Lagrangiane. Fenomenologia delle Interazioni Forti. Diego Bettoni Anno Accademico

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lagrangiane. Fenomenologia delle Interazioni Forti. Diego Bettoni Anno Accademico"

Transcript

1 Lgngine Fenomenologi delle Intezioni Foti Diego Bettoni Anno Accdemico 8-9

2 D. Bettoni Fenomenologi Intezioni Foti Notzione Reltivistic ( ) ( ) ( ),, ;,, ;,, ; g g b b b b b tensoe metico somm sugli indici ipetuti podotto scle ( ) ; ; z y x t x t + z y x t

3 Lgngine L T V t S Ldt t Lgngin Azione. Minimizzt dà oigine lle equzioni di Eule-Lgnge Esempio: Elettodinmic E, B A, V J, ρ Cmpi Potenzili Coenti E B V A A t D. Bettoni Fenomenologi Intezioni Foti

4 A F ( V; A) ( A ; A) J A ( ρ; J ) A Qudipotenzile Qudicoente Tensoe del cmpo elettomgnetico F i i i i ij i j j i ijk k A A E ( E B ) V + J A F Ossevimo che F è esplicitmente invinte pe tsfomzioni: F L ρ F A A + + A χ χ L 4 A χ F ε F B temine cinetico J A Lgngin di intezione Dt quest lgngin le equzioni di Eule-Lgnge dnno le equzioni di Mxwell. D. Bettoni Fenomenologi Intezioni Foti 4

5 Lgngine in Fisic delle Pticelle L fisic delle pticelle viene fomult dndo l Lgngin. L Lgngin definisce l teoi. Contiene le pticelle elementi Gli oggetti composti sono stti legti che emegono come soluzioni. Pe l elettodinmic il fotone è qunto del cmpo ed è ppesentto dl potenzile A. L elettone è ppesentto dl cmpo femionico ψ. L intezione è il temine J A. Più pecismente è l pte di enegi potenzile dell Lgngin che definisce l teoi. L lgngin è un singol funzione che detemin l dinmic e deve essee invinte in ogni spzio. D. Bettoni Fenomenologi Intezioni Foti 5

6 Cmpo Rele Scle ( x) Cmpo ele scle. L ( m ) temine di mss temine cinetico Quest lgngin implic che il cmpo soddisfi l equzione d ond: + m Equzione di Klein-Godon E p + m E i p i E p + L definit fino è l densità lgngin. L Lgngin ve e popi è: L L 4 ( x, t) d x D. Bettoni Fenomenologi Intezioni Foti 6

7 Come esempio costuimo k un cmpo nomlizzto un singolo qunto di enegi e impulso. C cos k t soluzione dell equzione d ond se k + m L & & ( ) Hmiltonin ssocit d un lgngin: Enegi Totle: E Hd x ( ( ) ) & + m H + ( ( ) ) & + m L H & L & E + d x D. Bettoni Fenomenologi Intezioni Foti 7

8 D. Bettoni Fenomenologi Intezioni Foti 8 ( ) ( ) ( ) [ ] ( ) cos sin C m k C x d t k m t k k C E C E h ( ) ( ) [ ] t k i t k i e e +

9 Cezione e Distuzione di Pticelle n k Supponimo k di vee uno stto con n pticelle l tempo t, tutte di enegi e impulso : n k e int Uno stto con un pticell in meno sà descitto d: Opetoe di cezione Opetoe di distuzione [ ( ) ( )] i k t i k t e + e n k e i ( n) t Ogni cmpo quntistico può cee o distuggee pticelle. Pe un deivzione complet bisogn quntizze il cmpo scle, nlogmente ll quntizzzione del cmpo elettomgnetico che pot ll intepetzione del fotone come qunto dell intezione. D. Bettoni Fenomenologi Intezioni Foti 9

10 Sogenti e Coenti in Teoi di Cmpo non Reltivistic Equzione di Schödinge: iψ ρ Ψ v i J m Ψ mi + t ( Ψ Ψ Ψ Ψ ) ρ + J t Ψ i Ce Ψ ( p t ) iψ Moltiplichimo pe l equzione e pe l compless coniugt. Definimo: ottenimo: Pe un pticell libe: C ρ Densità di pobbilità J p ρ m Densità di coente D. Bettoni Fenomenologi Intezioni Foti

11 Cmpo Complesso Scle L ( m ) + ( m ) + i, Consideimo due cmpi scli con l stess mss m. Possimo combine i due cmpi in un unico cmpo complesso : Ottenimo pe l Lgngin: L * m i * * D. Bettoni Fenomenologi Intezioni Foti

12 Ruotimo i due cmpi di un ngolo α: cosα + sinα sinα + cosα + i e iα * e iα * L lgngin non cmbi in seguito quest tsfomzione, pechè dipende soltnto d *. D. Bettoni Fenomenologi Intezioni Foti

13 Consideimo α infinitesimo: + ( iα ) iα δ δ iα * δ iα * δl L δ ( ) + * ( ) Risultto indipendente di dettgli dell tsfomzione δl conseved cuent δ * * L α S S i( ) δl S D. Bettoni Fenomenologi Intezioni Foti

14 * S S se. In un teoi eltivistic se coisponde un pticell con cic elettic e, * coisponde ll ntipticell con cic elettic e ed S si può intepete come un densità di cic e di coente. Si h quindi un equzione di continuità che espime l consevzione dell cic elettic. Quest tttzione si pplic qulsisi tipo di cic, non necessimente elettic. L tsfomzione di fse tttt si chim tsfomzione di guge globle. Se il pmeto α visse con posizione e/o tempo α α(x,t) si vebbe un tsfomzione di guge locle. Quello tttto è un esempio pticole di un popietà genele delle teoie di cmpo quntistiche: ogni invinz dell lgngin sotto un cet tsfomzione coisponde un quntità consevt. ( ) ( ) dq Q t S x d x dt D. Bettoni Fenomenologi Intezioni Foti 4

