+ e. u G(s) Il Il luogo delle radici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "+ e. u G(s) Il Il luogo delle radici"

Transcript

1 Il Il luogo delle radici r + e - KK u G(s) y Cotrollo proporzioale: u(t)=ke(t) Strumeti per aalizzare la stabilita` del sistema a catea chiusa al variare di K (criteri di Routh e Nyquist) Le prestazioi del sistema a catea chiusa dipedoo dalla posizioe dei poli della f.d.t. a catea chiusa W(s) Strumeto per aalizzare la posizioe dei poli di W(s) al variare di K: luogo delle radici 1

2 Il Il luogo delle radici Fuzioe di trasferimeto a catea chiusa G(s) = N(s) KG(s), W(s) = D(s) 1 + KG(s) = KN(s) D(s) + KN(s) N(s), D(s) moici e coprimi Poli di W(s) radici del poliomio p K (s) = D(s) + KN(s) Problema: determiare come variao gli zeri di p K (s) al variare di K R 2

3 Il Il luogo delle radici K puo` essere sia positiva che egativa Fatto: la fuzioe che associa ad u poliomio moico di grado le sue radici e` cotiua (piccole variazioi dei coefficieti piccole variazioi delle radici) Al variare di K, ciascua radice di p K (s) descrive ua curva cotiua i C Luogo delle radici relativo a p K (s) L = { s C : K t.c. p K (s) = 0} K 0: Luogo positivo K 0: Luogo egativo Ipotesi: G(s) propria (m=degn(s) =degd(s)) 3

4 Il Il luogo delle radici Imag Axis Real Axis 4

5 Il Il luogo delle radici Osservazioi prelimiari: se =m, per K=-1 p K (s) cala di grado (si cacellao i termii di grado =m) a ciascu valore di K corrispodoo radici del poliomio p K (s) (cotate co la propria molteplicita`) puti del luogo rami del luogo (curve parametrizzate i K) itersecatisi per i valori di K a cui corrispodoo radici multiple di p K (s) ogi itersezioe fra due rami del luogo corrispode a radici multiple di p K (s) E` possibile ua costruzioe per puti (per via grafica) Regole per il tracciameto del luogo derivate da proprieta` delle curve che costituiscoo il luogo 5

6 Equazioi del luogo Operazioe prelimiare: si poe G(s) ella forma fattorizzata (di Evas) G(s) = K (s z 1 )(s z 2 )K(s z m ) (s p 1 )(s p 2 )K(s p ) K = K B ( 1) m+ l p i z i l:tipo di G(s) Radici di p K (s) soluzioi dell equazioe N(s) D(s) = 1 K, K 0 6

7 Equazioi del luogo Sistema di due equazioi: codizioe di fase: idividua i puti s C che appartegoo al luogo Arg N(s) = D(s) (2h + 1)π K > 0 2hπ K < 0, h Z codizioe di modulo: determia, a meo del sego, il valore di K cui corrispode u particolare puto del luogo N(s) D(s) = 1 K 7

8 Equazioi del luogo Riformulazioe delle due equazioi: codizioe di fase: m Arg [(s z i )] Arg [(s p i )] = codizioe di modulo: (2h + 1)π K > 0 2hπ K < 0, h Z K = m (s p i ) (s z i ) 8

9 Regole per il il tracciameto del luogo Regola 1 (Numero dei rami e simmetria): per ogi K (escluso al piu` K=-1) p K (s) ha radici il luogo ha rami. Poiche` le radici figurao a coppie complesse coiugate, il luogo e` simmetrico rispetto all asse reale Regola 2 (Comportameto limite e asitoti): Per K=0 il luogo e` costituito dai poli di G(s). Per K ±, m puti tedoo agli zeri di N(s), metre, se >m, -m puti vao all lugo -m semirette asitotiche che formao due stelle regolari (ua per K + e ua per K - ). Le stelle hao cetro sull asse reale el puto σ a = p i m m z i 9

10 Regole per il il tracciameto del luogo Icliazioe degli asitoti: (2h + 1)π K + ϑ a,h = m K ϑ a,h = 2hπ m h = 0,1,K, m 1 Ogi ramo esce da uo zero di D(s) (=polo di G(s)) e tede ad uo zero di N(s) (=zero di G(s)) o verso se =m il luogo o va all per K ± (i rami tedoo agli zeri di N(s)). Situazioe particolare per K Regola 3 (Porzioe dell asse reale apparteete al luogo): Se K>0 (K<0), σ R appartiee al luogo se e solo se il umero totale di zeri e poli al fiito di G(s) a destra di σ e` dispari (pari) 10

