziale e finale. La dimostrazione parte dal secondo principio della dinamica: FF = mmaa = mm ddvv dddd FF ddss = mm ddvv dddd ddss Per ottenere dalla precedente espressione il lavoro, si procede ad integrare: LL = FF ddss = mm ddvv dddd ddss = mm ddvv Poiché esiste una sola componente della velocità, ovvero quella lungo la direzione tangenziale al percorso mistilineo, è possibile omettere la notazione vettoriale e procedere al calcolo dell integrale. Si ottiene, così: vv LL = mm dddd vv = 1 2 mmvv2 1 = 2 mmvv mmvv 2 = KK KK Si definisce, pertanto, energia cinetica la funzione: KK = 1 2 mmvv2 Il teorema sancisce, evidentemente, la sostanziale identità fra energia di un corpo (attitudine a compiere lavoro da parte del corpo stesso) e lavoro compiuto (dal corpo o sul corpo).

3 Il Teorema delle forze vive è applicabile esclusivamente quando si esamini un sistema in cui non agiscano forze dissipative. Questa precisazione è necessaria quanto la distinzione che occorre fare tra forza conservativa e forza non conservativa (o dissipativa). Una forza si dice conservativa se il lavoro da essa compiuto (ovvero l integrale di linea usato per calcolarlo) dipende solo dai punti e, ovvero dipende dall energia in e dall energia in. In altre parole, è equivalente dire che il lavoro compiuto da tale forza su un generico percorso chiuso è pari a 0. Vale, dunque: LL = FF ddss = EE(rr ) EE(rr ) LL = FF ddss = 0 Una forza si dice non conservativa, invece, se il lavoro che compie dipende dal particolare percorso seguito. Dunque, lungo un generico percorso chiuso di estremi e, si verifica che: EE(rr ) EE(rr ) Per cui, essendo dissipativa la forza, il lavoro è resistente. Ovvero: LL = FF ddss < 0 N.B. In generale, ogni forza derivante dalle interazioni fondamentali (ad esempio, la forza elettromagnetica e la forza gravitazionale) è conservativa.

4 La forza gravitazionale FF (rr ) = GG mmmm 2 rr compie un lavoro pari a: rr LL = GG mmmm rr 2 dddd = GGGGGG dddd rr 2 = GG mmmm rr = GG mmmm rr GG mmmm rr Si definisce, pertanto, energia potenziale gravitazionale la funzione: UU(rr) = GG mmmm rr Tale espressione si ottiene assumendo (per convenienza) infinita la distanza (rr ) del corpo da un punto di riferimento arbitrario. Essa, pertanto, rappresenta il lavoro compiuto dalle forze del campo gravitazionale sulla massa mm per portarla dal punto fino a distanza infinita. Di conseguenza, vale dunque: LL = FF GG ddss = UU(rr ) UU(rr ) che rappresenta la formulazione matematica del concetto prima espresso. Orbene, trovandoci in un campo di forze conservative, è possibile scrivere: LL = FF ddss = UU(rr ) UU(rr ) = KK KK da cui, considerando gli ultimi due membri dell equazione, deduciamo quello che prende il nome di Teorema di conservazione dell energia meccanica (dove per energia meccanica si intende la somma dell energia potenziale gravitazionale e dell energia cinetica di un corpo in un punto): KK + UU = KK + UU = EE MM N.B. Vale la pena notare che nella formulazione delle energie potenziale e cinetica è stata azzerata una costante, derivante dal calcolo integrale e dipendente dalle condizioni iniziali del moto. In generale, poiché tali energie sono definite, come si suol dire, a meno di una costante, esse sono grandezze matematiche. La loro differenza (lavoro) è una grandezza fisica poiché non dipende da tale costante, la quale si semplifica.

5 Nel caso in cui, con buona approssimazione, si possa considerare costante la forza di attrazione gravitazionale, ovvero FF = mmgg, l energia potenziale gravitazionale assume una forma più semplice. Infatti si può scrivere: LL = FF ddss = mmgg ddh = mmmmh mmmmh dove h rappresenta la componente di ss sull asse delle quote. Tale espressione viene solitamente utilizzata per studiare fenomeni che avvengono totalmente in prossimità della (o sulla) superficie terrestre. Un applicazione del Teorema di conservazione dell energia. Una semplice applicazione del teorema è quella che consente di calcolare, ad esempio, la velocità di fuga di un corpo (di massa mm), ovvero la minima velocità iniziale che deve essere impressa al corpo stesso affinché esso si allontani indefinitamente da una sorgente gravitazionale di massa MM. La minima velocità che consente ciò ad un corpo è quella che permette al corpo stesso di arrivare a distanza infinita dalla sorgente con velocità nulla, quindi con energia cinetica KK ff = 0 nel punto in cui UU ff = 0. Applicando il teorema, imponiamo: dove KK ii = 1 2 mmvv ii 2 e UU ii = GG mmmm RR. KK ii + UU ii = KK ff + UU ff Dopo aver sostituito nell equazione quanto scritto, ricaviamo esplicitamente: 1 2 mmvv ii 2 GG mmmm RR = 0 vv ii = vv FF = 2GGGG RR In questa espressione, vv FF è proprio la velocità di fuga (minima) ricercata. In generale, per la fuga del corpo dalla sorgente del campo gravitazionale vale la seguente espressione: vv FF 2GGGG RR Qualche dato: per la Terra vv FF = 11,2kkkk/ss; per il Sole vv FF = 617,3kkkk/ss.

