fluttuazioni siano reciprocamente indipendenti (cioè non correlate fra di loro), si ha 1 :

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "fluttuazioni siano reciprocamente indipendenti (cioè non correlate fra di loro), si ha 1 :"

Transcript

1 Appendce A luttuazon. A.1 - Generaltà. Le grandezze fsche che caratterzzano corp macroscopc n equlbro non sono costant, ma fluttuano nel tempo attorno al loro valore medo per effetto del moto mcroscopco degl atom e delle molecole. Per vedere le caratterstche fondamental d questo fenomeno, consderamo un corpo macroscopco costtuto da partcelle (s mmagn, ad esempo, un crstallo) e supponamo d msurare una grandezza estensva, come ad esempo l energa nterna. Ovvamente, è la somma de contrbut d cscuna partcella, f, coè, 1 f. (A.1.1) A sua volta, f è la somma d un valore medo costante, f (lo stesso per ogn partcella) e d uno scostamento, f, d valore medo nullo, ~ ~ ~ f f f ; f f 0, (A.1.) dove con A e A abbamo ndcato l valore medo d A. Sosttuendo la (A.) nella (A.1) ottenamo: 1 f ~ ~ f ; f f f f f, (A.1.3) ~ ~ dove abbamo consderato che f f f f 0. A questo punto, supponendo che le fluttuazon sano recprocamente ndpendent (coè non correlate fra d loro), s ha 1 : ~ ~ f f ~ f f 0 per ;, (A.1.4) dove f è una costante, detta scostamento medo, o varanza, d f rspetto al suo valore medo e ndca d quanto f s dscost dal suo valore medo. Dunque s ottene: 1 1 ~ ~ f f f, (A.1.5) 1 Questa potes, detta d ndpendenza statstca, sgnfca che lo stato n cu s trova una delle partcelle non nflusce affatto sulle probabltà che altre partcelle s trovno n dvers stat

2 e alla fne possamo scrvere: f, (A.1.6) dove () è lo scostamento quadratco medo e la varanza della grandezza macroscopca. Da tutto questo s vede che 1 f, (A.1.7) f evdenzando che l rapporto tra varanza e valore medo (detto fluttuazone relatva) d ogn grandezza estensva decresce come l nverso della radce quadrata del numero d partcelle contenute nel corpo macroscopco. In altre parole, supporre, come s fa comunemente, che le quanttà fsche msurabl sano costant equvale a supporre che l sstema sa composto da un numero nfnto d component coè, pochè parlamo d sstem a volume fnto, supporre che sstem samùno nfntamente dvsbl. In realtà, pur essendo pccole, queste devazon sono spesso molto mportant e dunque s pone l problema d determnare la loro dstrbuzone d probabltà. A. - luttuazon termodnamche. In questo captolo voglamo studare le fluttuazon delle grandezze termodnamche fondamental rferte ad un sottosstema molto pù pccolo del sstema globale, supposto solato, con cu scamba sa calore che lavoro. In termn d termodnamca classca dremmo che l sottosstema è a contatto con una sorgente d calore e d lavoro, a temperatura e pressone. costant (s not che, essendo serbato molto pù grand del sottosstema, è lecto trascurarne le fluttuazon). Come abbamo vsto, la probabltà delle fluttuazon nel sottosstema è proporzonale a exp(s), dove S è l entropa totale del sstema, coè exp S / k ; S S S t t t t eq. (A..1) Questa è la base della teora statstca usata da Ensten nel 1906 per studare l moto brownano. Ora, come vsto n 4..1, n una trasformazone soterma sobara s ha 3 : G T t S, (A..) dove G è la varazone d energa lbera del sottosstema consderato, ottenendo exp G / kt ; G G Geq. (A..3) aturalmente, nel sottosstema s suppone che v sano comunque un numero elevato d partcelle. 3 In realtà la trasformazone del sottosstema non è ne soterma ne sobara; questo fatto tuttava ntroduce solo delle correzon d ordne superore (Landau, Lfshtz e Ptaevsk, sca Statstca I, Captol1 0 e 11)

3 Questa è la formulazone adottata da Gbbs 4 nel suo famoso artcolo del 1911 n cu pone le bas della meccanca statstca. Sstem monofase a componente sngolo. Come vsto nella (5.5.4), Dunque concludamo: 1 G U S T P V 0. (A..4) TS PV exp (A..5) kt Partendo da questa formula generale possamo determnare le fluttuazon delle dverse grandezze termodnamche. Ad esempo, prendendo V e T come varabl ndpendent, trovamo S S P P S T, V T V; P T, V T V T V T V V T V T e consderando l equazone d Maxwell S P V T, ottenamo: T V 1 cv P exp kt T V T T V, (A..6) dove c v =T (S/T) V, con che denota l numero d mol. Questa espressone s separa n due gaussane, una dpendente da T e l altra da V, ndcando che le fluttuazon d volume e quelle d temperatura sono ndpendent fra loro. Infatt, confrontando l espressone (A..6) con (A..4) e (A..5) ottenamo: TV 0, (A..7) mentre gl scostament quadratc med d temperatura e volume sono: kt T k T (A..8) c T c v v 4 S not che la formulazone d Gbbs è valda soltanto per sstem mantenut a contatto con serbato d calore e d lavoro, mentre quella d Ensten è valda sempre

