PROVE SCRITTE DI ANALISI MATEMATICA II(N.O.), ANNO 2012/13

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PROVE SCRITTE DI ANALISI MATEMATICA II(N.O.), ANNO 2012/13"

Transcript

1 PROVE SRITTE DI ANALISI MATEMATIA II(N.O.), ANNO / Prova scritta del /6/ Si calcoli la serie di Fourier della funzione f(x) = x sin x, nell intervallo [ π, π]. [Sugg.: si rammenti che, per n, si ha sin nx sin xdx = cos nx cos xdx =.] E data nello spazio IR la forma differenziale ω = x A dx + y A dy + (z A + x)dz, dove A é il numero delle lettere del cognome. Dopo aver osservato che ω xdz é una forma esatta, si calcoli l integrale curvilineo ω lungo la curva chiusa (detta curva di Lissajous) di equazioni x = sin(t) cos(t) y = sin(t) sin(t) z = cos(t), per t [, π]. E data, nel piano (x, y), la curva Γ di equazione y = cosh x, per x [, ] (N.B.: cosh é la funzione coseno iperbolico). Dopo aver calcolato la lunghezza di Γ e le coordinate del suo baricentro, si trovino le aree delle superficie di rotazione ottenute facendo ruotare di un giro completo Γ attorno all asse x e attorno all asse y. Soluzioni compito /6/ Poiché la funzione assegnata é pari, si avra uno sviluppo di soli coseni. Si ha ora, facilmente: π Inoltre, ancora facilmente si trova x sin xdx = x sin xdx = π, da cui a =. π x sin x cos xdx = π, da cui a =,

2 e, per n, sfruttando il suggerimento: π x sin x cos nxdx = ( ) n+ π n, da cui a n = ( ) n+ n. Pertanto, lo sviluppo richiesto é x sin x = cos x + n= ( ) n+ n cos nx. La forma differenziale ω é somma di una forma esatta (x A dx + y A dy + z A dz) e della forma xdz. Pertanto, poiché la curva é chiusa, bastera calcolare π π xdz = sin cos(t) (t) cos(t)dt = cos(t)dt = π cos (t)dt. on la sostituzione u = t, avremo dt = du e e quindi π cos (t)dt = 4π ω = π = π. cos udu = π La lunghezza di Γ si trova mediante il seguente integrale: L = + sinh xdx = L ascissa x G del baricentro é data da x G := sinh x + sinh xdx = sinh L ordinata y G del baricentro é invece data da cosh xdx = sinh(). x cosh xdx = (+sinh cosh ) = sinh + e. da cui y G = Ly G = sinh() (cosh(x) ) cosh(x)dx [ ] (x + sinh(x) cosh(x)) sinh(x) = = ( + sinh() cosh()) sinh() e quindi y G = sinh + cosh.

3 Ora, per il teorema di Guldino, le due aree richieste sono: A = πly G = π( + sinh() cosh()) π sinh()).4546, (rotazione attorno all asse x), e (rotazione attorno all asse y). A = πlx G = 4π sinh + e.977 Prova scritta del 6/6/ Si calcoli la serie di Fourier della funzione f(x) = x x, nell intervallo [ π, π]. Si consideri, nel suo dominio di definizione, la forma differenziale definita dalle seguenti leggi: X(x, y, z) = ω = Xdx + Y dy + Zdz, x x + y + z, Y (x, y, z) = y + z,, Z(x, y, z) = x + y + z e si calcoli l integrale curvilineo ove é la curva avente la seguente parametrizzazione: x = cos t, y = sin t, z = sin t cos t, con t [, π ]. ω, x + y + z, Si consideri, nel piano (x, y), la regione limitata E la cui frontiera é la curva regolare definita dalle seguenti equazioni parametriche: { x = cos θ + sin θ, y = sin θ cos θ, θ [, π]. Dopo aver calcolato l area di E, si trovi l area della superficie piana ottenuta intersecando il piano di equazione z = x+y+ con il cilindro di equazione (x y) 4 + (x+y) 9 =.

4 Soluzioni compito 6/6/ Poiché f é dispari, il suo sviluppo sara di soli seni, e quindi del tipo ove b n = π x x sin(nx)dx = π π π parti, si ottiene, per n : e, ancora per parti: In conclusione, si otterra x x = n= b n sin(nx), x sin(nx)dx, per n. Ora, procedendo per x sin(nx)dx = ( )n π + n n x cos(nx)dx = n x cos(nx)dx, sin(nx)dx = ( )n n. e quindi la serie di Fourier cercata é x sin(nx)dx = ( )n π n + ( )n n, x x = π n= + ( ) n ( π n ) n sin(nx), per x ] π, π[. La forma differenziale, che é definita in IR \ {(,, )}, non é esatta, in quanto non é chiusa. Tuttavia, é esatta la forma ω := ω dy x + y + z, in quanto un potenziale di ω é F (x, y, z) = x + y + z. Pertanto, l integrale curvilineo richiesto, tenendo conto anche del fatto che lungo risulta x +y +z =, si puo calcolare come segue: ω = = + / ω + dy x + y + z = sin t cos tdt = sin ( π ) = 4. 4

5 Per calcolare l area di E ci si puo servire delle formule di Green: per esempio, denotata con Γ la frontiera di E, si ha Area(E) = = Γ π xdy = ( + 4 π (cos θ + sin θ)( cos θ + sin θ)dθ = sin θ cos θ)dθ = π dθ = π. Quanto alla seconda domanda, osserviamo innanzitutto che la curva Γ non é altro che l intersezione del cilindro con il piano xy: infatti, da x = cos θ + sin θ e y = (x y) sin θ cos θ si ricava subito + (x+y) =. Allora bastera evidentemente 4 9 calcolare l integrale ds, dove ds é l elemento di superficie del piano di equazione E z = x + y + : una semplice applicazione delle formule fornisce ds = dxdy. In conclusione, l area richiesta é uguale a Area(E) = π. Prova scritta del /7/ ) Si calcoli, utilizzando la funzione Γ, l integrale M := + x e x dx. ) Sfruttando la relazione x tx = (x t ) t, si espliciti poi la funzione 4 F (t) = + e tx e x dx, e si confronti il valore di M con F (). Nel piano xy si consideri l ellisse di equazione x + y xy =, e si calcoli l area della regione da essa delimitata. [Sugg.: si osservi che l equazione data é equivalente a: X + Y =, ove X = y x e Y = y...] Detta S la semisfera definita da S := {(x, y, z) : x + y + z =, z y x}, si calcoli, mediante il teorema di Stokes, il flusso del rotore del campo F = (x+y, y, z) uscente da S. 5