6 Affrontiamo, adesso, il problema della probabile presenza di forze non conservative (es. forza di attrito) agenti sul corpo, le quali, per la loro natura dissipativa, fanno sì che non vengano più rispettati il Teorema delle forze vive ed il Teorema di conservazione dell energia meccanica. Ricordando la definizione di forza non conservativa e le proprietà descritte, possiamo riscrivere il Teorema delle forze vive al seguente modo: LL = FF CC + FF DD ddss = 1 2 mmvv mmvv 2 dove FF CC è la risultante delle forze conservative e FF DD la risultante delle forze dissipative. Ancora di conseguenza alla definizione data, è possibile scrivere: LL FFDD = EE EE = FF DD ddss EE = EE + FF DD ddss da cui risulta evidente la non conservatività, poiché LL FFDD 0. Inoltre, è bene ricordare che, essendo LL FFDD < 0, risulta sempre EE < EE. Ciò sottolinea che, in presenza di forze dissipative, l energia meccanica del sistema non si conserva: piuttosto, essa si trasforma parzialmente (talvolta totalmente) in altre forme di energia, ad esempio in energia termica (calore). Vincenzo Ventriglia

Legge di gravitazione universale

Legge di gravitazione universale Legge di gravitazione universale Famosissima è la legge che fu ispirata, come i libri sono soliti raccontare, dalla caduta di una mela sulla testa di Isaac Newton (1642-1727). Questa nota relazione, che

Dettagli

LAVORO, POTENZA ED ENERGIA

LAVORO, POTENZA ED ENERGIA LAVORO, POTENZA ED ENERGIA Giuseppe Frangiamore con la collaborazione di Leonardo Zaffuto Solitamente si dice di compiere un lavoro ogni volta che si esegue un attività di tipo fisico o mentale. Quando

Dettagli

Nome..Cognome.. Classe 4D 18 dicembre VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4D 18 dicembre VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4D 8 dicembre 008 EIFICA DI FISICA: lavoro ed energia Domande ) Forze conservative ed energia potenziale: (punti:.5) a) Dai la definizione di forza conservativa ed indicane le proprietà.

Dettagli

Il lavoro e l energia

Il lavoro e l energia Il lavoro e l energia Il concetto fondamentale che mette in relazione forze, spostamenti ed energia è quello di lavoro Lavoro di una forza costante Nel caso di forza e spostamento con uguale direzione

Dettagli

Lavori e Forze Fisica Natali Mattia. della forza rispetto al tempo nell intervallo considerato: I t 1. I ( t 1. ( ) Q ( t 1 ).

Lavori e Forze Fisica Natali Mattia. della forza rispetto al tempo nell intervallo considerato: I t 1. I ( t 1. ( ) Q ( t 1 ). Impulso e quantità di moto: Lavori e Forze Impulso: l impulso di una forza variabile in un certo intervallo di tempo è definito come l integrale della forza rispetto al tempo nell intervallo considerato:

Dettagli

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro ed energia Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Moto uniformemente accelerato 1) v=v 0 +a(t-t 0 ) 2) s=s 0 +v 0 (t-t 0 )+½a(t-t 0 ) 2 s=s

Dettagli

Il lavoro e l energia

Il lavoro e l energia Il lavoro e l energia Il concetto fondamentale che mette in relazione forze, spostamenti ed energia è quello di lavoro Lavoro di una forza costante Nel caso di forza e spostamento con uguale direzione

Dettagli

Dinamica del punto materiale parte seconda

Dinamica del punto materiale parte seconda Dinamica del punto materiale parte seconda a.a. 2017-2018 Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci Dinamica del punto materiale parte seconda a.a. 2017-2018 Testo di riferimento:

Dettagli

Si chiama campo di forze una zona di spazio in cui sia possibile associare ad ogni punto un vettore forza

Si chiama campo di forze una zona di spazio in cui sia possibile associare ad ogni punto un vettore forza Lavoro ed Energia Si chiama campo di forze una zona di spazio in cui sia possibile associare ad ogni punto un vettore forza F= F r cioè la forza agente sul punto dipende dalla sua posizione. Un campo di

Dettagli

Il lavoro e l energia

Il lavoro e l energia Il lavoro e l energia Il concetto fondamentale che mette in relazione forze, spostamenti ed energia è quello di lavoro Lavoro di una forza costante Nel caso di forza e spostamento con uguale direzione

Dettagli

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro ed energia Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro di una forza Consideriamo una forza F applicata ad un punto materiale P che si sposti

Dettagli

IL LAVORO E L ENERGIA. che si possono trasformare tra loro lasciando invariata la quantità totale di energia.