4 v V kt V kt P V v T (A..9) dove V=v e v=- (v/p) T. Come abbamo vsto nel paragrafo 5.4, la postvtà d queste due grandezze è asscurata dalla condzone d stabltà termodnamca. Prendamo ora come grandezze ndpendent S e P. Abbamo allora: V V T T V P S; T P S P S P S S P S P e consderando l equazone d Maxwell V T S P, ottenamo: P S dove c P =T (S/T) P. Da qu s ottene: 1 T V exp kt cp P S S P, (A..10) SP 0, (A..11) S kc, (A. 1) S s P S kcp kt P P kt v P v P P S s, (A..13) dove S=s e s =-(v/p) s /v è l coeffcente d compressbltà soentropca. Vedamo dunque che le fluttuazon relatve n tutt cas sono nversamente proporzonal al quadrato del numero d mol (che a sua volta è proporzonale al numero d partcelle component l sstema), come del resto era stato prevsto all nzo del captolo. S not che la fluttuazone d volume s può anche nterpretare come una fluttuazone del numero d mol (o d partcelle), scrvendo V = v e tenendo costante v, ottenendo qund: kt. (A..14) v Questo rsultato è partcolarmente suggestvo nel caso d gas deale, dove, tenendo conto che la costante de gas è data da R = kn A, con n A che denota l numero d Avogadro. trovamo: 1, (A..15) n

5 dove n na è l numero d partcelle del gas contenute n un volume fssato. Questo rsultato concde con l equazone (A1.1.5). S not noltre che le fluttuazon relatve d tutte le altre grandezze termodnamche d un gas deale sono dello stesso ordne d grandezza. Il rsultato vsto sgnfca che un sstema gassoso contenente 10 6 partcelle presenta valor d tutte le grandezze termodnamche che fluttuano d crca l 0.1%. Pochè n condzon ambente l volume occupato da tale gas è dell ordne del m 3, possamo trarne le opportune conseguenze. luttuazon nelle soluzon. Per sstem a pù component, l anals del paragrafo precedente è faclmente generalzzable, a partre dall espressone dell energa lbera, 1 G U S T P V 1 0. (A..16) 1 A questo punto, svluppando questa espressone ed applcando le opportune equazon d Maxwell ottenamo: Inoltre, da / TP T P, ottenamo. (A.17) 0 kt / x, (A..18) dove x = /. In partcolare, per una soluzone deale, RT log x, e qund ktx n 1, (A..19) RT n n n A TP dove n = n A è l numero d partcelle d soluto, con n A l numero d Avogadro. A.4 - Equlbro locale In questo paragrafo, voglamo determnare quando un sstema, macroscopcamente n uno stato d non-equlbro, s possa consderare localmente all'equlbro termodnamco, n modo che le varabl termodnamche (temperatura, pressone, entropa, energa nterna, potenzale chmco, fugactà, ecc.) s possano defnre localmente e possamo così avvalerc, localmente, d tutte le relazon termodnamche valde per sstem d dmenson fnte. È, questa, la cosddetta condzone d equlbro locale

6 L'mportanza della condzone d equlbro locale è ovva: mentre alcun process deal (tra cu quell reversbl) s possono schematzzare come se fossero compost d una successone d stat d equlbro e qund s possono studare completamente usando la termodnamca, process real sono compost da una successone d stat d dsequlbro (anche quando gl stat d partenza e d arrvo sono stat d equlbro) e la termodnamca non può, a rgore, esserv applcata. Eppure, quando studamo, ad esempo, uno scambatore d calore, n cu l calore passa da un a sorgente calda ad una fredda e un fludo scorre da punt ad alta pressone a punt a bassa pressone, ncontramo termn qual dstrbuzone d temperatura e d pressone, usamo coè de termn, qual temperatura e pressone, che sono stat ntrodott n termodnamca per caratterzzare sstem all'equlbro. Cò sembrerebbe ndcare che anche n condzon d evdente non equlbro, n cu la temperatura e la pressone non sono unform, tal varabl s possono, a volte, defnre localmente e n questo paragrafo ntendamo studare quando questo è possble. el paragrafo A.1 abbamo vsto che n un sstema composto da un numero fnto d partcelle e mantenuto all'equlbro termodnamco, una qualsas grandezza termodnamca estensva fluttua attorno al suo valore d equlbro,, che è costante nel tempo e unforme nello spazo, n modo che l valore relatvo d tal oscllazon, /, rsulta proporzonale a 1/. 5 Dunque, possamo dre che un sstema s trova n una condzone d equlbro locale quando queste fluttuazon termche sono maggor delle varazon dovute a dsomogenetà spazal o temporal d. Pù precsamente, un sstema s trova n una condzone d equlbro locale quando sono soddsfatte le seguent due condzon: a) È possble dvdere l sstema n volum elementar (che po ne costtuscono punt materal ) suffcentemente grand da poter contenere un grande numero d partcelle, n modo che le fluttuazon d ogn grandezza fsca sano pccole, coè / 1. b) La varazone dovuta al gradente macroscopco è mnore delle fluttuazon. Analoga consderazone vale per le varazon temporal d. Dunque, detta la dmensone lneare d tal volum elementar, la condzone d equlbro locale rchede che: 1. (A.4.1) Ad esempo, n un sstema gassoso, assumendo d voler defnre ogn grandezza con una precsone dello 0.1% (coè / = 10-3 ) e consderando che / 1/, dove è l numero d partcelle contenute ne volum elementar, l volume elementare conterrà 10 6 partcelle, occupando un volume d 3 /n cm 3, corrspondente ad una dmensone lneare 0.1m. S not che la denstà n delle partcelle component un gas (deale) è: 5 C. Rzzo e R. Maur, Termodnamca per l'ingegnera Chmca, Captolo 15. Questo mostra come la termodnamca classca (n cu non c sono fluttuazon) descrva sstem compost da un numero nfnto d partcelle