6 Soluzioni compito /7/ ) L integrale esiste sicuramente, a causa dell ordine di infinitesimo dell esponenziale. Inoltre, poiche l integranda é una funzione pari, si ha + x e x dx = + x e x dx. Mediante la sostituzione x = t, e quindi dx = dt, l ultimo integrale diviene t M = + x e x dx = ) Sfruttando il suggerimento, si ha Risulta pertanto F (t) = + e in conclusione F () = π = M. + e (x t ) e t 4 dx = e t 4 te t dt = Γ( ) = Γ( ) = π. + e u du = πe t 4. π F (t) = te t π 4, F (t) = e t π t e t Denotando con E la regione delimitata dall ellisse, e tenendo conto del suggerimento, si vede facilmente che tale regione e la trasformata, mediante le leggi {X = y x, Y = y}, con inverse {x = Y X, y = Y }, del disco D del piano XY delimitato dalla circonferenza di equazione X + Y =. Poiche l area di D é π e lo Jacobiano (in modulo) della trasformazione é pari a, possiamo concludere che l area di E é π. Lo stesso risultato si sarebbe ottenuto scrivendo in forma parametrica l equazione dell ellisse frontiera di E (ancora adoperando la trasformazione suddetta): da X = cos t e Y = sin t si ricava infatti { x = ( Y X ) = sin t 6 cos t y = Y = sin t, (t [, π]), e calcolando l integrale curvilineo ydx (prestando attenzione al verso E di percorrenza della frontiera) si ottiene π Area(E) = ( cos t + sin t π sin t ) sin tdt = dt = π. 6 (V. anche svolgimento dell esercizio seguente). 6 4,

7 Usando il teorema di Stokes, basta calcolare l integrale curvilineo della forma differenziale (x + y)dx + ydy + zdz lungo la circonferenza ottenuta intersecando la sfera unitaria con il piano z = y x. (Osserviamo che tale circonferenza ha raggio, in quanto il piano passa per l origine). Tuttavia, prima di calcolare l integrale curvilineo, osserviamo che la forma differenziale (x + y)dx + ydy + zdz é somma di una forma esatta e della forma ω = ydx, per cui bastera limitarsi a calcolare l integrale curvilineo di quest ultima. Per ricavare l equazione della circonferenza suddetta, osserviamo che, sostituendo z con y x nell equazione della sfera, si ottiene x + y xy =, equazione equivalente a quella della frontiera di E (v. svolgimento esercizio precedente, seconda parte). Dunque, le equazioni parametriche della circonferenza cercata sono le seguenti: Si ha allora S rot( F ) nds = x = sin t 6 cos t y = sin t z = y x = sin t 6 + cos t. E π ydx = sin t( cos t + sin t )dt = 6 π sin t = dt = π, il segno meno essendo dovuto al verso di percorrenza, e avendo trascurato il termine in sin t cos t che da contributo nullo all integrale. Il calcolo si sarebbe potuto effettuare piu rapidamente, sempre grazie al teorema del rotore, calcolando direttamente il flusso uscente dal disco contenuto nel piano di equazione z = y x e delimitato dalla circonferenza : infatti, in tal caso avremmo trovato n = (,, ), rot( F ) = (,, ), e quindi rot( F ) n =, costante. L area del disco é ovviamente π, in quanto é un cerchio massimo nella sfera unitaria. In conclusione, il flusso cercato é dato dal prodotto di tale area per, concordemente con quanto gia trovato in precedenza. 7

8 Prova scritta del 8/9/ Si consideri la serie di potenze n= ( ) n x n. n Dopo averne determinato il raggio r di convergenza, se ne calcoli la somma, utilizzando il seguente noto sviluppo in serie: 4x = + valido con lo stesso raggio di convergenza. n= ( ) n x n+ n n +, Si consideri la forma differenziale in due dimensioni: y ω = (x + ) + y dx + x + (x + ) + y dy. Si riconosca che ω non é una forma esatta nel suo dominio di definizione e si valuti l integrale ω dove é la circonferenza di equazione (x ) + y =. a) Si consideri, nel piano (x, y), la curva chiusa Γ (asteroide) di equazioni parametriche { x = cos θ y = sin θ, con θ [, π], e si calcoli l area della regione delimitata da tale curva. [Sugg.: all occorrenza, si ponga cos 4 θ sin θ = cos θ(sin θ cos θ) e si usino le formule di duplicazione...] b) Si calcoli l area della superficie S ottenuta intersecando il piano Π di equazione z = 4x + y con la superficie di equazione x / + y / =. Soluzioni compito 8/9/ Applicando il criterio del rapporto, troviamo a n a n+ = e quindi si vede facilmente che r = 4. (n)!(n + )!(n + )! n!n!(n)!(n + )(n + ) = n + (n + ), 8

9 Dallo sviluppo noto, derivando termine a termine, troviamo = 4x n= ( ) n x n n e quindi risulta, per x < 4 : n= ( ) n x n = n 4x. La forma differenziale ω é definita e di classe nel dominio IR \ {(, )}. alcoli di routine mostrano che essa é chiusa. Tuttavia essa non é esatta, poiché l integrale curvilineo lungo la circonferenza di equazione (x + ) + y = vale π. Ora, poiché la circonferenza (x ) + y = ha centro in (, ) e raggio, essa giace completamente in un sottodominio rettangolare nel quale ω é esatta (per es. il semipiano x > ). Pertanto l integrale curvilineo richiesto é nullo. a) Per il calcolo dell area A si possono usare le formule di Green: π / A = xdy = sin θ cos 4 θdθ = sin θ cos 4 θdθ, Γ (l ultima uguaglianza valendo per motivi di simmetria). Seguendo il suggerimento, si trova + cos(θ) sin θ cos 4 sin (θ) θdθ = dθ. 4 Ora, separando i due addendi, si perviene a 8 sin θ cos 4 θdθ = sin (θ)dθ + sin (θ) cos(θ)dθ = dunque = sin θ cos 4 θdθ = θ sin(θ) cos(θ) 4 + sin θ 6 θ sin(θ) cos(θ) + + sin θ alcoli di routine conducono ora alla conclusione: l area é uguale a 8 π. b) Si vede facilmente che la superficie di equazione x / + y / = interseca il piano xy proprio in Γ. Pertanto, l equazione della superficie S non é altro che l equazione del piano z = 4x + y ristretta al dominio circoscritto da Γ. Poiché l elemento di superficie é 5dS, l area cercata é 5 volte quella calcolata in precedenza, ossia 5 8 π. 9