15 Un esempio fisico del cso tttto è il sistem dei K neuti. K e K sono come e ; K e K sono come e *. L cic consevt è l stnezz. Pe i koni l consevzione dell stnezz viene violt dlle intezioni deboli che convetono K in K e di conseguenz intoducono un piccolo splitting dei livelli, l diffeenz di mss t K e K. In teoi quntistic di cmpo le coezioni ditive possono pote divegenz non null pe S. Tli temini divesi d zeo si chimno nomlie. D. Bettoni Fenomenologi Intezioni Foti 5

16 Intezioni Aggiungimo ll Lgngin un temine di intezione: L ρ x,t int ( ) L equzione di Klein-Godon cquist un temine di sogente: + m ρ Pe studie il sistem consideimo il cso: ρ gδ ( x) Il poblem si isolve utilizzndo le tsfomte di Fouie. ( x) k ( π ) ( + m ) gδ ( x) ik x ~ ~ d ke ( ) ( k ) ( π ) ik x d xe x ( ) D. Bettoni Fenomenologi Intezioni Foti 6

17 ( x) ik x g e d k m ( ) π k + g e 4 π m Yukw identificò con un cmpo mesonico, l cui sogente e il nucleone. In nlogi l cmpo elettomgnetico, medito d fotoni, questo cmpo e medito d pticelle, mesoni ppunto. Se l pticell h mss m il cmpo h un nge ~ /m D. Bettoni Fenomenologi Intezioni Foti 7

18 Intezione t due nucleoni, il secondo descitto d ( ) H d x x ( x) ρ ( ) e 4π x x ( x) d x ρ ( x ) ( x ) gδ ( x ) H D. Bettoni Fenomenologi Intezioni Foti 8 m xx e d xd x ρ( x) ρ( x ) 4π x x Quindi il potenzile si può scivee: V () e 4π k m m ρ m xx In teoi di cmpo quntistic tutte le intezioni sono dovute llo scmbio di qunti. Nello spzio degli impulsi l quntità che ppesent l pticell di mss m scmbit è il popgtoe: ρ x

19 Riepilogo delle Lgngine Cmpo ele scle di mss m ( m ) L + m Cmpo complesso (pseudo)scle di mss m (oppue due cmpi eli di ugule mss), L ( m ) + ( m ) + i i * L * * ( ) m D. Bettoni Fenomenologi Intezioni Foti 9

20 Femione di spin ½ e mss m L ψ ( iγ m)ψ ( iγ m) ψ Equzione di Dic Cmpo vettoile belino di mss m ll lgngin si ggiunge un temine di mss: m B B D. Bettoni Fenomenologi Intezioni Foti

21 Cmpo vettoile non belino Esempi di cmpi vettoili non belini sono i gluoni o il bosone W. Il potenzile vettoe si genelizz l cso non belino ggiungendo un indice inteno : W Pe SU(),, mente pe SU(),,..., 8. Definimo quindi (utilizzndo W come esempio): W W W + dove le f bc sono costnti di stuttu. Quest fom del tensoe del cmpo è invinte pe tsfomzioni di guge. L Lgngin è: L W 4 gf W + m bc W W W b W c D. Bettoni Fenomenologi Intezioni Foti

Lezioni L4. 1. Potenziale Elettrico; 3. Generatore di Van de Graff. FISICA GENERALE II, Cassino A.A Carmine E.

Lezioni L4. 1. Potenziale Elettrico; 3. Generatore di Van de Graff. FISICA GENERALE II, Cassino A.A Carmine E. Lezioni L4 1. Potenzile Elettico; 2. Potenzile Elettico vs Enegi Potenzile; 3. Genetoe di Vn de Gff. 2005 Cmine E. Pglione Potentile Elettico Un cic q in un Cmpo Elettico si compot in mnie nlog d un mss

Dettagli

Vettori e scalari. Scalari: sono completamente definite quando se ne conosce la sola misura (es. tempo, massa, temperatura, GRANDEZZE FISICHE

Vettori e scalari. Scalari: sono completamente definite quando se ne conosce la sola misura (es. tempo, massa, temperatura, GRANDEZZE FISICHE Vettoi e scli GRNDEZZE FISICHE Scli: sono completmente definite qundo se ne conosce l sol misu (es. tempo, mss, tempetu, volume ) Vettoili: ichiedono un mggio contenuto infomtivo (es. velocità, cceleione,

Dettagli

Ingegneria Elettronica. Compito di Fisica giugno 2010

Ingegneria Elettronica. Compito di Fisica giugno 2010 Ingegnei Elettonic. ompito i Fisic 5 giugno x y Esecizio Un uot, ssimilbile un cilino i mss M e ggio R, sle lungo un pino inclinto (i un ngolo θ ispetto l pino oizzontle) sotto l zione i un momento motoe

Dettagli

FENOMENI INTERFERENZIALI e DIFFRATTIVI

FENOMENI INTERFERENZIALI e DIFFRATTIVI FNOMNI INTRFRNZIALI e DIFFRATTIVI Intefeenz t onde e.m. podotte d sogenti coeenti sincone; Metodo dei fsoi o dei vettoi otnti; Intefeenz in lmine sottili; nelli di Newton, pellicoli sottili su veto Il