7 n M A w g / cm 6.10 part./ mol 10g / mol 10 0 part. 3 cm Da qu vedamo, ad esempo, che l gradente massmo d temperatura che possamo mporre pur soddsfacendo alla condzone d equlbro locale è T < 10-3 T/ e dunque per temperature ordnare ottenamo T < 10 4 K/cm, che è charamente soddsfatto n tutt cas ragonevol. Per sstem lqud o sold la condzone d equlbro locale è applcable ancora pù faclmente. A questo punto, dobbamo rpensare a come cambano concett termodnamc fondamental d temperatura, pressone e denstà d partcelle quando vengono applcat a sstem non omogene e non stazonar, n partcolare a flud n movmento. C rendamo subto conto che le ultme due grandezze non rchedono alcuna revsone fondamentale: essendo legate all energa e alla massa del sstema, esse sono nfatt delle quanttà ntrnsecamente scalar e dunque s può defnre la temperatura T(r,t) e la denstà (r,t) del sstema n un punto r e ad un certo stante t. Al contraro, quando applcato ad un sstema contnuo, l concetto d pressone, essendo legato alla quanttà d moto (o alle forze agent nel sstema), va rpensato nell'ambto della meccanca de contnu

Teoria cinetica dei gas

Teoria cinetica dei gas Teora cnetca de gas Fsca de gas n Termodnamca Grandezze macroscopche P, V, T tutte conseguenza del moto delle partcelle Pressone: Urt contro paret Volume: Assenza d legam tra le partcelle Temperatura:

Dettagli

Statistica di Bose-Einstein

Statistica di Bose-Einstein Statstca d Bose-Ensten Esstono sstem compost d partcelle dentche e ndstngubl che non sono soggette al prncpo d esclusone. In quest sstem non esste un lmte al numero d partcelle che possono essere osptate

Dettagli

Distribuzione di Boltzmann. Nota

Distribuzione di Boltzmann. Nota Dstrbuzone d Boltzmann ota Tutto l soggetto trattato deve n realta essere nserto nel quadro concettuale della meccanca statstca, che non e trattato n questo corso. Quest cenn sono solo un breve rchamo

Dettagli

Secondo Principio della Termodinamica

Secondo Principio della Termodinamica Secondo Prncpo della ermodnamca Problema: n che modo s puo pedere se un processo è spontaneo e quale è la drezone d un processo spontaneo Notamo: Il I prncpo della D stablsce che un sstema puo modfcare

Dettagli

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali Chmca Fsca - Chmca e Tecnologa Farmaceutche Lezone n. 10 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Convenzon per le soluzon real Relazon tra coeffcent d attvtà 02/03/2008 Antonno

Dettagli

Teoria dell informazione e Meccanica Statistica

Teoria dell informazione e Meccanica Statistica Teora dell nformazone e Meccanca Statstca L. P. Gugno 2007 Rporto qu una breve rassegna dell approcco alla Meccanca Statstca medante la teora dell nformazone. Partamo dalla consderazone che la probabltà

Dettagli

Unità Didattica N 5. Impulso e quantità di moto

Unità Didattica N 5. Impulso e quantità di moto Imnpulso e quanttà d moto - - Impulso e quanttà d moto ) Sstema solato : orze nterne ed esterne...pag. 2 2) Impulso e quanttà d moto...pag. 3 3) Teorema d conservazone della quanttà d moto...pag. 6 4)

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

CAPITOLO 2: PRIMO PRINCIPIO

CAPITOLO 2: PRIMO PRINCIPIO Introduzone alla ermodnamca Esercz svolt CAIOLO : RIMO RINCIIO Eserczo n 7 Una certa quanttà d Hg a = atm e alla temperatura = 0 C è mantenuta a = costante Quale dventa la se s porta la temperatura a =