10 [ π, π]. Prova scritta del // Si trovi la serie di Fourier della funzione f(x) = sin 4 x sin x, nell intervallo [Sugg.: si utilizzino le formule di bisezione/duplicazione e la relazione (valida per ogni x reale) sin 4 x = sin x 4 sin (x).] Nello spazio IR sia Q il solido avente come frontiera la superficie S di equazione (x y) + y z =. Dopo aver individuato una trasformazione lineare T : IR IR che trasformi Q nella palla unitaria, si calcoli il volume del solido Q. Si consideri la curva ottenuta intersecando il paraboloide di equazione z = x + y con il piano z = 4x + 4y, e si trovino i punti di ascissa massima e minima di. Soluzioni compito // hiaramente, essendo sin 4 x sin x = sin x cos x, la relazione é valida per ogni x, e quindi sin 4 x = sin x 4 sin (x) f(x) = cos (4x) = 4 8 cos(4x). 8 Questo é esattamente lo sviluppo richiesto della funzione (pari) f. Ovviamente, la trasformazione piu naturale é data dalle leggi X = x y, Y = y, Z = z, da cui facilmente si ricavano le inverse: x = X + Y, y = Y, z = Z. Lo Jacobiano é poi una costante: J = 6, e infine (indicando con B la palla unitaria): V ol(q) = dxdydz = JdXdY dz = 6V ol(b) = 6 4 π = 8π. Q B

11 Basterebbe semplicemente mettere a sistema le equazioni dei due vincoli, per ottenere la condizione (x ) + (y ) = 8 (circonferenza centrata in (, ) e raggio ), da cui facilmente si vede che il massimo valore possibile per la x é + e il minimo é. D altra parte, adoperando il metodo dei moltiplicatori di Lagrange, basta cercare il massimo e minimo valore della funzione F (x, y, z) = x, con i vincoli z x y =, e z 4x 4y =. alcolando il gradiente della Lagrangiana, si ottengono le equazioni λ x 4λ x =, λ y + λ =, λ + λ =, (oltre a quelle dei due vincoli). onfrontando la seconda con la terza, e osservando che non puo risultare simultaneamente λ = λ =, si vede facilmente che si deve avere y = : dai vincoli allora si ricava x + 4 = 4x + 8, le cui soluzioni sono x = ± 8, cioé appunto i due estremi cercati. Prova scritta del 5//4 E data la serie di potenze n= b n n xn, dove i termini b n verificano le seguenti relazioni: n =,,... b =, b n+ b n = n +, ) Si determini esplicitamente il valore dei termini b n, e si trovi il raggio di convergenza della serie. ) Detta S(x) la somma della serie nell insieme di convergenza, si dimostri che risulta S(x) S(x) = e x x Si consideri la seguente forma differenziale in IR : ω = ydx xdy + dz. ) Si calcoli esplicitamente l integrale curvilineo di ω lungo la curva chiusa ottenuta intersecando il piano z = x + y + con il cilindro di equazione x + y =. ) Si valuti lo stesso integrale mediante il teorema del rotore.

12 Detto Γ il cono di equazione z = x + y, si calcoli l area della porzione di Γ compresa fra il piano xy e la curva intersezione di Γ con il cilindro di equazione x + y =. Soluzioni compito 5//4 Scrivendo i primi termini b n, si vede facilmente che b n =, per n. n! Allora, la serie di potenze si puo scrivere come segue: n= n!( n ) xn. Applicando il criterio del rapporto, si vede facilmente che il raggio di convergenza é infinito, per cui la serie data converge per ogni x. Ora, naturalmente si ha S(x) = n= n n!( n ) xn, e S(x) = n!( n ) xn, per cui la relazione da dimostrare si ottiene cosi : S(x) S(x) = n= n= n n!( n ) xn = n! xn = e x x. n= ) Le equazioni parametriche della curva chiusa sono: x = cos t, y = sin t, z = cos t + sin t +, con t [, π]. L integrale curvilineo richiesto si calcola allora come segue: π ω = (sin (t) + cos (t) sin(t) + cos(t))dt = π. ) Per adoperare il teorema del rotore, porremo U = (y, x, ): il rotore del campo U coincide con il vettore e (ove e denota il versore dell asse z). La normale al piano z = x + y + ha componenti parallele a (,, ), e quindi il suo versore é dato da n = (,, ). L elemento di superficie del piano é invece dxdy = dxdy. Allora, detta Σ la superficie di piano circondata da, l integrale da calcolare é rot(u) nds, Σ ossia dxdy B

13 dove B é il disco nel piano xy di centro l origine e raggio. Facilmente si vede che l ultimo integrale non é altro che il doppio dell area di B, cioé π, lo stesso risultato ottenuto precedentemente. L elemento di superficie ds di Γ é: ds = + ( z x ) + ( z y ) dxdy = dxdy. Il dominio d integrazione é chiaramente la regione di piano xy circondata dall ellisse di equazione x + y =, e quindi l area cercata non é altro che l area di tale ellisse, moltiplicata per. Poiché l ellisse ha semiassi lunghi e rispettivamente, la sua area é π, e quindi in definitiva l area della superficie da calcolare é π. Prova scritta del //4

14 E data la serie di funzioni n= e nx n, per x IR. ) Si trovi l insieme di convergenza, e si determini, se esiste, una semiretta ove la serie converga totalmente. ) Si calcoli la somma della serie, nel suo insieme di convergenza. Sia Γ la curva grafico della funzione y = x + x, per x [, ]. Siano poi S il segmento della retta y =, compreso fra i punti (, ) e (, ), e S il segmento dell asse y compreso fra i punti (, ) e (, ). Detta F la curva chiusa composta da Γ, S e S, orientata in senso antiorario, si calcoli il seguente integrale curvilineo: ω, ove ω = xdy ydx + e y dy. Si consideri, nel piano xy, la curva grafico della funzione y = xe x, con x [, ], e si calcoli il volume del solido di rotazione E, ottenuto facendo ruotare di un angolo giro attorno all asse y la regione di piano delimitata da, dall asse y e dalla retta y = e. F di potenze: Soluzioni compito //4 ) Essendo e nx = (e x ) n per ogni n e x, la serie si puo trattare come serie e nx n= n = ove y = e x. La serie di potenze in y ha raggio di convergenza, e quindi la serie data converge per ogni x > : infatti, per x > si ha y = e x <. Per x = la serie diventa quella armonica, e diverge. Si ha ovviamente divergenza per x <, e convergenza totale nella semiretta x : infatti in quell insieme si ha e nx per ogni n, e la serie n e n n ) La somma della serie, per x >, é data da n= y n n, é convergente, per quanto detto prima. S(x) = ln( e x ) : 4 n e n n,