IL LAVORO E L ENERGIA. che si possono trasformare tra loro lasciando invariata la quantità totale di energia. IL LAVORO E L ENERGIA ENERGIA: Grandezza scalare associata allo stato di un corpo Esistono varie forme: Energia cinetica Energia potenziale Energia elettrica Energia chimica Energia termica Energia elastica..

Dettagli

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO Elisabetta Bissaldi (Politecnico di Bari) 2 L elettromagnetismo INTERAZIONE ELETTROMAGNETICA = INTERAZIONE FONDAMENTALE Fenomeni elettrici e fenomeni

Dettagli

IL LAVORO E LE ENERGIE Giuseppe Frangiamore con la collaborazione di Carmelo Bastillo

IL LAVORO E LE ENERGIE Giuseppe Frangiamore con la collaborazione di Carmelo Bastillo Il lavoro IL LAVORO E LE ENERGIE Giuseppe Frangiamore con la collaborazione di Carmelo Bastillo Il lavoro è una grandezza scalare, ed è definito dal prodotto di forza per spostamento. L unità di misura

Dettagli

Lavoro ed energia. A.Solano - Fisica - CTF

Lavoro ed energia. A.Solano - Fisica - CTF Lavoro ed energia Lavoro Energia cinetica Teorema dell energia cinetica Forze conservative Energia potenziale Principio di conservazione dell energia meccanica Potenza Lavoro di una forza costante m F

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

IL POTENZIALE ELETTRICO

IL POTENZIALE ELETTRICO IL POTENZIALE ELETTRICO Alessandro Giuseppe Antonio Anastasio Volta (Como, 18 febbraio 1745 Como, 5 marzo 1827) TRATTO DA: I PROBLEMI DELLA FISICA- Cutnell, Johnson, Young, Standler Zanichelli editore

Dettagli

Lecce- XI scuola estiva di fisica Mirella Rafanelli. I sistemi estesi. La dinamica oltre il punto..

Lecce- XI scuola estiva di fisica Mirella Rafanelli. I sistemi estesi. La dinamica oltre il punto.. Lecce- XI scuola estiva di fisica - 2018 Mirella Rafanelli I sistemi estesi La dinamica oltre il punto.. Lecce- XI scuola estiva di fisica - 2018 Mirella Rafanelli Nota bene: quanto segue serve come strumento

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

S 2 S 1 S 3 S 4 B S 5. Figura 1: Cammini diversi per collegare i due punti A e B

S 2 S 1 S 3 S 4 B S 5. Figura 1: Cammini diversi per collegare i due punti A e B 1 ENERGI PTENZILE 1 Energia potenziale 1.1 orze conservative Se un punto materiale è sottoposto a una forza costante, cioè che non cambia qualunque sia la posizione che il punto materiale assume nello

Dettagli

Esercizio (tratto dal Problema 4.28 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.28 del Mazzoldi 2) Esercizio (tratto dal Problema 4.28 del Mazzoldi 2) Un punto materiale di massa m = 20 gr scende lungo un piano inclinato liscio. Alla fine del piano inclinato scorre su un tratto orizzontale scabro (µ

Dettagli

approfondimento Lavoro ed energia

approfondimento Lavoro ed energia approfondimento Lavoro ed energia Lavoro compiuto da una forza costante W = F. d = F d cosθ dimensioni [W] = [ML T - ] Unità di misura del lavoro N m (Joule) in MKS dine cm (erg) in cgs N.B. Quando la

Dettagli

Dinamica III. Lavoro ed Energia. A.Romero Restauro-Dinamica III-Lavoro 1

Dinamica III. Lavoro ed Energia. A.Romero Restauro-Dinamica III-Lavoro 1 Dinamica III Lavoro ed Energia.Romero Restauro-Dinamica III-Lavoro 1 Lavoro di una forza costante Se il punto materiale a cui è applicata una forza subisce uno spostamento ed esiste una componente della

Dettagli

FLUSSO E CIRCUITAZIONE DEL

FLUSSO E CIRCUITAZIONE DEL FLUSSO E CIRCUITAZIONE DEL CAMPO MAGNETICO PREMESSA Il concetto di campo elettromagnetico fu intuito da Faraday e precisato da Maxwell. Può essere espresso dicendo che la presenza di cariche elettriche

Dettagli

Lezione 5. L equilibrio dei corpi. Lavoro ed energia.