Dettagli

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann FISICA DEI FLUIDI Lezone 5-5 Maggo 202 Le equazon per le varabl macroscopche: moment dell equazone d Boltzmann Teorema H a parte, non è facle estrarre altre consderazon general sulla funzone denstà d probabltà

Dettagli

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1 Chmca Fsca Botecnologe santare Lezone n. 7 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Antonno Polmeno 1 Soluzon / comportamento deale - Il dagramma d stato d una soluzone bnara,

Dettagli

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω Metod d anals Eserczo Anals alle magle n presenza d sol generator ndpendent d tensone R s J R Determnare le tenson sulle resstenze sapendo che: s s 0 R R 5.Ω s J R J R R 5Ω R 0Ω R 6Ω R 5 Dsegnamo l grafo,

Dettagli

GUGLIOTTA CALOGERO. Liceo Scientifico E.Fermi Menfi (Ag.) ENTROPIA

GUGLIOTTA CALOGERO. Liceo Scientifico E.Fermi Menfi (Ag.) ENTROPIA GUGLIOTTA CALOGERO Lceo Scentco E.Ferm Men (Ag.) ENTROIA Il concetto d processo termodnamco reversble d un dato sstema è collegato all dea che s possa passare dallo stato allo stato attraverso una successone

Dettagli

FISICA. S = Q rev 373K

FISICA. S = Q rev 373K FISICA Sere 9: Soluzon II lceo Eserczo 1 ranszone d fase Poché l entropa è una funzone d stato possamo calcolare la sua varazone lungo un processo reversble. Questo lo s può realzzare sottraendo delle

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

Maurizio Piccinini A.A Fisica Generale B. Entropia. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico

Maurizio Piccinini A.A Fisica Generale B. Entropia. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Fsca Generale B Scuola d Ingegnera e Archtettura UNIBO esena Anno Accademco 014 015 δ δ 0 Nel caso d ccl reversbl: = 0 Ogn parte d un cclo reversble è reversble, qund dat due stat ntermed qualunque ed

Dettagli

Premessa essa sulle soluzioni

Premessa essa sulle soluzioni Appunt d Chmca La composzone delle soluzon Premessa sulle soluzon...1 Concentrazone...2 Frazone molare...2 Molartà...3 Normaltà...4 Molaltà...4 Percentuale n peso...4 Percentuale n volume...5 Massa per

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energa e Lavoro Fnora abbamo descrtto l moto de corp (puntform) usando le legg d Newton, tramte le forze; abbamo scrtto l equazone del moto, determnato spostamento e veloctà n funzone del tempo. E possble

Dettagli

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON 3 CAMPIOAMETO DI ROULLI E DI POISSO 3. ITRODUZIOE In questo captolo esamneremo due schem d camponamento che dversamente dal camponamento casuale semplce non producono campon d dmensone fssa ma varable.

Dettagli

Propagazione degli errori

Propagazione degli errori Propagazone degl error Msure drette: la grandezza sca vene msurata drettamente (ad es. Spessore d una lastrna). Per questo tpo d msure, la teora dell errore svluppata nelle lezone precedent é sucente per

Dettagli

Introduzione alla II legge della termodinamica

Introduzione alla II legge della termodinamica Introduzone alla II legge della termodnamca In natura esstono fenomen che, pur NON volando la conservazone dell energa (ΔE nt = Q L), non s verfcano: Per esempo: Oggett alla stessa che s portano a dverse;

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Ad esempio, potremmo voler verificare la legge di caduta dei gravi che dice che un corpo cade con velocità uniformemente accellerata: v = v 0 + g t

Ad esempio, potremmo voler verificare la legge di caduta dei gravi che dice che un corpo cade con velocità uniformemente accellerata: v = v 0 + g t Relazon lnear Uno de pù mportant compt degl esperment è quello d nvestgare la relazone tra due varabl. Il caso pù mportante (e a cu spesso c s rconduce, come vedremo è quello n cu la relazone che s ntende

Dettagli

Analisi degli errori. Introduzione J. R. Taylor, Introduzione all analisi degli errori, Zanichelli, Bo 1986

Analisi degli errori. Introduzione J. R. Taylor, Introduzione all analisi degli errori, Zanichelli, Bo 1986 Anals degl error Introduzone J. R. Taylor, Introduzone all anals degl error, Zanchell, Bo 1986 Sstem d untà d msura, rappresentazone numerca delle quanttà fsche e cfre sgnfcatve Resnck, Hallday e Krane

Dettagli

L arcobaleno. Giovanni Mancarella. n = n = n = α( o )

L arcobaleno. Giovanni Mancarella. n = n = n = α( o ) Govann Mancarella L arcobaleno I(α) (a.u.) n =.3338 n =.336 39 40 4 4 43 α( o ) In questa nota utlzzeremo l termne dstrbuzone per ndcare la denstà d probabltà d una varable casuale. Il fenomeno dell arcobaleno