15 infatti, ritornando alla serie di potenze in y, si ha, per y < : n= y n y n = t n dt = n= y dt = log( y). t Risostituendo y = e x si trova esattamente l espressione suddetta di S(x). La forma differenziale ω si puo riguardare come la somma della forma xdy ydx con la forma esatta e y dy. Pertanto l integrale curvilineo richiesto si riduce a calcolare F (xdy ydx) = J, dove J é (come conseguenza delle formule di Green) il doppio dell area della regione circondata da F. Per ottenere J basta fare il seguente calcolo: e infine F ω = 5. J = (x + x )dx = ( + 4 ) = 5 4, La funzione f(x) = xe x é positiva e crescente per x [, ]. Pertanto, la sua funzione inversa g é positiva e crescente per y [, e]. Il volume cercato si puo calcolare mediante la formula V ol = π e g(y) dy = π g (f(x))f (x)dx = π Un semplice calcolo di integrale per parti fornisce infine V ol = π(e + 6 e) = π(4 e). x (e x + xe x )dx. 5

PROVE SCRITTE DI ANALISI MATEMATICA II(N.O.), ANNO 2006/07

PROVE SCRITTE DI ANALISI MATEMATICA II(N.O.), ANNO 2006/07 PROV SCRITT DI ANALISI MATMATICA II(N.O.), ANNO 6/7 Prova scritta del 5//6 Si determini l insieme di convergenza della serie di funzioni n= n( + sin x) n limitatamente all intervallo x π, e si specifichi

Dettagli

Analisi Vettoriale A.A Soluzioni del Foglio 4

Analisi Vettoriale A.A Soluzioni del Foglio 4 Analisi Vettoriale A.A. 26-27 - Soluzioni del Foglio 4 Esercizio 4.1. Sia Σ la superficie cartesiana z = 1 x y, (x, y) = {x 2 + y 2 1}, determinare in ogni punto di Σ il versore normale diretto nel verso

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2002

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2002 PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 22 Prova scritta del 1/1/22 Si esamini la serie di funzioni: 1 log x (e n + n), definita per x IR. Si determini l insieme S in cui tale serie converge,

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2005

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2005 PROVE SRITTE DI ANALISI MATEMATIA II (V.O.), ANNO 25 Prova scritta del 6/4/25 Si consideri la serie di potenze n=1 2n 2n 1 (2n + 1)!. Dopo aver determinato il suo insieme E di convergenza, si trovi una

Dettagli

calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1), calcolare rot ( E ), determinare un potenziale U(x, y, z) per E.

calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1), calcolare rot ( E ), determinare un potenziale U(x, y, z) per E. ANALISI VETTORIALE Soluzione esonero.1. Esercizio. Assegnato il campo E (x, y, z) = x(y + z ), y(x + z ), z(x + y ) } 1111 calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1),

Dettagli

sen n x( tan xn n n=1

sen n x( tan xn n n=1 8 Gennaio 2016 Nome (in stampatello): 1) (8 punti) Discutere la convergenza della serie di funzioni al variare di x in [ 1, 1]. n x( tan xn n ) xn sen n 2) (7 punti) Provare che la forma differenziale

Dettagli

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t ANALISI VETTORIALE Soluzione esercizi 1 gennaio 211 6.1. Esercizio. Sia Γ la curva regolare a tratti di rappresentazione parametrica x = t 2, y = t, t [, 1] e x = t, y = t 2, t [1, 2] calcolare la lunghezza,

Dettagli

Le soluzioni del foglio 3

Le soluzioni del foglio 3 Le soluzioni del foglio 3 1. Esercizio Consideriamo la famiglia di elicoidi, vedi Figura 1, x = u cos(v), y = u sin(v), z = kv, u 1, v π Quella proposta nell esercizio corrisponde alla scelta k = 1 Matrice

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA II(N.O.), ANNO 2014/15

PROVE SCRITTE DI ANALISI MATEMATICA II(N.O.), ANNO 2014/15 PROVE SCRITTE DI ANALISI MATEMATICA II(N.O.), ANNO 4/5 Prova scritta del /6/5 Esercizio Si studi la convergenza della serie di funzioni (sin cos ) n+ per [, π]. Detto A l insieme di convergenza, si calcoli

Dettagli

Analisi 4 - SOLUZIONI (15/07/2015)

Analisi 4 - SOLUZIONI (15/07/2015) Corso di Laurea in Matematica Analisi 4 - SOLUZIONI (5/7/5) Docente: Claudia Anedda ) Calcolare l area della superficie totale della regione di spazio limitata, interna al paraboloide di equazione x +y

Dettagli

Figura 1. F = {y 2, x 2 }

Figura 1. F = {y 2, x 2 } ANALISI VETTORIALE Soluzione esercizi 14 gennaio 211 7.1. Esercizio. Assegnato il campo vettoriale F = y 2, x 2 calcolare la circuitazione τ ds ovvero ( y 2 dx + x 2 dy ) essendo Ω il quadrato di vertici

Dettagli

ESERCIZI SULLE CURVE

ESERCIZI SULLE CURVE ESERCIZI SULLE CURVE VALENTINA CASARINO Esercizi per il corso di Fondamenti di Analisi Matematica, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica, Università degli studi

Dettagli

Esercizi sull integrazione II

Esercizi sull integrazione II ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) - COMPL. DI ANALISI MATEMATICA (A-K) (C.d.L. Ing. Civile) A.A.28-29 - Prof. G.Cupini Esercizi sull integrazione II (Grazie agli studenti

Dettagli

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi)

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi) Analisi Matematica 3 Fisica, 8-9, M. Peloso e L. Vesely Prova scritta del 4 luglio 9 Breve svolgimento con alcuni conti omessi. a Dimostrare che l insieme G = { x, y R : x + x + log y = ye x} coincide

Dettagli

Esonero AM220, 2019, con Soluzioni

Esonero AM220, 2019, con Soluzioni Esonero AM22, 29, con oluzioni Ogni risposta va accuratamente motivata. Non si possono usare: libri, appunti, congegni elettronici, etc.. ia := { (x, y, z) R 3, tali che x 2 + y 2 4, z = x 2 + y 2 }. ia

Dettagli

Soluzioni degli esercizi proposti nella sessione estiva Terni Perugia. F NdS. div F = 2 div F dxdydz = 2volume (V ) = 36π.

Soluzioni degli esercizi proposti nella sessione estiva Terni Perugia. F NdS. div F = 2 div F dxdydz = 2volume (V ) = 36π. Soluzioni degli esercizi proposti nella sessione estiva 2-2 Terni Perugia ) Sia F = (2x, y, z) e V il volume delimitato dalle superfici: la semisfera S := z = 9 x 2 y 2 ed il disco S 2 di equazione z =,

Dettagli

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Secondo Parziale, , Versione A Cognome e nome:...matricola:...

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Secondo Parziale, , Versione A Cognome e nome:...matricola:... es.1 es. es.3 es. es.5 somma 6 6 6 6 6 3 Analisi Matematica : Secondo Parziale, 3.5.16, Versione A Cognome e nome:....................................matricola:......... 1. Dimostrare che la forma differenziale

Dettagli

Analisi Matematica 2: Secondo Parziale, , Versione A. Cognome e nome:...matricola:...