Lezione 5. L equilibrio dei corpi. Lavoro ed energia. Lezione 5 L equilibrio dei corpi. Lavoro ed energia. Statica E la parte della Meccanica che studia l equilibrio dei corpi. Dai principi della dinamica sappiamo che se su un corpo agiscono delle forze allora

Dettagli

Relazioni fondamentali nella dinamica dei sistemi

Relazioni fondamentali nella dinamica dei sistemi Relazioni fondamentali nella dinamica dei sistemi L. P. 2 Maggio 2010 1. Quantità di moto e centro di massa Consideriamo un sistema S costituito da N punti materiali. Il punto i (i = 1,..., N) possiede

Dettagli

Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy)

Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy) Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: 0000695216 Cognome e nome: (dati nascosti per tutela privacy) 1. Di quanto ruota in un giorno sidereo il piano di oscillazione del pendolo di

Dettagli

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013 POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 I a prova in itinere, 10 maggio 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.

Dettagli

FORZE E PRINCIPI DELLA DINAMICA (1/29)

FORZE E PRINCIPI DELLA DINAMICA (1/29) FORZE E PRINCIPI DELLA DINAMICA (1/29) una forza applicata ad un corpo, libero di muoversi, lo mette in movimento o lo arresta (effetto dinamico della forza); una forza, applicata ad un corpo vincolato,

Dettagli

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro ed energia Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Moto uniformemente accelerato 1) v=v 0 +a(t-t 0 ) 2) s=s 0 +v 0 (t-t 0 )+½a(t-t 0 ) 2 s=s

Dettagli

Energia meccanica. Lavoro Energia meccanica Concetto di campo in Fisica. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_)

Energia meccanica. Lavoro Energia meccanica Concetto di campo in Fisica. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Energia meccanica Lavoro Energia meccanica Concetto di campo in Fisica Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro potete

Dettagli

F ds dipende dal percorso effettuato. Basta infatti considerare il lavoro compiuto da una forza di attrito radente: F att =

F ds dipende dal percorso effettuato. Basta infatti considerare il lavoro compiuto da una forza di attrito radente: F att = 2 ENERGIE POTENZIALI DI ALCUNE FORZE Parte I 1 4.5 - Forze conservative In generale il lavoro L = f i F ds dipende dal percorso effettuato. Basta infatti considerare il lavoro compiuto da una forza di

Dettagli

4a.Energia di un sistema

4a.Energia di un sistema 4a.Energia di un sistema In questo capitolo non ci concentriamo semplicemente su un corpo schematizzato come un punto materiale ma su una piccola porzione di universo detta sistema. Un sistema può essere:

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

Densità e volume specifico

Densità e volume specifico Densità e volume specifico Si definisce densità di un corpo,, il rapporto tra la sua massa, m, e il suo volume, V; essa quantifica la massa dell unità di volume. m = = V [ kg] 3 [ m ] E utile considerare

Dettagli

CAPACITÀ DI UN CORPO A COMPIERE LAVORO

CAPACITÀ DI UN CORPO A COMPIERE LAVORO ENERGIA CAPACITÀ DI UN CORPO A COMPIERE LAVORO Molti sono i tipi di energia CINETICA POTENZIALE GRAVITÀ POTENZIALE ELASTICA POTENZIALE ELETTRICA TERMICA (CALORE) CHIMICA NUCLEARE ECC. Corso di fisica 1

Dettagli

Lavoro ed Energia. r A. < 0 --> lavoro resistente

Lavoro ed Energia. r A. < 0 --> lavoro resistente Lavoro ed Energia Lavoro di una forza 1) forza f indipendente dal punto di applicazione e dal tempo. Se il suo punto di applicazione effettua uno spostamento AB, si definisce lavoro della forza f = f AB

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una

Dettagli

Soluzione del Secondo Esonero A.A , del 28/05/2013

Soluzione del Secondo Esonero A.A , del 28/05/2013 Soluzione del Secondo Esonero A.A. 01-013, del 8/05/013 Primo esercizio a) Sia v la velocità del secondo punto materiale subito dopo l urto, all inizio del tratto orizzontale con attrito. Tra il punto

Dettagli

MOTO CIRCOLARE UNIFORME

MOTO CIRCOLARE UNIFORME MOTO CIRCOLARE UNIFORME La velocita di un corpo puo variare in modulo (valore), ma anche in direzione e/o verso (e un vettore!) P 2 P 1 Un corpo si muove di moto circolare uniforme se percorre una circonferenza

Dettagli

Lavoro. Energia. Mauro Saita Versione provvisoria, febbraio Lavoro è forza per spostamento

Lavoro. Energia. Mauro Saita   Versione provvisoria, febbraio Lavoro è forza per spostamento Lavoro. Energia. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, febbraio 2015. Indice 1 Lavoro è forza per spostamento 1 1.1 Lavoro compiuto da una forza variabile. Caso bidimensionale..........