Dettagli

L interazione iperfine

L interazione iperfine L intezione ipefine E l pinciple fonte di infomzione estibile d uno spetto EPR L stuttu ipefine dello spetto EPR deiv dll intezione t momento di spin elettonico e i momenti di spin dei nuclei pesenti nel

Dettagli

Campo elettrico in un conduttore

Campo elettrico in un conduttore Cmpo elettico in un conduttoe In entmbi i csi se il conduttoe è isolto e possiede un cic totle, dett cic si dispone sull supeficie esten del conduttoe; se così non fosse inftti ci sebbe un foz sulle ciche

Dettagli

CINEMATICA DEL MOTO ROTATORIO DI UNA PARTICELLA

CINEMATICA DEL MOTO ROTATORIO DI UNA PARTICELLA CINEMAICA DEL MOO OAOIO DI UNA PAICELLA MOO CICOLAE: VELOCIA ANGOLAE ED ACCELEAZIONE ANGOLAE Si considei un pticell P in moto cicole che descive un co di ciconfeenz s. L ngolo di otzione ispetto d un sse

Dettagli

14. Richiami di analisi vettoriale

14. Richiami di analisi vettoriale 14. Richimi di nlisi vettoile Richimi di nlisi vettoile 341 14.1. Scli, vettoi, tensoi Le gndee che entno in gioco nei enomeni isici possono essee ppesentte tmite unioni del tempo, t e delle coodinte di

Dettagli

transizioni termiche e transizioni radiative

transizioni termiche e transizioni radiative tnsizioni temiche e tnsizioni ditive eccitzione diseccitzione E +E E E + Nelle tnsizioni temiche l enei E viene scmbit, ttveso li uti, con le lte pticelle del bno temico. Lo scmbio dipende dll enei E,

Dettagli

Richiami di calcolo vettoriale

Richiami di calcolo vettoriale Appunti di Cmpi elettomgnetici Richimi di clcolo vettoile Intoduzione... Opetoe immginio j... Opetoe diffeenzile nbl... Gdiente... Deivt diezionle... Flusso di un vettoe...4 Divegenz di un vettoe...4 Cicuitzione

Dettagli

Operatore applicato a prodotti

Operatore applicato a prodotti Opetoe pplicto podotti Con l'opetoe «Nbl" () bbimo definito te opezioni pplicndolo Ad un funzione scle pe costuie un vettoe: gdiente φ Ad un funzione vettoile pe costuie uno scle: divegenz F Ad un funzione

Dettagli

I equazione cardinale della dinamica

I equazione cardinale della dinamica I equzione cdinle dell dinic I Sistei di pticelle Un siste di pticelle è un insiee di punti teili, definito dll ss e dll posizione di ciscun pticell. Il più seplice siste di pticelle è foto d due soli

Dettagli

Errata Corrige al testo Leonardo Angelini Meccanica Quantistica: problemi scelti Springer II edizione

Errata Corrige al testo Leonardo Angelini Meccanica Quantistica: problemi scelti Springer II edizione Errt Corrige l testo Leonrdo Angelini Meccnic Quntistic: problemi scelti Springer 08 - II edizione 5 novembre 08 Cpitolo. Costnti del moto Correggere l formul pg. 0 d F, G F, G + i F, G, H dt t F t G +

Dettagli

(in funzione di L, x e M).

(in funzione di L, x e M). SCA GENERAE T-A gennio 03 pof. spighi (Cd ingegnei Enegetic Un stellite tificile di mss m pecoe obite cicoli di ggio R ttono ll lun di mss M. Supponendo che il ggio dell obit R coincid con il ggio dell

Dettagli

Fisica II. 1 Esercitazioni

Fisica II. 1 Esercitazioni isic II Esecizi svolti Esecizio. Clcole l foz che gisce sull cic Q µc, dovut lle ciche Q - µc e Q 7 µc disposte come ipotto in figu Q Q α 5 cm 6 cm Q Soluzione: L foz che gisce sull cic Q è dt dll composizione

Dettagli

Classe 4 G dicembre 2010.

Classe 4 G dicembre 2010. Clsse 4 G dicembe 2010. Legge di Newton pe il ffeddmento (iscldmento). Due copi tempetu diffeente se posti in conttto temico si scmbino cloe. L'ossevzione speimentle indic che essi si potno d un tempetu

Dettagli

a) Progettare lo strato dielettrico, scegliendo una opportuna constante dielettrica εr2 e minimo spessore dmin (usare le opportune approssimazioni)

a) Progettare lo strato dielettrico, scegliendo una opportuna constante dielettrica εr2 e minimo spessore dmin (usare le opportune approssimazioni) secizio i vuole mssimizze l efficienz di un iveltoe di luce elizzto in silicio depositndo sop l supeficie un sottile stto di mteile dielettico (senz pedite. Lo stto deve gntie mssimo tsfeimento di potenz

Dettagli

1) Una carica puntiforme q si trova al centro di una sfera cava conduttrice di raggio

1) Una carica puntiforme q si trova al centro di una sfera cava conduttrice di raggio 1) Un cic puntifome si tov l cento di un sfe cv conduttice di ggio inteno e spessoe. Clcole nel cso di conduttoe isolto: il cmpo elettico, il potenzile e l enegi elettosttic in tutto lo spzio. Cso ()

Dettagli

Compito di Fisica I. Ingegneria elettronica. A. A luglio 2010

Compito di Fisica I. Ingegneria elettronica. A. A luglio 2010 omito di Fisic I. Ingegnei elettonic... 9- - 7 luglio Esecizio Un unto mteile uo` muovesi in un dimensione soggetto d un foz F kx. ove: ) l enegi otenzile U(x) eltiv tle foz, onendo come zeo dell enegi