11 Regole per il il tracciameto del luogo Regola 4 (Puti doppi): se due zeri reali di D(s) o soo separati da uo zero reale di N(s) (o, viceversa, se due zeri reali di N(s) o soo separati da uo zero reale di D(s)), allora il segmeto che li cogiuge appartiee iteramete al luogo positivo o a quello egativo x p 1 s* x p 2 o z 1 s* o z 2 Si ha quidi la preseza di u puto doppio i cui si icotrao due rami del luogo 11

12 Regole per il il tracciameto del luogo Caratterizzazioe aalitica dei puti doppi: se s* e` uo zero doppio di p K (s), allora vale che p K (s) = (s s*) 2 q(s) d ds p K (s) = 2(s s*)q(s) + (s d s*)2 ds q(s) d ds p K (s) = 0 s=s* s* e` uo puto doppio del luogo se p K (s*) = 0 d ds p K (s) = 0 s=s* 12

13 Regole per il il tracciameto del luogo Caratterizzazioi equivaleti: N (s) N(s) D(s) + KN(s) = 0 D (s) + K N (s) = 0 N (s)d(s) N(s) D (s) = 0 K = D(s) N(s) D (s) D(s) N(s) D (s) D(s) N (s) N(s) = 0 N (s) = 0 Q(s) = (s q i ) Q (s) = (s q j ) Q (s) Q(s) = j=1 j i (s q j ) j i = (s q j ) j 1 (s q i ) 1 ( s p ) m 1 = 0 i ( s z ) i 13

14 Esempio: G(s) = K Esempi s + 2 s(s + 1)(s + 3) luogo positivo (K 0) umero rami: =3 per K=0: poli di G(s) 0, -1, -3 per K + : u ramo tede verso lo zero i -2, due vao verso lugo gli -m=2 asitoti cetro stella degli asitoti σ a = p i m z i m = = 1 14

15 Esempi Icliazioe asitoti ϑ a,h = = (2h + 1)π m (2h + 1)π 2 (h = 0,1,K, m 1) (h = 0,1) = π 2 3π 2 Porzioe asse reale: [-3,-2] [-1,0] puto doppio tra 0 e -1 15

16 Esempi Imag Axis Real Axis 16

17 Esempi Determiazioe della posizioe del puto doppio e del corrispodete valore di K s 3 + 4s 2 + 3s + K(s + 2) = 0 1 ( s p ) m 1 = 1 i ( s z ) i s + 1 s s s + 2 = 0 2s s s + 6 = 0 roots([ ]) as = i i s 3 + 4s 2 + 3s + K(s + 2) s= = 0 K =

18 Esempio: G(s) = K Esempi s + 5 (s + 2)(s + 3) luogo positivo (K 0) umero rami: =2 per K=0: poli di G(s) -2, -3 per K + : u ramo tede verso lo zero i -5, u ramo va verso lugo -m=1 asitoto cetro stella degli asitoti: o sigificativo Icliazioe asitoti ϑ a,h = Porzioe asse reale: [-,-5] [-3,-2] (2h + 1)π m = π (h = 0) 18

19 Esempi puti doppi: tra [-,-5] e [-3,-2] Imag Axis Real Axis 19

20 Esempi Calcolo dei puti doppi e corrispodeti valori di K: D(s) + KN(s) = s 2 + 5s K(s + 5) = 0 D (s) + K N (s) = 2s K = 0 K = (2s + 5) s 2 + 5s + 6 (2s + 5)(s + 5) = s 2 10s 19 = 0 s 1,2 = 5 ± 6 = K 1,2 = 5 m 2 6 = 0.10 > > 0 20

21 Ulteriori regole per il il tracciameto del luogo Regola 5 (Attraversameto dell asse immagiario): gli (evetuali) puti i cui il luogo attraversa l asse immagiario e i corrispodeti valori di K possoo essere determiati utilizzado la tabella di Routh Esempio: G(s) = K 1 s(s + 1)(s + 2) luogo positivo (K 0) umero rami: =3 per K=0: poli di G(s) 0, -1, -2 per K + : i tre rami va verso lugo -m=3 asitoti 21

22 Ulteriori regole per il il tracciameto del luogo cetro stella e icliazioe degli asitoti: σ a = p i m z i m = = 1 ϑ a,h = (2h + 1)π 3 = π /3 π 5π /3 porzioe asse reale: [-,-2] [-1,-0] puto doppio i [-1,0] attraversameto asse immagiario riga riga 2 3 K riga 1 (6-K)/3 riga 0 K per K=6 fattore 3s 2 +6=3(s 2 +2) poli i ±j 2 22

23 Ulteriori regole per il il tracciameto del luogo j 2 Imag Axis 0-1 -j Real Axis 23

Il luogo delle radici. G(s) - H(s)