Dettagli

Meccanica. 3 - Energia

Meccanica. 3 - Energia Meccanica 3 - Energia 1 Introduzione alla Fisica Classica Il lavoro 2 Lavoro Il lavoro misura l'effetto utile di una forza con uno spostamento. 1) Forza e spostamento paralleli (stessa direzione e verso).

Dettagli

Lezione 5 Dinamica del punto

Lezione 5 Dinamica del punto ezione 5 Dinamica del punto rgomenti della lezione avoro Potenza Energia cinetica avoro forza peso avoro forza d attrito avoro Studiando cosa succede integrando la forza nel tempo siamo arrivati alla definizione

Dettagli

Lezione 3 Dinamica del punto

Lezione 3 Dinamica del punto Lezione 3 Dinamica del punto Argomenti della lezione Principio di inerzia (prima legge di ewton) 2 legge di ewton 3 legge di ewton (principio di azione e reazione) Quantità di moto Risultante delle forze

Dettagli

METODOLOGIE DIDATTICHE PER L INSEGNAMENTO DELLA TECNOLOGIA

METODOLOGIE DIDATTICHE PER L INSEGNAMENTO DELLA TECNOLOGIA CORSO DI TIROCINIO FORMATIVO ATTIVO (TFA) CLASSE DI CONCORSO A033 METODOLOGIE DIDATTICHE PER L INSEGNAMENTO DELLA TECNOLOGIA ANNO ACCADEMICO 2014/15 PROF. GIUSEPPE NATALE Meccanica e macchine 2 La Meccanica

Dettagli

F ds dipende dal percorso effettuato. Basta infatti considerare il lavoro compiuto da una forza di attrito radente: F att = B

F ds dipende dal percorso effettuato. Basta infatti considerare il lavoro compiuto da una forza di attrito radente: F att = B In generale il lavoro L = f i F ds dipende dal percorso effettuato. Basta infatti considerare il lavoro compiuto da una forza di attrito radente: F att = B A µ dnds = µ d N B A ds = µ dnl AB con Indipendendenza

Dettagli

Forze Conservative. In generale il lavoro fatto da una forza (più precisamente, da un campo di forze):

Forze Conservative. In generale il lavoro fatto da una forza (più precisamente, da un campo di forze): Forze Conservative In generale il lavoro fatto da una forza (più precisamente, da un campo di forze): L = f i F d r, può dipendere dal percorso seguito dalla particella. Se il lavoro fatto da una forza

Dettagli

LAVORO ED ENERGIA. Dott.ssa Silvia Rainò

LAVORO ED ENERGIA. Dott.ssa Silvia Rainò 1 LAVORO ED ENERGIA Dott.ssa Silvia Rainò Lavoro ed Energia 2 Consideriamo il moto di un oggetto vincolato a muoversi su una traiettoria prestabilita, ad esempio: Un treno vincolato a muoversi sui binari.

Dettagli

T = k x = N, 1 k x 2 = J.

T = k x = N, 1 k x 2 = J. Esercizio a) La tensione del ilo è pari in modulo alla orza esercitata dalla molla: T = k x = 8 0 - N, dove x è la compressione della molla. b) L Energia meccanica E m del sistema è data dalla somma dell

Dettagli

Corso di Fisica generale

Corso di Fisica generale Corso di Fisica generale Liceo Scientifico Righi, Cesena Anno Scolastico 2014/15 3B Appunti su Lavoro ed Energia Riccardo Fabbri 1 (Dispense ed esercizi su www.riccardofabbri.eu) Il Lavoro Il lavoro fatto

Dettagli

P = mg; F N = mg cosα; F A = µ d F N = µ d mg cosα.

P = mg; F N = mg cosα; F A = µ d F N = µ d mg cosα. Esercizio 1 a) Fissiamo un asse di riferimento x parallelo al piano inclinato, diretto verso l alto e con origine nella posizione iniziale del corpo alla base del piano. Sia m la massa del corpo, P la

Dettagli

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti.

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8 Esempio arciere su una superficie ghiacciata che scocca la freccia: l arciere (60 kg) esercita una forza sulla freccia 0.5 kg (che parte in avanti con

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi.