Dettagli

Studio microscopico della materia nucleare

Studio microscopico della materia nucleare Studio microscopico dell mteri nuclere Mrtin Flco 25 ottobre 27 MTERI NUCLERE Obiettivo fondmentle dell fisic nuclere : Descrizione delle proprietà dei nuclei prtire dll interzione tr i loro costituenti

Dettagli

Sistemi a Radiofrequenza II

Sistemi a Radiofrequenza II Sistemi Rdiofequenz II meti d ntenn - Geneic secizio 6. Clcole l densità di potenz dit Km di distnz lungo l diezione del mssimo di dizione di un ntenn, spendo che: l W, A eq.5 m e f GHz Soluzione 6. G

Dettagli

Meccanica Dinamica del corpo rigido

Meccanica Dinamica del corpo rigido eccnic 8-9 Dinmic del copo igido 8 y P C v oz omento f N C v Equzione del momento: Polo Dinmic del copo igido Rotolmento L velocità del punto di conttto C è null l conttto in C è mntenuto femo dll ttito

Dettagli

Oscillatore armonico unidimensionale

Oscillatore armonico unidimensionale Oscilltore rmonico unidimensionle Autovlori ed utofunzioni L hmiltonin di un oscilltore rmonico unidimensionle si scrive Definendo le vribile dimensionli L eq.) si scrive H = m p + m ω x ) = m h d dx +

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II

Facoltà di Ingegneria Prova scritta di Fisica II Fcoltà di ngegnei Pov scitt di Fisic..7 7 Tm Not: ε = 8.85, 4 = π Nm A Esecizio n. Dto il cmpo elettico E = î x y z ( V / m) si detemini l densità di cic ρ nel punto P=(,,) e l cic totle in un cuo vente

Dettagli

Lezione 7 Dinamica del punto

Lezione 7 Dinamica del punto ezione 7 Dinmic del unto gomenti dell lezione Foze consevtive / negi otenzile Consevzione dellenegi meccnic Momento ngole / Momento di un foz Cenni sui moti eltivi Ricodimo dll scos volt voo Foz Peso voo

Dettagli

Pacchetto d onda. e (a2 k 2 ikx) dk (1)

Pacchetto d onda. e (a2 k 2 ikx) dk (1) Pcchetto d ond 1 Clcolo d integrli gussini Per clcolre un integrle del tipo ψ(x) = e ( k ikx) dk (1) l procedur stndrd e di scrivere l espressione che ppre nell esponenzile come il qudrto di un funzione

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccnic 7-8 5 Moo nel pino: posizione, elocià, ccelezione O u θ u P u θ Veoe posizione u Veoe elocià d d u + uθ + θ O O u N u Veoe ccelezione d d u + u un + N Componeni cesine dell ccelezione d u d + u

Dettagli

Fisica II. 6 Esercitazioni

Fisica II. 6 Esercitazioni Esecizi svolti Esecizio 61 Un spi cicole di ggio è pecos d un coente di intensità i Detemine il cmpo B podotto dll spi in un punto P sul suo sse, distnz x dl cento dell spi un elemento infinitesimo di

Dettagli

Equazione di Schrödinger in potenziale centrale

Equazione di Schrödinger in potenziale centrale Equazione di Schödinge in potenziale centale Studiamo l equazione di Schödinge pe un potenziale centale V ) V ) Si veifica facilmente che H p m + V ) h m cioé la hamiltoniana é a simmetia sfeica. Infatti

Dettagli

1.1 Legge di trasformazione del vettore di posizione per traslazioni del sistema di riferimento

1.1 Legge di trasformazione del vettore di posizione per traslazioni del sistema di riferimento Cpitolo V Geometi delle Aee 1. L VEORE POZONE 1.1 Legge di tsfomzione del vettoe di posizione pe tslzioni del sistem di ifeimento Le coodinte e di un posto geneico del pino, nel sistem di ifeimento, sono

Dettagli

Meccanica Gravitazione

Meccanica Gravitazione Meccnic 08-09 Gvitzione Newton mm F -G u egge i gvitzione univesle E un foz centle F ± F() u mm S T 4p G m T T. Il momento ngole si consev. tiettoi si mntiene sullo stesso pino 3. velocità ele è costnte

Dettagli

Prova Scritta di di Meccanica Analitica. 22 gennaio Un punto di massa unitaria si muove soggetto al potenziale. V (x) = 1 3 x + 2 x 2 x > 0

Prova Scritta di di Meccanica Analitica. 22 gennaio Un punto di massa unitaria si muove soggetto al potenziale. V (x) = 1 3 x + 2 x 2 x > 0 Prov Scritt di di Meccnic Anlitic gennio 016 Problem 1 Un punto di mss unitri si muove soggetto l potenzile V (x) = 1 3 x + x x > 0 ) Disegnre lo spzio delle fsi. b)clcolre l frequenz delle piccole oscillzioni

Dettagli

Qualche appunto sulle trasformazioni affini.