Dettagli

Elettroliti AB A + + B - : 1 = n mol dissociate : n mol iniziali. 1 n (1 ) Per una mole di AB Per n moli di AB

Elettroliti AB A + + B - : 1 = n mol dissociate : n mol iniziali. 1 n (1 ) Per una mole di AB Per n moli di AB Elettrolt AB A + + B - Grado d dssocazone alfa è la frazone d mol che all equlbro ha subto dssocazone : 1 = n mol dssocate : n mol nzal o n mol ( dssocate ) 1 0 1 o n mol ( nzal ) 1 n (1 ) AB A + + B -

Dettagli

Considerazioni teoriche su nuove osservazioni ottiche 1 della teoria della relatività. M. v. Laue (Berlin)

Considerazioni teoriche su nuove osservazioni ottiche 1 della teoria della relatività. M. v. Laue (Berlin) Consderazon teorche su nuove osservazon ottche 1 della teora della relatvtà. M. v. Laue (Berln) 1. Il calcolo della deflessone della luce da parte del sole s fonda sulla legge che la propagazone della

Dettagli

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato liquido

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato liquido GLI STATI DI AGGREGAZIONE DELLA MATERIA Lo stato lqudo Lo stato lqudo Lqud: energa de mot termc confrontable con quella delle forze coesve. Lmtata lbertà d movmento delle molecole, che determna una struttura

Dettagli

Propagazione delle incertezze

Propagazione delle incertezze Propagazone delle ncertezze In questa Sezone vene trattato l problema della propagazone delle ncertezze quando s msurano pù grandezze dfferent,,,z soggette a error d tpo casuale e po s utlzzano tal grandezze

Dettagli

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione.

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione. Msure ndpendent della stessa grandezza, cascuna con una dversa precsone. Consderamo d avere due msure o n generale della stessa grandezza, ndpendent, caratterzzate da funzone denstà d probabltà d Gauss.

Dettagli

Note U = L + Q. Chimica Fisica I a.a. 2012/2013 Scienza e Tecnologia dei Materiali S. Casassa. April 3, 2013

Note U = L + Q. Chimica Fisica I a.a. 2012/2013 Scienza e Tecnologia dei Materiali S. Casassa. April 3, 2013 1 Note U L + Q Chca Fsca I a.a. 01/013 Scenza e Tecnologa de Materal S. Casassa Aprl 3, 013 Contents 1 Cnetca Molecolare 3 1.1 La dstrbuzone d Maxwell.......................... 3 1. Cenn d statstca................................

Dettagli

Fisica Generale LA N.1 Prova Scritta del 12 Febbraio 2018 Prof. Nicola Semprini Cesari

Fisica Generale LA N.1 Prova Scritta del 12 Febbraio 2018 Prof. Nicola Semprini Cesari Fsca Generale A N. Prova Scrtta del Febbrao 8 Prof. Ncola Semprn Cesar Meccanca: quest ) Al tempo t= una carrozza ferrovara comnca a muovers d moto rettlneo unformemente accelerato (a). Al tempo t=t, da

Dettagli

Dilatazione termica di solidi e liquidi:

Dilatazione termica di solidi e liquidi: Dlatazone termca d sold e lqud: temperatura aumenta corp s dlatano; es.: bnaro de tren Dlatazone lneare: sbarra spazo tra d loro L L 0 α pù e lunga, pù s dlata coeffcente d dlatazone lneare es: α Fe 12

Dettagli

ANALISI STATISTICA DELLE INCERTEZZE CASUALI

ANALISI STATISTICA DELLE INCERTEZZE CASUALI AALISI STATISTICA DELLE ICERTEZZE CASUALI Consderamo l caso della msura d una grandezza fsca che sa affetta da error casual. Per ottenere maggor nformazone sul valore vero della grandezza rpetamo pù volte

Dettagli

Sistemi Intelligenti Stimatori e sistemi lineari - III

Sistemi Intelligenti Stimatori e sistemi lineari - III Sstem Intellgent Stmator e sstem lnear - III Alberto Borghese Unverstà degl Stud d Mlano Laboratory of Appled Intellgent Systems (AIS-Lab) Dpartmento d Informatca borghese@d.unm.t /6 http:\\borghese.d.unm.t\

Dettagli

Determinarelatranscaratteristicav out (v in ) del seguente circuito R. V out. V in V ٧ = 0.7V D Z D V R = 5V. R o V R V Z = -8V

Determinarelatranscaratteristicav out (v in ) del seguente circuito R. V out. V in V ٧ = 0.7V D Z D V R = 5V. R o V R V Z = -8V ESECZO SU DOD (Metodo degl Scatt) Determnarelatranscaratterstcav out (v n ) del seguente crcuto Dat del problema 5 o kω Ω 0 Ω Z -8 n ٧ 0.7 r D 0 Ω r Z 0 Ω r Ω D Z D o out Metodo degl scatt S determnano

Dettagli

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato liquido

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato liquido GLI STATI DI AGGREGAZIONE DELLA MATERIA Lo stato lqudo Lo stato lqudo Lqud: energa de mot termc confrontable con quella delle forze coesve. Lmtata lbertà d movmento delle molecole, che determna una struttura