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi. Esercizi 2.04.8 3 aprile 208 Sommario Conservazione dell energia e urti a due corpi. Conservazione dell energia. Esercizio Il motore di un ascensore solleva con velocità costante la cabina contenente quattro

Dettagli

Esonero 14 Novembre 2016

Esonero 14 Novembre 2016 Esonero 14 Novembre 2016 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 2016-2017 Esercizio 1 Un corpo di massa m è inizialmente fermo

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

CAPITOLO 6 CAMPI MAGNETICI

CAPITOLO 6 CAMPI MAGNETICI CAPITOLO 6 CAMPI MAGNETICI Elisabetta Bissaldi (Politecnico di Bari) 2 Interazione magnetica Magnetismo: proprietà osservata fin dall antichità in alcuni minerali (es. MAGNETITE) di attirare la limatura

Dettagli

Conservazione dell energia

Conservazione dell energia Conservazione dell energia gisce solo la gravità, trascuriamo l attrito er calcolare la velocità nel punto per mezzo del II principio della dinamica, oltre a conoscere la velocità iniziale v, è anche necessario

Dettagli

Misura del coefficiente d attrito dinamico

Misura del coefficiente d attrito dinamico Naomi Sparacia Christian Angel Ginelli Alberto Benatti 4 A 8/10/2010 Laboratorio di fisica del Liceo Scientifico Leonardo da Vinci di Gallarate Misura del coefficiente d attrito dinamico Materiale utilizzato

Dettagli

Meccanica dei sistemi di punti materiali

Meccanica dei sistemi di punti materiali Meccanica dei sistemi di punti materiali Centro di massa Conservazione della quantità di moto Teorema del momento angolare Conservazione del momento angolare Teoremi di König Urti Antonio Pierro @antonio_pierro_

Dettagli

Capitolo 5. Primo principio della Termodinamica nei sistemi aperti

Capitolo 5. Primo principio della Termodinamica nei sistemi aperti Capitolo 5. Primo principio della Termodinamica nei sistemi aperti 5.1. I sistemi aperti I sistemi aperti sono quei sistemi termodinamici nei quali, oltre allo scambio di lavoro e calore è possibile lo

Dettagli

Dinamica dei sistemi di punti

Dinamica dei sistemi di punti Dinamica dei sistemi di punti Trattazione semplificata per i Licei The ascheroni CAD Team Federico Fabrizi Pietro Pennestrì www.geogebraitalia.org 16 dicembre 2012 1 Centro di massa Dato un sistema di

Dettagli

Opera rilasciata sotto licenza CC BY-NC-SA 3.0 Italia da Studio Bells (www.studiobells.it)

Opera rilasciata sotto licenza CC BY-NC-SA 3.0 Italia da Studio Bells (www.studiobells.it) Esercizio 001 Si consideri un piano inclinato di un angolo = 30 rispetto all orizzontale e di lunghezza L = 1 m. Sul piano è posta una massa m = 5, 0 kg collegata alla cima del piano tramite una molla

Dettagli

Dinamica. Obbiettivo: prevedere il moto dei corpi una volta note le condizioni iniziali e le interazioni con l'ambiente

Dinamica. Obbiettivo: prevedere il moto dei corpi una volta note le condizioni iniziali e le interazioni con l'ambiente Dinamica Obbiettivo: prevedere il moto dei corpi una volta note le condizioni iniziali e le interazioni con l'ambiente Tratteremo la Dinamica Classica, valida solo per corpi per i quali v

Dettagli

Prova del 3 Marzo, Traccia della soluzione. Problema n. 1

Prova del 3 Marzo, Traccia della soluzione. Problema n. 1 IIASS International Institute for Advanced Scientific Studies Eduardo R. Caianiello Circolo di Matematica e Fisica Dipartimento di Fisica E.R. Caianiello Università di Salerno Premio Eduardo R. Caianiello

Dettagli

FISICA. MECCANICA: Principio conservazione energia meccanica. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. MECCANICA: Principio conservazione energia meccanica. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA MECCANICA: Principio conservazione energia meccanica Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica INTRODUZIONE Nei fenomeni che osserviamo vi sono molte grandezze che cambiano

Dettagli

Numero progressivo: 15 Turno: 1 Fila: 2 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy)

Numero progressivo: 15 Turno: 1 Fila: 2 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy) Numero progressivo: 15 Turno: 1 Fila: 2 Posto: 1 Matricola: 0000731097 Cognome e nome: (dati nascosti per tutela privacy) 1. Un corpo di peso pari a 10 N è appoggiato su di un tavolo, in quiete. Qual è

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

Lezioni del Corso PROPULSIONE SPAZIALE aa Marcello Onofri VARIABILI TERMODINAMICHE ED EQUAZIONI DI CONSERVAZIONE

Lezioni del Corso PROPULSIONE SPAZIALE aa Marcello Onofri VARIABILI TERMODINAMICHE ED EQUAZIONI DI CONSERVAZIONE Lezioni del Corso PROPULSIONE SPAZIALE aa 2018-19 Lez. 05 Marcello Onofri VARIABILI TERMODINAMICHE ED EQUAZIONI DI CONSERVAZIONE NOTA: Le variabili termodinamiche d interesse propulsivo da Liepmann H.W.-Roshko

Dettagli

E K = 1 2 mv 2. A.A. 2014/15 Fisica 1 1

E K = 1 2 mv 2. A.A. 2014/15 Fisica 1 1 Lavoro ed energia Le relazioni ricavate dalla cinematica e dalla dinamica permettono di descrivere il moto di un oggetto puntiforme note le variabili cinematiche e le forze applicate all oggetto in funzione

Dettagli

Il candidato descriva in generale l importanza delle leggi di conservazione in fisica e successivamente discuta l applicazione di una di queste leggi.