Qualche appunto sulle trasformazioni affini. Qulhe ppunto sulle tsfomzioni ffini. Due efinizioni i ffinità. Def. si ie ff i n ità un oisponenz iunivo t punti el pino A : he h ome invinti l llinemento ei punti e il pllelismo. Ossevzioni * A un ffinità

Dettagli

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 24 24.1. Prodotti sclri. Definizione 24.1.1. Si V uno spzio vettorile su R. un ppliczione Un prodotto sclre su V è tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

NUMERI FUZZY (a cura di Marco Buttolo (2006))

NUMERI FUZZY (a cura di Marco Buttolo (2006)) NUMERI FUZZY ( cu di Mco Buttoo (2006)) definizione: Un numeo fuzzy un insieme fuzzy nome e convesso. Un insieme fuzzy è nome se su funzione di pptenenz possiede voi che pe foz di cose sono compesi t 0

Dettagli

3) Il campo elettrostatico nella regione di spazio compresa tra il filo ed il cilindro (cioè per 0<r<R 1 ) è

3) Il campo elettrostatico nella regione di spazio compresa tra il filo ed il cilindro (cioè per 0<r<R 1 ) è Fcoltà i Ingegnei Pov Scitt i Fisic II - 3 Febbio 4 uesito n. Un lungo cilino metllico cvo i ggio inteno e ggio esteno viene cicto con un ensità i cic linee pi. Lungo il suo sse viene inseito un lungo

Dettagli

θ 2 º Esercizio 1

θ 2 º Esercizio 1 ecizio ) Si θ l ngolo ipetto ll veticle dell fune di lunghezz pim che m veng lcit lie di muovei velocità v di m l momento dell uto con m i ottiene imponendo l conevzione dell enegi: m v m g ( coθ ) v g

Dettagli

SULLA PROPAGAZIONE DI ONDE ELETTROMAGNETICHE IN UN TUBO CILINDRICO CIRCOLARE RIEMPITO DI DIELETTRICO ETEROGENEO

SULLA PROPAGAZIONE DI ONDE ELETTROMAGNETICHE IN UN TUBO CILINDRICO CIRCOLARE RIEMPITO DI DIELETTRICO ETEROGENEO MARIA TERESA VACCA SULLA PROPAGAZIONE DI ONDE ELETTROMAGNETICHE IN UN TUBO CILINDRICO CIRCOLARE RIEMPITO DI DIELETTRICO ETEROGENEO Considendo il poblem dell popgzione di onde elettomgnetiche ento un tubo

Dettagli

Facoltà di Ingegneria Compito scritto di Fisica II Compito B

Facoltà di Ingegneria Compito scritto di Fisica II Compito B ε = 8.85 1 1 C N ; Fcoltà i Ingegnei Copito scitto i Fisic II 17.7.6 Copito B = 1 7 T A Esecizio n.1 α Un filo ettilineo inefinito è pecoso un coente I(t)= t (l coente e iett veso l lto, con α positivo).

Dettagli

Grandezze vettoriali. Descrizione matematica: l ente matematico vettore

Grandezze vettoriali. Descrizione matematica: l ente matematico vettore Gndezze vettoili. Descizione mtemtic: l ente mtemtico vettoe I concetti nuovi e fecondi di somm di vettoi, podotti di vettoi ecc. sono pplicti ll meccnic... Secondo [l utoe] il vntggio mggioe del [metodo]

Dettagli

Vettori e scalari. Scalari: sono completamente definite quando se ne conosce la sola misura (es. tempo, massa, temperatura, GRANDEZZE FISICHE

Vettori e scalari. Scalari: sono completamente definite quando se ne conosce la sola misura (es. tempo, massa, temperatura, GRANDEZZE FISICHE Vettoi e scli GRNDEZZE FISICHE Scli: sono completmente definite qundo se ne conosce l sol misu (es. tempo, mss, tempetu, volume ) Vettoili: ichiedono un mggio contenuto infomtivo (es. velocità, cceleione,

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettomgnetismo Pof. Fncesco Rgus Univesità degli Studi di Milno Leione n. 3.3.8 pplicioni dell legge di mpèe Potenile Vettoe nno ccdemico 7/8 Filo di ggio pecoso d coente Consideimo un filo pecoso d coente

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

Campo magnetico e potenziale vettore

Campo magnetico e potenziale vettore ppunti di Fisic Cmpo mgnetico e potenile vettoe Popietà diffeenili del cmpo mgnetico...1 nlogie con l'elettosttic...3 l potenile vettoe pe il cmpo mgnetico...3 Potenile vettoe geneto d un cicuito filifome...7

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

Ortogonalità di funzioni

Ortogonalità di funzioni Cpitolo 0 Ortogonlità di funzioni 01 Funzioni linermente indipendenti e funzioni ortogonli Si (, b) un intervllo dell sse rele Si dice le n + 1 funzioni φ 0 (x), φ 1 (x),, φ n (x), definite in (, b), sono

Dettagli

capacità si può partire dalla sua definizione: C = e dalla relazione fra la differenza di potenziale ed il campo elettrico: V

capacità si può partire dalla sua definizione: C = e dalla relazione fra la differenza di potenziale ed il campo elettrico: V secizio (ll ppello 6/7/4) n conenstoe pino è costituito ue mtue qute i lto b septe un istnz. Il conenstoe viene completmente cicto ll tensione e poi scollegto ll bttei ust pe ciclo, così est isolto ll

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccnic 018-019 Cinemtic del pnto mteile 4 Vettoi (,,...,... ) 1 i n (, ) pezioni f ettoi Somm b Podotto scle b α b bcosα + b b b Podotto ettoile b Diffeenz + ( b ) b b α b ( b sin α ) ( ( P ( P ( Cinemtic

Dettagli

Esempi di campi magnetici e calcolo di induttanze.