Analisi Matematica 2: Secondo Parziale, , Versione A. Cognome e nome:...matricola:... Analisi Matematica : Secondo Parziale, 6.6.7, Versione A Cognome e nome:....................................matricola:......... es. es. es.3 es.4 es.5 es.6 es.7 somma 5cr. 6 6 6 6 6 - - 3 9cr. 5 5 5 5

Dettagli

ANALISI MATEMATICA 2 - INGEGNERIA MECCANICA ED ENERGETICA A.A PROVA SCRITTA DEL 28/1/19

ANALISI MATEMATICA 2 - INGEGNERIA MECCANICA ED ENERGETICA A.A PROVA SCRITTA DEL 28/1/19 ANALISI MATEMATICA - INGEGNERIA MECCANICA E ENERGETICA A.A. 8-9 PROVA SCRITTA EL 8//9 Scrivere nome cognome e numero di matricola in stampatello su tutti i fogli da consegnare. Consegnare solo la bella

Dettagli

Analisi Matematica 2 Simulazione gennaio Risposte. (Corretta = 2 punti, non data = 0 punti, sbagliata = 0.5 punti) Versione Q1 Q2 Q3 Q4 Q5 Q6

Analisi Matematica 2 Simulazione gennaio Risposte. (Corretta = 2 punti, non data = 0 punti, sbagliata = 0.5 punti) Versione Q1 Q2 Q3 Q4 Q5 Q6 Analisi Matematica Simulazione gennaio 7 Nome, Cognome, Matricola: Cognome del ocente: Risposte. (Corretta = punti, non data = punti, sbagliata =.5 punti Versione Q Q Q Q4 Q5 Q6 A C B C QUESITO. Si consideri

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 2015/16

PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 2015/16 PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 5/6 Prova scritta del //6 Si studi, al variare di x, il comportamento della serie n= n Ax n Ax, dove A denota il numero delle lettere del nome. Si studi la funzione

Dettagli

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3)

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3) anno accademico 007-008 Prima prova di verifica in itinere di ANALISI MATEMATICA II Marzo 008 Compito A (punti ) y = x + xy + y x. (punti 4) y + y x = ln x x y. (punti ) y = y + y ln y. 4 (punti 6) Determinare

Dettagli

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 29

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 29 Analisi Matematica 2 Trasformazioni integrali Trasformazioni integrali 1 / 29 Trasformazioni integrali. 1) Formule di Gauss-Green: nel piano: trasformano un integrale doppio in un integrale curvilineo,

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Esercizio 1 Sia f : [a, b] IR 2 una funzione di classe C 1 su [a, b]. consideri

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 2009/10

PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 2009/10 PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 9/1 Prova scritta del 13/1/1 Si determini l ordine di infinitesimo della successione a n = arctan(n + ) arctan n. Denotato poi con B il numero delle lettere

Dettagli

Analisi Matematica 2: Secondo Parziale, , Versione A. Cognome e nome:...matricola:...

Analisi Matematica 2: Secondo Parziale, , Versione A. Cognome e nome:...matricola:... Analisi Matematica : Secondo Parziale, 1.6.17, Versione A Cognome e nome:....................................matricola:......... es.1 es. es.3 es. es.5 es.6 es.7 somma 5cr. 6 6 6 6 6 - - 3 9cr. 5 5 5 5

Dettagli

1 x 2 y 2 dxdy D. 3 (1 ρ2 ) 3/2 = 1 3. = π 12.

1 x 2 y 2 dxdy D. 3 (1 ρ2 ) 3/2 = 1 3. = π 12. INGEGNERIA CIVILE - AMBIENTE E TERRITORIO ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL 19-6-15 ESERCIZIO 1 Calcolare 1 x y dxdy D dove D è il dominio piano delimitato dalla curva x + y x e dalle

Dettagli

1 x 2 y 2 dxdy D. 3 (1 ρ2 ) 3/2 = 1 3. = π 12.

1 x 2 y 2 dxdy D. 3 (1 ρ2 ) 3/2 = 1 3. = π 12. INGEGNERIA CIVILE - AMBIENTE E TERRITORIO ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL 19-6-15 ESERCIZIO 1 Calcolare 1 x y dxdy D dove D è il dominio piano delimitato dalla curva x + y = x e

Dettagli

Analisi Matematica III

Analisi Matematica III Università di Pisa - Corso di Laurea in Ingegneria Civile dell ambiente e territorio Analisi Matematica III Pisa, 7 gennaio 00 (Cognome) (Nome) (Numero di matricola) Esercizio Si consideri la successione

Dettagli

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 2017/2018 Codocente: Dott. Salvatore Fragapane

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 2017/2018 Codocente: Dott. Salvatore Fragapane DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 07/08 Codocente: Dott. Salvatore Fragapane Lezione - 09/03/08, dalle 6.00 alle 8.00 in aula 6 Es. Studiare

Dettagli

Esercizi di Analisi Matematica 3. Prima parte

Esercizi di Analisi Matematica 3. Prima parte Esercizi di Analisi Matematica 3 per le Facoltà di Ingegneria Prima parte Corrado Lattanzio e Bruno Rubino Versione preliminare L Aquila, ottobre 5 Indice 1 Curve, superfici e campi vettoriali 3 1.1 Curve

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2013/2014

Prove scritte dell esame di Analisi Matematica II a.a. 2013/2014 Prove scritte dell esame di Analisi Matematica II a.a. 3/4 C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 9 giugno 4. (8 punti) Risolvere il problema

Dettagli

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI ANALII VETTORIALE EERCIZI ULLE UPERFICI Esercizio Calcolare l area della superficie dove Σ {(x, y, z) (x, y) E, z 2 + x 2 + y 2 } E {(x, y) x 2 + y 2 4}. Essendo la superficie Σ data come grafico di una

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 2008/09

PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 2008/09 PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 8/9 Prova scritta del 4//9 Si studi, al variare di x >, la serie + n= log nx + A n x, ove A é il numero delle lettere del proprio nome. Data la funzione: f(x)

Dettagli

Contents. 1. Funzioni di più variabili.

Contents. 1. Funzioni di più variabili. RACCOLTA DI ESERCIZI PER IL CORSO DI ANALISI MATEMATICA II A.A. 03/04 CORSI DI LAUREA IN INGEGNERIA DELL EDILIZIA, INGEGNERIA EDILE-ARCHITETTURA PROF. D. BARTOLUCCI Contents. Funzioni di più variabili..

Dettagli

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura)

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura) Soluzione della prova scritta di Analisi Matematica II del 5 Aprile 009 Ingegneria Edile e Architettura x. Calcolare J = ds essendo γ la curva ottenuta intersecando γ + y il cilindro di equazione x + y

Dettagli

Analisi Matematica 2 5 febbraio Risposte. (Giusta = 3, non data = 0, sbagliata = 1) Versione Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 Es. 6 Es.