Il candidato descriva in generale l importanza delle leggi di conservazione in fisica e successivamente discuta l applicazione di una di queste leggi. Il candidato descriva in generale l importanza delle leggi di conservazione in fisica e successivamente discuta l applicazione di una di queste leggi. Una legge di conservazione è un'espressione matematicamente

Dettagli

Fisica Introduzione

Fisica Introduzione Fisica 1 2011-2012 Introduzione 1 FISICA GENERALE Meccanica: -Studio del moto dei corpi -Forza di gravità Elettromagnetismo: - Cariche elettriche, magneti FISICA CLASSICA FISICA MODERNA Fenomeni a livello

Dettagli

PRINCIPIO DEI LAVORI VIRTUALI (PLV) 1. PREMESSA

PRINCIPIO DEI LAVORI VIRTUALI (PLV) 1. PREMESSA PRINCIPIO DEI LAVORI VIRTUALI (PLV) 1. PREMESSA Il Principio dei lavori Virtuali, PLV, la cui enunciazione risale al XVII-XVIII secolo ad opera di numerosi studiosi, tra i quali Cartesio, Bernoulli, Fourier

Dettagli

Il problema dei due corpi La dinamica planetaria

Il problema dei due corpi La dinamica planetaria Il problema dei due corpi La dinamica planetaria La Meccanica Classica Lagrange Hamilton Jacobi Vettori Per rendere conto della 3-dimensionalità in fisica, e in matematica, si usano delle grandezze più

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 07-08 Dinamica del punto materiale 9 pprossimazioni per piccoli angoli v ± gl sin tan v gl Limite di piccoli angoli: 0 6 cos +... 3 tan + +... 3 3 sin +... Serie di Taylor: pprossimazioni per

Dettagli

Corso di Fisica generale

Corso di Fisica generale Corso di Fisica generale Liceo Scientifico Righi, Cesena Anno Scolastico 2014/15 3B Appunti su Forze Conservative, Dissipative, e conservazione della Energia Totale di un Sistema Riccardo Fabbri 1 (Dispense

Dettagli

Conservazione dell energia

Conservazione dell energia mercoledì 15 gennaio 2014 Conservazione dell energia Problema 1. Un corpo inizialmente fermo, scivola su un piano lungo 300 m ed inclinato di 30 rispetto all orizzontale, e, dopo aver raggiunto la base,

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente 1 Definizione di lavoro 8. Energia e lavoro Consideriamo una forza applicata ad un corpo di massa m. Per semplicità ci limitiamo, inizialmente ad una forza costante, come ad esempio la gravità alla superficie

Dettagli

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 07/07/2014 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Un blocco di legno di massa M = 1 kg è appeso ad un filo di lunghezza l = 50 cm. Contro il blocco

Dettagli

URTI: Collisioni o scontro fra particelle libere [e vincolate].

URTI: Collisioni o scontro fra particelle libere [e vincolate]. URTI: Collisioni o scontro fra particelle libere [e vincolate]. Due punti materiale (o corpi estesi) collidono quando durante il loro moto si vengono a trovare nello stesso punto (o regione) dello spazio,

Dettagli

ESERCIZIO 1 SOLUZIONI

ESERCIZIO 1 SOLUZIONI - ESERCIZIO - Un corpo di massa m = 00 g si trova su un tavolo liscio. Il corpo m è mantenuto inizialmente fermo, appoggiato ad una molla di costante elastica k = 00 N/m, inizialmente compressa. Ad un

Dettagli

LAVORO ENERGIA Domande Esercizi. 1. Cosa significa dire che un sistema fisico possiede energia utile?