Esempi di campi magnetici e calcolo di induttanze. 5d_EAEE_APPLCAZON CAMP MAGNETC STATC (ultim modific 7/10/017) Esempi di cmpi mgnetici e clcolo di induttnze. M. Usi 5d_EAEE_APPLCAZON CAMP MAGNETC STATC 1 Conduttoe ettilineo indefinito Si considei un

Dettagli

Teoria di Gamow dei decadimenti α

Teoria di Gamow dei decadimenti α Istituzioni di Fisic Nuclere e Sunuclere Prof. A. Andrezz Lezione 4 Teori di Gmow dei decdimenti α Legge di Geiger-Nuttll Il decdimento α è un decdimento due corpi: Energi fisst: E α ~Q α Si osserv un

Dettagli

Grandezze vettoriali.

Grandezze vettoriali. Gndee vettoili. Desciione mtemtic: l ente l mtemtico vettoe I concetti nuovi e fecondi di somm di vettoi, podotti di vettoi ecc. sono pplicti ll meccnic... Secondo [l utoe] il vntggio mggioe del [metodo]

Dettagli

Calcolo integrale in due e più variabili

Calcolo integrale in due e più variabili Clcolo integrle in due e più vribili 9 dicembre 2010 1 Definizione di integrle Il primo psso st nell definizione e determinzione dell integrle per funzioni due vribili prticolrmente semplici: le funzioni

Dettagli

Algebra delle Matrici

Algebra delle Matrici lgebr delle Mtrici Definizione di un mtrice Un mtrice esempio: è definit d m righe e d n colonne come d 8 9 8 In questo cso l mtrice è compost d righe e colonne Se il numero delle righe è ugule l numero

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Fisica Generale III con Laboratorio

Fisica Generale III con Laboratorio Fisica Geneale III con Laboatoio Campi elettici e magnetici nella mateia Lezione 1 Dielettici q. di Maxwell N el vu oto: = B = ρ ε B = t B = µ ε + µ t j (Non esistono caiche o coenti magnetiche) Caiche

Dettagli

Curve e integrali curvilinei

Curve e integrali curvilinei Curve e integrli curvilinei E. Polini 13 ottobre 214 curve prmetrizzte Un curv prmetrizzt è un funzione : [, b] R n. Al vrire di t nell intervllo [, b] (con < b) il punto (t) descrive un triettori nello

Dettagli

MATRICI SIMILI E MATRICI DIAGONALIZZABILI

MATRICI SIMILI E MATRICI DIAGONALIZZABILI MATRICI SIMILI E MATRICI DIAGONALIZZABILI DEFINIZIONE: Due mtici qudte A e B, dello stesso odine n, si dicono simili se esiste un mtice non singole S, tle che isulti: B S A S L mtice S si chim nche mtice

Dettagli

INTRODUZIONE ALL ANALISI DI MISSIONI SPAZIALI TRASF. COPLANARI

INTRODUZIONE ALL ANALISI DI MISSIONI SPAZIALI TRASF. COPLANARI INTRODUZIONE ALL ANALISI DI MISSIONI SPAZIALI TRASF. COPLANARI Tsfeimenti Colni Int. Anlisi di Missioni Szili T. Colni Mnoe Obitli Int. Anlisi di Missioni Szili T. Colni 3 Obiettio: contolle il moto del

Dettagli

Un polinomio trigonometrico di grado N nell intervallo [ π, π] è una funzione g(x), periodica di periodo 2π, della forma. c n e inx.

Un polinomio trigonometrico di grado N nell intervallo [ π, π] è una funzione g(x), periodica di periodo 2π, della forma. c n e inx. Cpitolo 6 Serie di Fourier 6.1. Introduzione Un polinomio trigonometrico di grdo N nell intervllo [, π] è un funzione g(x), periodic di periodo, dell form g(x) = N n= N c n e inx per un qulche scelt delle

Dettagli

Calcolare l area di una regione piana

Calcolare l area di una regione piana Integrli Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione Clcolre l

Dettagli

1 VETTORI. 1.1 Operazioni tra vettori

1 VETTORI. 1.1 Operazioni tra vettori 1 VETTORI Ttte le gndee pe l ci definiione non concoono lti elementi l di foi dell loo mis engono dette gndee scli; sono esempi di gndee scli l intello di tempo l mss l tempet ecc Esistono ttti delle gndee

Dettagli

Cinematica del punto. 3D

Cinematica del punto. 3D Cinemic del puno. 3D z O () () P() z() () in fom eoile OP( ) ( ) Veoe posizione oeo eoe sposmeno dll oigine L ppesenzione eoile pemee un descizione sineic del moo. z P() Nei clcoli pici in genee si usno

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI 1 se 0, per ogni R ; Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >0: Sono definite: se >0: Non sono definite: Csi prticolri: Le proprietà delle

Dettagli

[ ] Posizionamento degli autovalori nei sistemi completamente controllabili. Risulta: Sia dato un sistema:

[ ] Posizionamento degli autovalori nei sistemi completamente controllabili. Risulta: Sia dato un sistema: Posiziometo deli utovloi ei sistemi completmete cotollbili Si dto u sistem: Suppoimo di costuie l iesso u come u K dove K è u mtice di dimesioi oppotue che scelimo oi. Bu Risult: Si ottiee u sistem co

Dettagli

Integrale di Riemann

Integrale di Riemann Integrle di Riemnn Hynek Kovrik Università di Bresci Anlisi Mtemtic Hynek Kovrik (Università di Bresci) Integrle di Riemnn Anlisi Mtemtic / 50 Motivzione: clcolo di re Hynek Kovrik (Università di Bresci)

Dettagli

FORMULARIO DI MATEMATICA E FISICA

FORMULARIO DI MATEMATICA E FISICA Liceo Slvemini Soento Coso di pepzione pe i test di mmissione univesiti FORMULARIO DI MATEMATICA E FISICA Sommio MATEMATICA... ALGEBRA... DISEQUAZIONI... 5 GEOMETRIA... 6 GEOMETRIA ANALITICA... 7 FUNZIONI