Dettagli

Il lavoro in termodinamica

Il lavoro in termodinamica Il lavoro n termodnamca Il lavoro esterno: W est =-F e Dl (-: orza e spos. dscord) Il lavoro atto dal sstema sarà: W=-W est = F e Dl La orza eserctata dall ambente può essere dervata dalla pressone esterna:

Dettagli

IL MODELLO DI MACK. Materiale didattico a cura di Domenico Giorgio Attuario Danni di Gruppo Società Cattolica di Assicurazioni

IL MODELLO DI MACK. Materiale didattico a cura di Domenico Giorgio Attuario Danni di Gruppo Società Cattolica di Assicurazioni IL MODELLO DI MACK Materale ddattco a cura d Domenco Gorgo Attuaro Dann d Gruppo Socetà Cattolca d Asscurazon CHAIN-LADDE CLASSICO Metodo pù utlzzato per la stma della rserva snstr. Semplctà. Dstrbuton-ree

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Propagazione degli errori

Propagazione degli errori Propagaone degl error Voglamo rcavare le ncertee nelle msure ndrette. Abbamo gà vsto leone un prma stma degl error sulle grandee dervate valda n generale. Consderamo ora l caso specco d grandee aette da

Dettagli

Elasticità nei mezzi continui

Elasticità nei mezzi continui Elastctà ne mezz contnu l tensore degl sforz o tensore d stress, σ j Consderamo un cubo d dmenson untare n un mezzo elastco deformato. l cubo è deformato dalle forze eserctate sulle sue facce dal resto

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 3 marzo 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 3 marzo 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 9: 3 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Eserczo Consderamo una rendta perodca d 2n termn

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Prova parziale di Fisica Generale L-B e di Elementi di Fisica L-B. Corsidilaureainingegneriacivileedenergetica. Prof. D. Galli. 25 maggio 2002 (1)

Prova parziale di Fisica Generale L-B e di Elementi di Fisica L-B. Corsidilaureainingegneriacivileedenergetica. Prof. D. Galli. 25 maggio 2002 (1) Prova parzale d Fsca Generale L-B e d Element d Fsca L-B Corsdlaureanngegneracvleedenergetca Prof. D. Gall 5 maggo 00 (). Traccare nel dagramma d Clapeyron l soterma d un gas perfetto. Traccare nel dagramma

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE AA 2009-2010 DOCENTE: PAOLO LISCA 1 Polnomo mnmo Avvertenza: con V ndcheremo uno spazo

Dettagli

6.1- Sistemi punti, forze interne ed esterne

6.1- Sistemi punti, forze interne ed esterne 1 CAP 6 - SISTEMI DI PUNTI MATERIALI Parte I 1 Cap 6 - Sstem d punt materal Cap 6 - Sstem d punt materal Il punto materale è un astrazone alla quale poch cas s possono assmlare. La maggor parte degl oggett

Dettagli

Relazioni di fluttuazione

Relazioni di fluttuazione Relazon d fluttuazone L. P. 1 gugno 2014 1 Catena d Markov n tempo contnuo In queste note consdereremo de sstem pccol, descrtt medante delle coordnate collettve. Supporremo anz che un determnato sstema

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Sorgenti Numeriche - Soluzioni

Sorgenti Numeriche - Soluzioni Sorgent umerche - Soluzon *) L anals delle frequenze con cu compaono le vare lettere n un documento n talano, comprendente 5975 caratter, ha fornto seguent dat: Lettera umero Frequenza relatva A 666. B

Dettagli

Equilibri Chimici. Processi chimici indipendenti & reazioni in fase gas

Equilibri Chimici. Processi chimici indipendenti & reazioni in fase gas Equlbr Chmc Process chmc ndendent & reazon n fase gas Process stechometrc ndendent (1) Un rocesso stechometrco ndendente è costtuto da un nseme d relazon quanttatve tra le varazon del numero d mol d cascun

Dettagli

Misure Ripetute ed Indipendenti

Misure Ripetute ed Indipendenti Msure Rpetute ed Indpendent Una delle metodologe pù semplc per valutare l affdabltà d una msura consste nel rpeterla dverse volte, nelle medesme condzon, ed esamnare dvers valor ottenut. Ovvamente, una

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

Gas ideale (perfetto):

Gas ideale (perfetto): Gas deale (erfetto): non esste n realtà drogeno e elo assomglano d ù a un gas deale - le molecole sono untform; - nteragscono tra loro e con le aret del recente medante urt erfettamente elastc (ovvero

Dettagli

Equilibri eterogenei

Equilibri eterogenei Equlbr eterogene L energa lbera è funzone della ressone, Temperatura e Composzone G = G (, T, n ) l dfferenzale completo è δg δg dg = d + δ δt δg δn T,, n j Rcordando che: s ha che dt + δg n T, n, n δ,