LAVORO ENERGIA Domande Esercizi. 1. Cosa significa dire che un sistema fisico possiede energia utile? 1. Cosa significa dire che un sistema fisico possiede energia utile? 2. Qual è la relazione che descrive l energia potenziale gravitazionale? 3. Un bambino solleva dal pavimento un giocattolo e lo mette

Dettagli

G. Bracco - Appunti di Fisica Generale

G. Bracco - Appunti di Fisica Generale Sistemi di punti materiali Finora abbiamo considerato solo un punto materiale ma in genere un corpo ha dimensione tale da non poter essere assimilato ad un punto materiale. E sempre opportuno definire

Dettagli

ENERGIA MECCANICA. DOWNLOAD Il pdf di questa lezione (0404a.pdf) è scaricabile dal sito calvini/scamb/ 04/04/2012

ENERGIA MECCANICA. DOWNLOAD Il pdf di questa lezione (0404a.pdf) è scaricabile dal sito  calvini/scamb/ 04/04/2012 ENERGIA MECCANICA DOWNLOAD Il pdf di questa lezione (0404a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 04/04/2012 CONSERVAZIONE DELL ENERGIA MECCANICA L applicazione del teorema dell

Dettagli

ISTITUTO STATALE DI ISTRUZIONE SUPERIORE VITTORIO FOSSOMBRONI Via Sicilia, GROSSETO CLASSE: I

ISTITUTO STATALE DI ISTRUZIONE SUPERIORE VITTORIO FOSSOMBRONI Via Sicilia, GROSSETO CLASSE: I ISTITUTO STATALE DI ISTRUZIONE SUPERIORE VITTORIO FOSSOMBRONI Via Sicilia, 45 58100 GROSSETO A. S. 2015/2016 PROGRAMMA CON CONTENUTI MINIMI PER GLI STUDENTI CON SOPENSIONE DI GIUDIZIO MATERIA : FISICA

Dettagli

Compito di gennaio 2001

Compito di gennaio 2001 Compito di gennaio 001 Un asta omogenea A di massa m e lunghezza l è libera di ruotare attorno al proprio estremo mantenendosi in un piano verticale All estremità A dell asta è saldato il baricentro di

Dettagli

Teoria dei Sistemi Dinamici

Teoria dei Sistemi Dinamici Teoria dei Sistemi Dinamici 01GTG - 0GTG Soluzione dell Esame del 03/11/009 1 Esercizio 1 Sistema meccanico 1.1 Testo Si consideri il sistema meccanico planare schematizzato nella Fig. 1, descritto come

Dettagli

CAPITOLO 9: LA GRAVITAZIONE. 9.1 Introduzione.

CAPITOLO 9: LA GRAVITAZIONE. 9.1 Introduzione. CAPITOLO 9: LA GRAVITAZIONE 9.1 Introduzione. Un altro tipo di forza piuttosto importante è la forza gravitazionale. Innanzitutto, è risaputo che nel nostro sistema di pianeti chiamato sistema solare il

Dettagli

1 PARZIALE - FISICA I per SCIENZE GEOLOGICHE A.A. 2018/2019, 11 febbraio 2019

1 PARZIALE - FISICA I per SCIENZE GEOLOGICHE A.A. 2018/2019, 11 febbraio 2019 PARZIALE - FISICA I per SCIENZE GEOLOGICHE A.A. 208/209, febbraio 209 ESERCIZIO PREREQUISITI In un piano cartesiano XY sono dati il vettore a = 2i + 2j e un vettore b giacente sull asse X. a) le coordinate

Dettagli

Campi conservativi ed energia potenziale

Campi conservativi ed energia potenziale Campi conservativi ed energia potenziale Definizione di campo conservativo Come abbiamo visto, la formula L= AB fornisce il lavoro compiuto dalla forza del campo nello spostamento di un corpo materiale

Dettagli

Sistema arciere-arco

Sistema arciere-arco Sistema arciere-arco Consideriamo un ragazzo su uno sateboard mentre cade. Oltre alla forza peso che gestisce il moto verso il basso durante la caduta, nella direzione orizzontale al terreno avremo che

Dettagli

DINAMICA DEI SISTEMI DI PUNTI MATERIALI

DINAMICA DEI SISTEMI DI PUNTI MATERIALI DINAMICA DEI SISTEMI DI PUNTI MATERIALI DOWNLOAD Il pdf di questa lezione (0418a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 18/04/2012 CENTRO DI MASSA Si consideri un insieme di

Dettagli

Una formulazione equivalente è Il moto di un singolo punto materiale isolato è rettilineo uniforme (o è fermo):

Una formulazione equivalente è Il moto di un singolo punto materiale isolato è rettilineo uniforme (o è fermo): I PRINCIPI DELLA MECCANICA In queste note i principi della dinamica vengono formulati utilizzando soltanto le definizioni di accelerazione e velocità istantanee della Cinematica. Le lettere in grassetto

Dettagli

Lavoro. F=F(r) e in generale una funzione della posizione e

Lavoro. F=F(r) e in generale una funzione della posizione e Lavoro Consideriamo un corpo che si sposta da un punto ad un punto lungo una certa traiettoria l e sia F una forza agente sul corpo. Definiamo lavoro fatto dalla forza F sul corpo lungo la traiettoria

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Sistemi

Dettagli