Dettagli

Moti in 2 e 3 dimensioni

Moti in 2 e 3 dimensioni D Moi in e 3 dimensioni < > < > i " " Δ ; ; Sono diei come i 3D Il eoe posizione sà: Si: " " Δ ; ; Non sono sempe concodi, m nel empo muno di diezione (ole che di modulo e eso) i + j + z k ( ) e ( ) con

Dettagli

Spettro della radiazione elettomagnetica Suddivisione dello spettro in varie bande

Spettro della radiazione elettomagnetica Suddivisione dello spettro in varie bande Spetto della adiazione elettomagnetica Suddivisione dello spetto in vaie bande Lunghezza d onda l Fequenza n Onde adio.3 3 6 m 9 2 Hz Micoonde 3.3 m 3 9 Hz Infaosso 7.8 7 3 m 3.8 4 3 Hz Luce visibile 3.8

Dettagli

Meccanica della Frattura Lineare Elastica (cenni) 2a 2a. raggio di fondo intaglio x w. K t. σ σ p

Meccanica della Frattura Lineare Elastica (cenni) 2a 2a. raggio di fondo intaglio x w. K t. σ σ p olitecnico di Toino Ditimento di Meccnic Mssimo Rossetto Meccnic dell Fttu Linee Elstic (cenni) ist con difetto ssnte ggio di fondo intglio ρ 0 t Cenni di meccnic dell fttu linee elstic mteile elstico

Dettagli

2 Generalità sulle matrici

2 Generalità sulle matrici 2 Generlità sulle mtrici 21 Definizione e csi prticolri Definizione 21 Mtrice n m Un mtrice n m è un tbell rettngolre di n righe e m colonne i cui elementi sono numeri reli (o complessi) indicizzti con

Dettagli

Legge di Gauss. Superficie Σ immersa nel campo elettrostatico generato da una carica q. da! r 2. d!(! E) "! E #! n da = q r 2! er!!

Legge di Gauss. Superficie Σ immersa nel campo elettrostatico generato da una carica q. da! r 2. d!(! E) ! E #! n da = q r 2! er!! Legge di Gauss Legge di Gauss in foma integale e locale Esempi Equazioni di Poisson e di Laplace Poblemi di Diichlet e Neumann Poblema geneale dell elettostatica Legge di Gauss Supeficie Σ immesa nel campo

Dettagli

MACCHINA ELEMENTARE CON UN SOLO AVVOLGIMENTO

MACCHINA ELEMENTARE CON UN SOLO AVVOLGIMENTO MAHINA ELEMENTARE ON UN SOLO AVVOLGIMENTO Si considei una macchina elementae avente le seguenti caatteistiche: statoe a poli salienti otoe cilindico un avvolgimento sul otoe poli pp = 1 θ = θ m ω = ω m

Dettagli

1) Consideriamo una sfera di raggio R, con densita` di carica uniforme positiva. Alla distanza Re

1) Consideriamo una sfera di raggio R, con densita` di carica uniforme positiva. Alla distanza Re 1) Consideiamo una sfea di aggio, con densita` di caica unifome positiva Alla distanza e k dal cento si tova un elettone, inizialmente femo Calcolae: a) la velocita` dell elettone, lasciato libeo, nel

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Antonio Pich. IFIC, CSIC Univ. Valencia.

Antonio Pich. IFIC, CSIC Univ. Valencia. Antonio Pich IFIC, CSIC Univ. Vlenci Antonio.Pich@cern.ch Field Theory Clssicl Electrodynmics Quntum Electrodynmics SU(N) Guge Theory Quntum Chromodynmics (QED) (QCD) Non Reltivistic: p = i ; E = i t E

Dettagli

r r ω t r Pr r r r r r CINEMATICA DEI MOTI RELATIVI velocità del punto P

r r ω t r Pr r r r r r CINEMATICA DEI MOTI RELATIVI velocità del punto P CINEMTIC DEI MOTI RELTIVI elocità del punto P P Pt P elocità di tscinmento (elocità del punto consideto solidle l SDR mobile) elocità elti (elocità di P ist dl sistem mobile) Pt P P/ (xi & yj) & t ccelezione

Dettagli

Moto nello spazio tridimensionale. = x u y coordinate cartesiane. y x. La localizzazione spazio-temporale di un evento

Moto nello spazio tridimensionale. = x u y coordinate cartesiane. y x. La localizzazione spazio-temporale di un evento Moto nello spio tidimensionle L locliione spio-tempole di n evento - tiettoi e posiione nell tiettoi l vie del tempo -l posiione ispetto n PUNTO O DI RIFERIMENTO sistem di coodinte spili - l definiione

Dettagli

In generale i piani possono essere tra loro

In generale i piani possono essere tra loro Leione 7 - Alge e Geometi - Anno emio 9/ In genele i pini possono essee t loo Pini istinti inienti in un ett ppesentt l sistem sop sitto se. Pini plleli se istinti se, oinienti se. Eseiio tem esme) Si

Dettagli

Elementi di Cinematica COORDINATE CARTESIANE. r r. & r COOORDINATE LOCALI COORDINATE POLARI. r = r. λ r

Elementi di Cinematica COORDINATE CARTESIANE. r r. & r COOORDINATE LOCALI COORDINATE POLARI. r = r. λ r Elementi di Cinemtic COORDINTE CRTESINE O P j y i x j y i x j y i x COOORDINTE LOCLI ( ) µ ϑ ϑ λ ϑ ) ( - µ λ ϑ λ COORDINTE POLRI τ ϑ ρ τ ρ n Elementi di Cinemtic MOTO RETTILINEO j O i COORDINTE CRTESINE

Dettagli

Particelle identiche. Principio di Pauli.