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio I Appello d Calcolo delle Probabltà Cognome: Laurea Trennale n Matematca 24/5 Nome: 29 gennao 25 Emal: Se non è espressamente ndcato l contraro, per la soluzone degl esercz è possble usare tutt rsultat

Dettagli

Teoria degli errori. La misura implica un giudizio sull uguaglianza tra la grandezza incognita e la grandezza campione. Misure indirette: velocita

Teoria degli errori. La misura implica un giudizio sull uguaglianza tra la grandezza incognita e la grandezza campione. Misure indirette: velocita Teora degl error Processo d msura defnsce una grandezza fsca. Sstema oggetto. Apparato d msura 3. Sstema d confronto La msura mplca un gudzo sull uguaglanza tra la grandezza ncognta e la grandezza campone

Dettagli

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 4

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 4 Teora de Goch Dr. Guseppe Rose Unverstà degl Stud della Calabra Corso d Laurea Magstrale n Economa Applcata a.a 011/01 Handout 4 1 L equlbro d Bertrand Nel modello d Bertrand, abbamo un duopolo esattamente

Dettagli

Dilatazione Termica dei Solidi

Dilatazione Termica dei Solidi Prof. Tortorell Leonardo Spermentazone Tortorell'e-book per la ISICA 6.05 - Dlatazone Termca de Sold 6.05.a) Descrzone Qualtatva del enomeno ra molt effett prodott nella Matera da un Aumento d Temperatura,

Dettagli

Distribuzioni statistiche dei gas perfetti

Distribuzioni statistiche dei gas perfetti Dstrbuzon statstche de gas perfett 1. Propretà de sstem d partcelle dentche In meccanca quantstca sstem d partcelle dentche godono d mportant propretà, che l dfferenzano da sstem classc ed hanno conseguenze

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

IL CALCOLO DELLE FREQUENZE VIBRAZIONALI

IL CALCOLO DELLE FREQUENZE VIBRAZIONALI IL CALCOLO DELLE FREQUENZE VIBRAZIONALI Il calcolo della frequenze rchede l calcolo della matrce delle costant d forza, coè le dervate seconde dell energa, valutate nella geometra d equlbro. Sa la geometra

Dettagli

Termodinamica delle miscele. Termodinamica dell Ingegneria Chimica

Termodinamica delle miscele. Termodinamica dell Ingegneria Chimica Termodnamca delle mscele Termodnamca dell Ingegnera Chmca Consderamo una sstema costtuto da N spece chmche regola delle fas d Gbbs: F=2-Π+N F= grad d lbertà Π= n d fas N= component del sstema Se la fase

Dettagli

Precisione e Cifre Significative

Precisione e Cifre Significative Precsone e Cfre Sgnfcatve Un numero (una msura) è una nformazone! E necessaro conoscere la precsone e l accuratezza dell nformazone. La precsone d una msura è contenuta nel numero d cfre sgnfcatve fornte

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzone e modellstca de sstem Element fondamental Rappresentazone n arabl d stato Esemp d rappresentazone n arabl d stato 007 Poltecnco d Torno Resstore deale Resstore deale d resstenza R R R equazone

Dettagli

Carla Seatzu, 18 Marzo 2008

Carla Seatzu, 18 Marzo 2008 8. Ret d Code Carla Seatzu, 8 Marzo 008 Nella maggor parte de process produttv rsulta troppo restrttvo consderare una sola rsorsa. Esempo: lea tandem arrv µ µ v partenze V sono dverse stazon cu una parte

Dettagli

E (ev) Eccitazioni e transizioni

E (ev) Eccitazioni e transizioni -.85 -.5 -. - + - - + + s p d Ecctazon e transzon d E E - E Che cosa fa sì che un elettrone s trov n un certo lvello energetco puttosto che n un altro? -.6 Due possbl mod d cambare energa: attraverso urt:

Dettagli

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA UNIVERSITA DEGI STUDI DI CASSINO FACOTA DI INGEGNERIA ANTONIO RUSSO, ANGEO EOPARDI ANAISI DE ERRORE CONNESSO A APPROSSIMAZIONE DEE UNGHEZZE E DEE CEERITA NE METODO DI INTEGRAZIONE DEE CARATTERISTICHE (MOC)

Dettagli

Stima dei Parametri Metodo di Massima Verosimiglianza

Stima dei Parametri Metodo di Massima Verosimiglianza Captolo 8 Stma de Parametr Metodo d Massma Verosmglanza Lo scopo dello studo de fenomen fsc è quello d scoprre le legg che legano le grandezze studate e d msurare l valore delle costant che compaono della

Dettagli

Limitazioni di ampiezza negli amplificatori reali

Limitazioni di ampiezza negli amplificatori reali Lmtazon d ampezza negl amplfcator real G. Martnes 1 Lnearzzazone della trans-caratterstca G. Martnes Anals a pccolo segnale e concetto d punto d lavoro IL RUMORE EGLI AMPLIFICATORI Defnzon S defnsce rumore

Dettagli

Variazione di entropia in trasformazioni irreversibili

Variazione di entropia in trasformazioni irreversibili Varazone d entropa n trasormazon rreversbl er calcolare la varazone d entropa tra due stat d equlbro conness da una trasormazone rreversble s srutta l atto che l entropa è una unzone d stato. Allo scopo

Dettagli

( ) d R L. = ρ. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che

( ) d R L. = ρ. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che Fsca Tecnca G. Grazzn Facoltà d Ingegnera In generale possamo dre che R L f ( µ,,, D Dal punto d vsta matematco possamo approssmare la funzone con una sere d potenze e qund: R L ( a b c d µ B D ma per

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA ELEMENTI DI STATISTICA POPOLAZIONE STATISTICA E CAMPIONE CASUALE S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..)