Analisi Matematica 2 5 febbraio Risposte. (Giusta = 3, non data = 0, sbagliata = 1) Versione Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 Es. 6 Es. Analisi Matematica 2 5 febbraio 2013 Nome, Cognome, Matricola: Cognome del Docente: Risposte. (Giusta = 3, non data = 0, sbagliata = 1) Versione Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 Es. 6 Es. 7 1 Esercizio 1.

Dettagli

Foglio 3 Esercizi su forme differenziali lineari ed integrali di seconda specie (alcuni con cenno di soluzione).

Foglio 3 Esercizi su forme differenziali lineari ed integrali di seconda specie (alcuni con cenno di soluzione). Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e MeccanicaMeccatronica, V. Casarino P. Mannucci (-) Foglio 3 Esercizi su forme differenziali lineari ed integrali

Dettagli

Analisi Matematica 2 (Corso di Laurea in Informatica)

Analisi Matematica 2 (Corso di Laurea in Informatica) COGNOME NOME Matr. Firma dello studente A Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Analisi Matematica 2: Scritto Generale, , Versione A. Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, , Versione A. Cognome e nome:...matricola:... Analisi Matematica : Scritto Generale, 7.9.16, Versione A Cognome e nome:....................................matricola:......... es.1 es. es.3 es.4 es.5 es.6/7 somma 5cr. 6 6 6 6 6 3 9cr. 5 5 5 5 5 /3

Dettagli

Teoremi di Stokes, della divergenza e di Gauss Green.

Teoremi di Stokes, della divergenza e di Gauss Green. Matematica 3 Esercitazioni eoremi di tokes, della divergenza e di Gauss Green. Esercizio 1 : Calcolare l area del dominio avente per frontiera la linea chiusa γ di equazioni parametriche x (1 t) t γ :,

Dettagli

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 15

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 15 Analisi Matematica 2 Trasformazioni integrali Trasformazioni integrali 1 / 15 Trasformazioni integrali. 1) Formule di Gauss-Green: nel piano: trasformano un integrale doppio in un integrale curvilineo,

Dettagli

Analisi Matematica II 14 Giugno 2019

Analisi Matematica II 14 Giugno 2019 Analisi Matematica II 14 Giugno 2019 Cognome: Nome: Matricola: 1. (10 punti) Si determinino i sottoinsiemi del piano in cui valgano, rispettivamente, continuità, derivabilità e differenziabilità della

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA I(N.O.), ANNO 2002/03

PROVE SCRITTE DI ANALISI MATEMATICA I(N.O.), ANNO 2002/03 PROVE SCRITTE DI ANALISI MATEMATICA I(N.O.), ANNO / Prova scritta del 6// Denotato con a il numero delle lettere del nome, si consideri la serie nx + cos nx a nx, per x IR, e si determini per quali valori

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010 COMPLEMENTI DI ANALISI MATEMATICA A.A. 29- Primo appello del 5/5/2 Qui trovate le tracce delle soluzioni degli esercizi del compito. Ho tralasciato i calcoli da Analisi (che comunque sono parte della risoluzione),

Dettagli

Integrali multipli - Esercizi svolti

Integrali multipli - Esercizi svolti Integrali multipli - Esercizi svolti Integrali di superficie. Si calcoli l integrale di superficie Σ z +y +4(x +y ) dσ, dove Σ è la parte di superficie di equazione z = x y che si proietta in = {(x,y)

Dettagli

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici Superfici e integrali di superficie 1. Scrivere una parametrizzazione per le seguenti superfici (a) Il grafico della funzione f(x, y) = x 2 y 3 (b) La superficie laterale di un cilindro di raggio R e altezza

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Giugno 6 Cognome: Nome: Matricola: Es.: 9 punti Es.: 9 punti Es.: 6 punti Es.4: 9 punti Totale. Si consideri

Dettagli

Seconda prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2018/2019. Prof. M. Bramanti.

Seconda prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2018/2019. Prof. M. Bramanti. Seconda prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 8/9. Prof. M. Bramanti Tema n 4 5 6 Tot. Cognome e nome in stampatello codice persona o n di

Dettagli

Campi vettoriali. 1. Sia F (x, y) = ye x i + (e x cos y) j un campo vettoriale. Determinare un potenziale per F, se esiste.

Campi vettoriali. 1. Sia F (x, y) = ye x i + (e x cos y) j un campo vettoriale. Determinare un potenziale per F, se esiste. Campi vettoriali. Sia F (x, y = ye x i + (e x cos y j un campo vettoriale. Determinare un potenziale per F, se esiste.. Sia F (x, y = xy i + x j un campo vettoriale. Determinare un potenziale per F, se

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #5. Sia f : R R la funzione definita da f(x, y) x + x + y + x + y (x, y) R. (a) Determinare il segno di f. (b) Calcolare

Dettagli

Calcolo 2B - Analisi III dicembre 2004

Calcolo 2B - Analisi III dicembre 2004 Calcolo 2B - Analisi III dicembre 2. Verificare esplicitamente il teorema di Stokes in R 2 : dω = ω per la -forma: nella regione piana data da: ω = x 2 + y 2 dx = x, y x 2 + y 2 ª x, y y 2x 2ª 2. Considerato

Dettagli

Simmetrie e quadriche

Simmetrie e quadriche Appendice A Simmetrie e quadriche A.1 Rappresentazione e proprietà degli insiemi nel piano Una delle prime difficoltà che si incontrano nell impostare il calcolo di un integrale doppio consiste nel rappresentare

Dettagli

Quesito 1. f(x, y) = xy log (x 2 + y 2 ) Quesito 2. Quesito 3. y = 2y3 +x 3. xy 2 y(1) = 1. Quesito 4

Quesito 1. f(x, y) = xy log (x 2 + y 2 ) Quesito 2. Quesito 3. y = 2y3 +x 3. xy 2 y(1) = 1. Quesito 4 Corso di laurea in Ing. Meccanica, a.a. 2002/2003 Prova scritta di Analisi Matematica 2 del 7 gennaio 2003 Determinare gli eventuali estremi relativi della funzione f(x, y) = xy log (x 2 + y 2 ) Calcolare

Dettagli

Analisi Matematica 2: Scritto Generale, Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, Cognome e nome:...matricola:... Analisi Matematica 2: Scritto Generale, 21.02.2017 Cognome e nome:....................................matricola:......... es.1 es.2 es.3 es.4 es.5 es.6 es.7 somma 5cr. 6 6 6 6 6 - - 30 6/9cr. 5 5 5 5 5

Dettagli

x 2 y 2 z 2 (b) Detta z = z(x, y) la funzione definita dall equazione f(x, y, z) = 1 intorno al punto (1, 1, 0), calcolare z

x 2 y 2 z 2 (b) Detta z = z(x, y) la funzione definita dall equazione f(x, y, z) = 1 intorno al punto (1, 1, 0), calcolare z Analisi Matematica II, Anno Accademico 4-5 Ingegneria Edile, Civile, Ambientale Paolo Acquistapace, Laura Cremaschi, Vincenzo M. Tortorelli giugno 5 - primo appello - gruppo A, prima parte (un ora) N.