Il luogo delle radici. G(s) - H(s) Il luogo delle radici r + e D(s) u - H(s) G(s) Esempio: controllo proporzionale: u(t)=ke(t) Strumenti per analizzare la stabilita` del sistema a catena chiusa al variare di K (criteri di Routh e Nyquist)

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe A Tecico Agrario Lezioe di martedì 0 ovembre 0 (4 e ora) Disciplia: MATEMATICA La derivata della fuzioe composta Fuzioe composta Df(g())f (g())g () Questa

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 7.9.8 Esercizio Si cosideri la fuzioe f() := TEMA {e 3 per per =. i) Determiare il domiio D, le evetuali simmetrie e studiare il sego di

Dettagli

Sistema lineare stazionario TC:

Sistema lineare stazionario TC: Cotrolli Automatici (AUT) - 9AKSBL Regime permaete armoico Risposta i frequeza Rappresetazioi grafiche della risposta i frequeza Risposta i frequeza () Sistema lieare stazioario TC: q q bqs + bq s + +

Dettagli

Analisi armonica. Angelo Bisceglia

Analisi armonica. Angelo Bisceglia Aalisi armoica Agelo Bisceglia Teorema: U sistema lieare stazioario co fuzioe di trasferimeto (f.d.t.) razioale fratta co poli a parte reale egativa, soggetto ad u forzameto siusoidale, a regime, ha ua

Dettagli

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto Calcolo I - Corso di Laurea i Fisica - Geaio 08 Soluzioi Scritto Data la fuzioe f = 8 + / a Calcolare il domiio, puti di o derivabilità ed asitoti; b Calcolare, se esistoo, estremi relativi ed assoluti.

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi 2/II

Politecnico di Milano Ingegneria Industriale Analisi 2/II Politecico di Milao Igegeria Idustriale Aalisi /II Test di autovalutazioe. Sia S = ( artg +. (a Stabilire se la serie data coverge assolutamete. (b Stabilire se la serie data coverge.. Sia L lo spazio

Dettagli

Lezione 14. Rappresentazione grafica della risposta in frequenza. F. Previdi - Fondamenti di Automatica - Lez. 14 1

Lezione 14. Rappresentazione grafica della risposta in frequenza. F. Previdi - Fondamenti di Automatica - Lez. 14 1 Lezioe 4. Rappresetazioe grafica della risposta i frequeza F. Previdi - Fodameti di Automatica - Lez. 4 Schema della lezioe. Rappresetazioi grafiche della risposta i frequeza. Diagramma di Bode del modulo:

Dettagli

Il luogo delle radici

Il luogo delle radici Il luogo delle radici Andrea Munafò Università di Pisa April 14, 2012 Luogo delle radici (Evans 1948) Il luogo delle radici è uno strumento grafico per l analisi e la sintesi di sistemi di controllo a

Dettagli

Esercizi sui numeri complessi per il dodicesimo foglio di esercizi

Esercizi sui numeri complessi per il dodicesimo foglio di esercizi Esercizi sui umeri complessi per il dodicesimo foglio di esercizi 6 dicembre 2010 1 Numeri complessi radici ed equazioi Ricordiamo iazitutto che dato u umero complesso z = x + iy, il suo coiugato, idicato

Dettagli

Matematica - Ingegneria Gestionale - Prova scritta del 25 gennaio 2006

Matematica - Ingegneria Gestionale - Prova scritta del 25 gennaio 2006 Matematica - Igegeria Gestioale - Prova scritta del 5 geaio 6. Per ogua delle segueti serie si idichi se la serie coverge assolutamete ( AC ), coverge ma o coverge assolutamete ( C ) oppure o coverge (

Dettagli

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni Studio di fuzioe Tipi di fuzioi Le fuzioi si possoo raggruppare i alcue tipologie di base: Razioali: se le operazioi che vi si effettuao soo addizioe, sottrazioe, prodotto, divisioe ed elevameto a poteza

Dettagli

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci, C. Marchi, M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci, C. Marchi, M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza (Viee dato u ceo di soluzioe del Tema. I Temi, 3 e 4 possoo essere svolti i modo del tutto simile) TEMA cos(3x) + π cos(3x) + 3. (a) Determiare il domiio di f, evetuali simmetrie, periodicità e sego. (b)

Dettagli

Nozioni preliminari: sia R n lo spazio n-dimensionale dell algebra vettoriale. Un punto in R n e una n-pla di numeri reali (x 1, x 2 x n )

Nozioni preliminari: sia R n lo spazio n-dimensionale dell algebra vettoriale. Un punto in R n e una n-pla di numeri reali (x 1, x 2 x n ) SPAZI TOPOLOGICI: topologia locale (a cui siamo iteressati topologia globale (proprieta a larga scala, come quelle che distiguoo ua sfera da u coo Nozioi prelimiari: sia R lo spazio -dimesioale dell algebra