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

1. La domanda di moneta

1. La domanda di moneta 1. La domanda d moneta Esercz svolt Eserczo 1.1 (a) S consder l modello della domanda d moneta a scopo speculatvo d Keynes. Un ndvduo può sceglere d allocare la propra rcchezza sottoscrvendo un ttolo rredmble

Dettagli

Termodinamica. Antonino Polimeno 1

Termodinamica. Antonino Polimeno 1 Termodnamca - Un sstema termodnamco è una orzone d matera descrtto da funzon d stato che ne caratterzzano comletamente le roretà macroscoche, che ossono essere. - Intensve: non dendono dalla quanttà d

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2010/2011, Fisica. Diagramma di fase:

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2010/2011, Fisica. Diagramma di fase: Dagramma d fase: Cambament d stato dell acqua: Spazo tra bnar de tren - per far s che la la dlatazone ndotta dalle temperature estve possa avvenre lungo l'asse del bnaro stesso Dlatazone termca d sold

Dettagli

Dinamica dei sistemi particellari

Dinamica dei sistemi particellari Dnamca de sstem partcellar Marco Favrett Aprl 11, 2010 1 Cnematca Sa dato un sstema d rfermento nerzale (O, e ), = 1, 2, 3 e consderamo un sstema d punt materal (sstema partcellare) S = {(OP, m )}, = 1,,

Dettagli

termodinamica dei gas perfetti V i Funzione di stato Trasformazione isotermica di un gas perfetto: Q isot = L isot V = cost L = 0

termodinamica dei gas perfetti V i Funzione di stato Trasformazione isotermica di un gas perfetto: Q isot = L isot V = cost L = 0 termodnamca de gas erfett Equazone d stato de gas erfett: = nrt Prmo rnco della termodnamca: U = Q - L Q = nc T, er una trasformazone socora Q = nc T, er una trasformazone sobarca Lavoro: L = Energa nterna

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro omponent www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-0) Bpol resst Equazon caratterstca d un bpolo ressto f, 0 L equazone d un bpolo ressto defnsce una cura nel

Dettagli

Gas ideale (perfetto):

Gas ideale (perfetto): C.d.L. Scenze e ecnologe grare,.. 2015/2016, Fsca Gas deale (perfetto): non esste n realtà drogeno e elo assomglano d pù a un gas deale - le molecole sono puntform; - nteragscono tra loro e con le paret

Dettagli

Appunti di Teoria dell Informazione

Appunti di Teoria dell Informazione Corso d Telecomuncazon (Classe Qunta della specalzzazone Elettronca e Telecomuncazon) Pagna - - . La teora dell nformazone La teora dell nformazone descrve l funzonamento de sstem d comuncazone sa analogc

Dettagli

8 Gas ideali quantistici

8 Gas ideali quantistici 8 Gas deal quantstc 8. Gas deale nel mcrocanonco quantstco Prendamo come al solto un sstema, all equlbro termodnamco, formato da N partcelle non nteragent e ndstngubl, racchuse n un volume V e con un energa

Dettagli

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese Sstem Intellgent Relazone tra ottmzzazone e statstca - IV Alberto Borghese Unverstà degl Stud d Mlano Laboratory of Appled Intellgent Systems (AIS-Lab) Dpartmento d Informatca borghese@dunmt Anals dell

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

PROVA SCRITTA DI MECCANICA RAZIONALE (13 gennaio 2017) (Prof. A. Muracchini)

PROVA SCRITTA DI MECCANICA RAZIONALE (13 gennaio 2017) (Prof. A. Muracchini) PRV SCRITT DI ECCNIC RZINLE (13 gennao 017) (Prof.. uracchn) Il sstema rappresentato n fgura è costtuto da: a) una lamna pesante, omogenea a forma d trangolo soscele (massa m, base l, altezza h) vncolata

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA I TUTELA E BEESSERE AIMALE Corso d : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chucch Rccardo mal:rchucch@unte.t Medcna Veternara: CFU 5 (corso ntegrato

Dettagli

Prima prova di gruppo

Prima prova di gruppo Prma prova d gruppo Es. Una metodologa d anals produce fals postv nel 3% de cas e fals negatv nell % de cas. Calcolate quale è l esto pù probable (postvo o negatvo se due anals consecutve esegute sullo

Dettagli