Dettagli

Corso di Analisi Matematica 2. Corso di Laurea in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2014/2015

Corso di Analisi Matematica 2. Corso di Laurea in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2014/2015 Corso di Analisi Matematica 2 in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2014/2015 Appello del 21 novembre 2014 Tempo: 150 minuti 1. Enunciare la definizione di forma differenziale esatta

Dettagli

Forme differenziali e campi vettoriali: esercizi svolti

Forme differenziali e campi vettoriali: esercizi svolti Forme differenziali e campi vettoriali: esercizi svolti 1 Esercizi sul Teorema di Green......................... 2 2 Esercizi sul Teorema di Stokes......................... 4 3 Esercizi sul Teorema di

Dettagli

Analisi e Geometria 2 Docente: 3 luglio 2014

Analisi e Geometria 2 Docente: 3 luglio 2014 Es. Es. Es. 3 Es. Totale Analisi e Geometria Docente: 3 luglio Cognome: Nome: Matricola: Ogni risposta deve essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio sotto il testo e,

Dettagli

Analisi Matematica III

Analisi Matematica III Università di Pisa - Corso di Laurea in Ingegneria Civile dell ambiente e territorio Analisi Matematica III Pisa, 1 giugno 4 (Cognome (Nome (Numero di matricola Esercizio 1 Si consideri la successione

Dettagli

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018 nalisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 218 1) ia data la funzione f(x, y, z) = (x 2 + y 2 1) 2 + 8 a) tudiare l esistenza di massimi e minimi assoluti della funzione f nella

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016) Corso di Laurea in Matematica Docente: Claudia Anedda Analisi Matematica 3/Analisi 4 - SOLUZIONI (//6) ) i) Dopo averla classificata, risolvere l equazione differenziale tẋ x = t cos(t), t >. ii) Scrivere

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #8. Sia f : R 2 R la funzione definita da 2 y 2 per (, y) (, ) f(, y) 2 + y 2 per (, y) (, ). (a) Stabilire se f è continua

Dettagli

Integrali tripli / Esercizi svolti

Integrali tripli / Esercizi svolti M.Guida, S.Rolando, Integrali tripli / Esercizi svolti ESERCIZIO. Rappresentare graficamente l insieme (x, y) R :y x, x + y e calcolare l integrale e x+y dxdy. Posto V (x, y, z) R :(x, y), z, calcolare

Dettagli

2. Discutere la convergenza puntuale e la convergenza uniforme della serie di Fourier di f(x);

2. Discutere la convergenza puntuale e la convergenza uniforme della serie di Fourier di f(x); ANALISI MATEMATICA II Prova di esame del 6 Giugno 1 ore 11, Cognome e Nome (in stampatello): Corso di Laurea: Matricola: Docente: Versione A Avvertenza. Gli studenti immatricolati nell A.A. 1/11 (codice

Dettagli

Alcuni esercizi risolti da esami di anni passati

Alcuni esercizi risolti da esami di anni passati Alcuni esercizi risolti da esami di anni passati Andrea Braides ( x. Calcolare, se esiste, il limite lim (x,y (, x + y log + y + x 3 y. x + y Dato che log( + s = s + o(s per s, abbiamo lim (x,y (, ( x

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte sintetiche) agli esercizi del 15.XII.218 1. NB si ricorda che l equazione del piano passante per un punto

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti. Recupero compitino di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 7/8. Prof. M. Bramanti Tema n 3 4 5 6 Tot. Cognome e nome in stampatello codice persona o n di matricola

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2015/2016

Prove scritte dell esame di Analisi Matematica II a.a. 2015/2016 Prove scritte dell esame di Analisi Matematica II a.a. 5/6 C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 6 giugno 6. Determinare massimi e minimi

Dettagli

1 Integrali curvilinei

1 Integrali curvilinei Integrali curvilinei Richiamo: + x dx x + x + x log ) + + x. Exercise Verificare la formula precedente. Exercise Calcolare a + b x dx, con a, b qualsiasi. Exercise 3 Calcolare la lunghezza dell arco di

Dettagli

Teoremi Gauss e Stokes / Alcuni esercizi svolti

Teoremi Gauss e Stokes / Alcuni esercizi svolti M.Guida, S.Rolando, 18 1 Teoremi Gauss e Stokes / Alcuni esercizi svolti ESERCIZIO. R 3 definito da Usando il teorema di Stokes, calcolare il flusso del rotore del campo vettoriale F : R 3 F(x, y, z) =

Dettagli

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Secondo compitino ( ) Svolgimento della Versione B

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Secondo compitino ( ) Svolgimento della Versione B Analisi Matematica (Fisica), 2008-2009, M. Peloso e L. Vesely Secondo compitino (20.01.2009) Svolgimento della Versione B 1. (a) Dimostrare che l insieme G = { (x, y) R 2 : x 2 e 2y e 2y + (x 1)e x y =

Dettagli

PROVA SCRITTA DI ANALISI MATEMATICA 2 Corso di laurea in Matematica 4 Luglio Risoluzione a cura di N. Fusco & G. Floridia

PROVA SCRITTA DI ANALISI MATEMATICA 2 Corso di laurea in Matematica 4 Luglio Risoluzione a cura di N. Fusco & G. Floridia PROVA SCRITTA DI ANALISI MATEMATICA Corso di laurea in Matematica 4 Luglio 6 Risoluzione a cura di N Fusco & G Floridia Discutere la convergenza puntuale, assoluta, uniforme e totale della serie di funzioni

Dettagli

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 10 gennaio 2007

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 10 gennaio 2007 Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 0 gennaio 007 Primo esercizio. È assegnato il numero complesso z = + i. (a) Posto z = + i, determinare la forma trigonometrica

Dettagli

Teoremi Gauss e Stokes / Alcuni esercizi svolti (1)

Teoremi Gauss e Stokes / Alcuni esercizi svolti (1) M.Guida, S.Rolando, 14 1 Teoremi Gauss e Stokes / Alcuni esercizi svolti (1) ESERCIZIO. R 3 definito da Usando il teorema di Stokes, calcolare il flusso del rotore del campo vettoriale F : R 3 F(x, y,

Dettagli

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti.