Particelle identiche. Principio di Pauli. Prticelle identiche Principio di Puli Finor: proprietà dell presente di prticell oper singol Volendo Per l utorizzzione ottenere il comportmento riprodurre in di prte più prticelle, o in tutto l è necessrio

Dettagli

In natura esistono due tipi di elettricità: positiva e negativa.

In natura esistono due tipi di elettricità: positiva e negativa. CARICA LTTRICA Quando alcuni copi (veto, amba,...) sono stofinati con un panno di lana, acquistano una caica elettica, cioè essi acquistano la popietà di attae o di espingee alti copi elettizzati. In natua

Dettagli

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore Principi di economi Microeconomi Esercitzione 3 Teori del Consumtore Novembre 1 1. Considerimo uno studente indifferente tr il consumo di penne nere (x n ) e blu (x b ), e che cquist ogni nno un pniere

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Integrali impropri in R

Integrali impropri in R Integrli impropri in Flvino Bttelli Diprtimento di Scienze Mtemtiche Università Politecnic delle Mrche Ancon Integrli impropri Indichimo con = {1, 2, 3,...} l insieme dei numeri nturli, con 0 = {0, 1,

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

Lo spettro di un segnale numerico

Lo spettro di un segnale numerico Lo spettro di un segnle numerico Abbimo visto che le prestzioni (P b (e) in funzione di E b /N 0 ) di un costellzione dipendono solo dll disposizione dei suoi segnli nello spzio Euclideo, non dlle forme

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

1) Assenza di 'poli magnetici' Flusso di B attraverso una superficie chiusa sempre nullo. teo. di Gauss per il magnetismo

1) Assenza di 'poli magnetici' Flusso di B attraverso una superficie chiusa sempre nullo. teo. di Gauss per il magnetismo Oigine campo magnetico: coenti elettiche Analogo a campo elettico: oigine nelle caiche elettiche Riceca delle elazioni matematiche che legano il campo B alle coenti Relazioni deteminate in base all evidenza

Dettagli

Fluidodinamica applicata Esercizi (Navier Stokes)

Fluidodinamica applicata Esercizi (Navier Stokes) ESERCIZIO (N.S.: COETTE p) Cnle iimensionle infinito. Pete speioe in moto con velocità. iente i pessione. Clcole: Pe qle vloe i è nllo lo sfozo viscoso sll pete speioe? Pe qle vloe i è nllo lo sfozo viscoso

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Politecnico di Milno orso di Anlisi e Geometri 1 Federico Lstri federico.lstri@polimi.it Integrli di line di prim specie (Integrli di densità lungo cmmini non orientti) Gennio 213 Indice 1 Integrli di

Dettagli

Modulazione della radiazione retrodiffusa

Modulazione della radiazione retrodiffusa Modulzione dell rdizione retrodiffus (modultion of the bckscttered rdition) Antenn g Vbs- Vs 1, jx1, consiste nel modulre l impedenz che si vede vlle dell ntenn, in modo d modulre (nello stesso modo) il

Dettagli

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale Esercitzione di Mtemtic sulle equzioni di secondo grdo (o d esse riconducibili) nel cmpo rele 1. Risolvere, nel cmpo rele, le seguenti equzioni di secondo grdo: () 81x 0; (b) (x 1) 7x ; (c) 7x x 0; (d)

Dettagli

Analisi dimensionale e omogeneità delle equazioni

Analisi dimensionale e omogeneità delle equazioni Anlisi dimensionle e omogeneità delle equzioni Anlisi Dimensionle v = spzio / tempo [v] = [LT -1 ] S.I: m/s C.G.S.: cm/s U = mgh [U] = [ML 2 T -2 ] [mgh] = [MLT -2 L]=[ML 2 T -2 ] 1 Multipli e sottomultipli

Dettagli

LA FORZA GRAVITAZIONALE AGENTE SU UN PROIETTILE IN VOLO

LA FORZA GRAVITAZIONALE AGENTE SU UN PROIETTILE IN VOLO M.. BUSAO LA FORZA RAVIAZIONALE AENE SU UN PROIEILE IN VOLO mgbstudio.net SOMMARIO In quo scitto viene detemint l espessione genele dell foz gvitzionle gente su un poiettile in volo e ne vengono successivmente

Dettagli

Problema 1 Consideriamo 3 cariche in figura con q 1 =-q, q 2 = 2q, q 3 =- 2q, q=1 mc; sia a =3 cm; il punto P ha coordinate (x=0, y=a) a) Calcolare

Problema 1 Consideriamo 3 cariche in figura con q 1 =-q, q 2 = 2q, q 3 =- 2q, q=1 mc; sia a =3 cm; il punto P ha coordinate (x=0, y=a) a) Calcolare P 4 Poblem onsideimo ciche in figu con -,, -, m; si cm; il punto P h coodinte (0, ) ) lcole le componenti lungo gli ssi, del cmpo elettico totle geneto dlle ciche nel punto P b) lcole l ngolo che l diezione

Dettagli

Generalità sulle superfici algebriche. Superficie cilindrica

Generalità sulle superfici algebriche. Superficie cilindrica Generlità sulle superfici lgeriche Definizione: Si definisce superficie lgeric di ordine n il luogo geometrico dei punti P dello spzio le cui coordinte crtesine,, z verificno un equzione lgeric di grdo

Dettagli