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti. Recupero 1 compitino di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 16/17. Prof. M. Bramanti 1 Tema n 1 3 4 6 Tot. Cognome e nome in stampatello codice persona o n di

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti.

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti. Es. Es. Es. 3 Es. 4 Totale Teoria Analisi e Geometria Terzo appello 8 Settembre 4 Compito B Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli esercizi: Es.:

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte (sintetiche) agli esercizi del 27.XI.217 1. (NB si ricorda che l equazione del piano passante per un punto

Dettagli

INGEGNERIA MECCANICA - CANALE L-Z ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL COMPITO A. ( 1) k 2k + 1 e(2k+1)(x+y),

INGEGNERIA MECCANICA - CANALE L-Z ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL COMPITO A. ( 1) k 2k + 1 e(2k+1)(x+y), 1 INGEGNERIA MECCANICA - CANALE L-Z ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL 1-6-16 - COMPITO A ESERCIZIO 1 Studiare la convergenza assoluta, puntuale e totale della serie k + 1 e(k+1)(x+y),

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo Appello 8 Settembre 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo Appello 8 Settembre 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Terzo Appello 8 Settembre 24 Cognome: Nome: Matricola: Compito A Es.: 9 punti Es.2: 8 punti Es.3: 8 punti Es.4: 8 punti Totale. Sia F la

Dettagli

Analisi Matematica 2: Scritto Generale, , Fuori corso. Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, , Fuori corso. Cognome e nome:...matricola:... Analisi Matematica 2: Scritto Generale, 26.11.216, Fuori corso Cognome e nome:....................................matricola:......... es.1 es.2 es. es.4 es.5 es.6/7 somma 5cr. 6 6 6 6 6 6/9cr. 5 5 5 5

Dettagli

Analisi 4 - SOLUZIONI (compito del 29/09/2011)

Analisi 4 - SOLUZIONI (compito del 29/09/2011) Corso di laurea in Matematica Analisi 4 - SOLUZIONI compito del 9/09/0 Docente: Claudia Anedda Calcolare, tramite uno sviluppo in serie noto, la radice quinta di e la radice cubica di 9 Utilizzando la

Dettagli

ARGOMENTI MATEMATICA PER L INGEGNERIA

ARGOMENTI MATEMATICA PER L INGEGNERIA ARGOMENTI DI MATEMATICA PER L INGEGNERIA VOLUME 2 Esercizi proposti Quando non diversamente precisato, nel seguito si intenderà( sempre che nel piano sia stato introdotto un sistema cartesiano ortogonale

Dettagli

TRACCIA DELLE SOLUZIONI DEI PROBLEMI DELL ESAME DEL 2/9/2011

TRACCIA DELLE SOLUZIONI DEI PROBLEMI DELL ESAME DEL 2/9/2011 TRACCIA DELLE SOLUZIONI DEI PROBLEMI DELL ESAME DEL /9/11 Esercizio 1 a. Dopo aver scritto l equazione parametrica C(t) della curva di equazione cartesiana y = x x, si calcolino i vettori T(t), N(t) e

Dettagli

Seconda prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti.

Seconda prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti. Seconda prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 16/17. Prof. M. Bramanti 1 Tema n 1 5 6 Tot. Cognome e nome in stampatello codice persona o n

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2016/2017

Prove scritte dell esame di Analisi Matematica II a.a. 2016/2017 Prove scritte dell esame di Analisi Matematica II a.a. 6/7 C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 5 giugno 7. Assegnati ( l insieme E {(x,

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del Prova scritta di nalisi Matematica II del 12-06-2001. C1 1) Studiare la convergenza semplice, uniforme e totale della serie di funzioni seguente ( 1) [ n 2 ] n x 1 + n 2 x. n=0 2) Data la funzione (x 2

Dettagli

Curve e integrali curvilinei

Curve e integrali curvilinei 6 Curve e integrali curvilinei 6.1. Esempi ed esercizi svolti e/o proposti Esempio 6.1.1. Si consideri la curva parametrica ϕ: t [0,2π] ϕ(t) = (acos(t),asin(t),bt) R 3 dove a e b sono due costanti positive.

Dettagli

PRIMI ESERCIZI SU INTEGRALI DOPPI E TRIPLI. x x 2 + y 2 dxdy, tan(x + y) x + y. (x y) log (x + y) dxdy,

PRIMI ESERCIZI SU INTEGRALI DOPPI E TRIPLI. x x 2 + y 2 dxdy, tan(x + y) x + y. (x y) log (x + y) dxdy, PRIMI ESERCIZI SU INTEGRALI DOPPI E TRIPLI VALENTINA CASARINO Esercizi per il corso di Analisi Matematica, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica, Università degli

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

Esercizi I : curve piane

Esercizi I : curve piane Esercizi I : curve piane. Esercizio Si consideri la curva parametrizzata sin t, t [, 2π]. cos(2t) a) Stabilire per quali valori di t la parametrizzazione è regolare. b) Sia Γ la traccia di α. Descrivere

Dettagli

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Primo compito. Si consideri la regione stokiana E di R 3 definita dalle disuguaglianze: { + y 2 a 2 0 z tan α)x b) dove

Dettagli

Risoluzione del compito n. 5 (Luglio 2018/2)

Risoluzione del compito n. 5 (Luglio 2018/2) Risoluzione del compito n. 5 (Luglio 2018/2) PROBLEMA 1 Considerate il luogo di zeri S = {(x, y, z) R 3 : z 4+ x 2 + y 2 =0, 2x y + z =0}. a) Giustificando la risposta, dite se S è una curva liscia. b)

Dettagli

9/11/2010 (I prova in itinere): solo test a risposta multipla

9/11/2010 (I prova in itinere): solo test a risposta multipla 9/11/2010 (I prova in itinere): solo test a risposta multipla 23/12/2010 (II prova in itinere, II parte) Esercizio 1. Posto Σ = {(x, y, z) R 3 x 2 + y 2 + z 2 = 4, z 1}, si chiede di calcolare il flusso

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = x 2 + y 3 4y. 4 1, y 2 2(1 + }

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = x 2 + y 3 4y. 4 1, y 2 2(1 + } Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8-09-07 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del

Analisi Matematica II Corso di Ingegneria Gestionale Compito del Analisi Matematica II Corso di Ingegneria Gestionale Compito del 30-0-08 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del , se (x, y) = (0, 0) ( x e. + y x e (y2 )

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del , se (x, y) = (0, 0) ( x e. + y x e (y2 ) Analisi Matematica II Corso di Ingegneria Gestionale Compito A del -6-9 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati:

12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati: ANALISI Soluzione esercizi 2 gennaio 212 12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati: (x, y) R 2 : x < y} (x, y) R 2 : 2 x 3} (x, y) R 2 : x 2 +

Dettagli