Dettagli

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi Istituzioi di Matematiche (CH-CI-MT) V o foglio di esercizi ESERCIZIO. Si determiio le soluzioi dell equazioe x x + 5 = 0. Idicata co z 0 la soluzioe co parte immagiaria positiva, si disegi el piao di

Dettagli

FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E GRAFICI DEDUCIBILI. Angela Donatiello 1

FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E GRAFICI DEDUCIBILI. Angela Donatiello 1 FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E GRAFICI DEDUCIBILI Agela Doatiello 1 Ua fuzioe del tipo f() = m + q, co m e q umeri reali, è ua FUNZIONE LINEARE. Il umero q è detto INTERCETTA o ORDINATA

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Aalisi e Geometria Politecico di Milao Igegeria Preparazioe al primo compito i itiere. Risolvere el campo complesso l equazioe z z = 4z.. Sia f la fuzioe a valori complessi defiita da f(z = per ogi z D,

Dettagli

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA L.Lecci\Sol. Problema 2\Esame di Stato di Liceo Scietifico\Sess. Ordiaria\Corso P.N.I.\ao23 Esame di Stato di Liceo Scietifico- Sessioe ordiaria 23 Corso Sperimetale P.N.I. Tema di MATEMATICA Problema

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

Ingegneria Aerospaziale. Corso di Analisi Matematica 1. Compito del 3 giugno 2008 SOLUZIONE

Ingegneria Aerospaziale. Corso di Analisi Matematica 1. Compito del 3 giugno 2008 SOLUZIONE Igegeria Aerospaziale. Corso di Aalisi Matematica. Compito del 3 giugo 8 SOLUZIONE. Se a := 3 + 3 domada. idicare quali delle segueti affermazioi soo vere puti /- a a a è itata; b a ha ite; c a ha ua sottosuccessioe

Dettagli

Risoluzione del compito n. 2 (Gennaio 2017/2)

Risoluzione del compito n. 2 (Gennaio 2017/2) Risoluzioe del compito. (Geaio 017/ PROBLEMA 1 Trovate tutte le soluzioi (z, w, co z, w C,del sistema { i z + w =0 z + z + w +1=0;. Dalla prima equazioe, w = i z e quidi w = iz, che sostituito ella secoda

Dettagli

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas ESAME DI MATEMATICA I Modulo di Aalisi Matematica Corso Ao Accademico 8/9 Docete: R Argiolas Cogome Matricola Febbraio 9 ore 9 Aula C Nome Corso voto Esercizio Assegata la fuzioe f ( arcta a Si determii

Dettagli

Compito di Matematica II - 12 Settembre 2017

Compito di Matematica II - 12 Settembre 2017 Compito di Matematica II - Settembre 7 Corso di Laurea i Ottica e Optometria - A.A. 6/7 Soluzioi degli esercizi. Esercizio. a) Il domiio C è il cerchio di raggio uitario. La fuzioe fx y) = x + y è defiita

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Y557 - ESAME DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA CORSO SPERIMENTALE Tema di: MATEMATICA Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario.

Dettagli

Si estendono, in modo non banale, le operazioni di somma e prodotto da Q ad R; con queste operazioni R e un campo.

Si estendono, in modo non banale, le operazioni di somma e prodotto da Q ad R; con queste operazioni R e un campo. 1 Numeri reali 1.1 Numeri reali Per umero reale itediamo u qualsiasi umero decimale, co u umero di cifre dopo la virgola fiito o ifiito, periodico o o periodico; possiamo pesare u umero decimale co u umero

Dettagli

Corso Propedeutico di Matematica

Corso Propedeutico di Matematica POLINOMI RICHIAMI DI TEORIA Defiizioe: u poliomio ( o fuzioe poliomiale) ella variabile x di grado a coefficieti reali ha la forma A = a0 + a1x + + a 1 x, dove a 0, a 1,..., a soo umeri reali assegati

Dettagli

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea i INGEGNERIA MECCANICA Corso B) A.A. / ) Dimostrare, utilizzado il pricipio di iduzioe, che a) b) c) d) k= log + ) = log + ) per ogi N k k

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

Esercizi proposti. f(x), f(x), f(x), f(x + 1), f(x) + 1. x 2 x 1 se x 1, 4 x se x > 1 2, 2).

Esercizi proposti. f(x), f(x), f(x), f(x + 1), f(x) + 1. x 2 x 1 se x 1, 4 x se x > 1 2, 2). Esercizi proposti 1. Risolvere la disequazioe + 1.. Disegare i grafici di a) y = 1 + + 3 ; b) y = 1 ; c) y = log 10 + 1). 3. Si cosideri la fuzioe f) = ; disegare i grafici di f), f), f), f + 1), f) +

Dettagli

Prova scritta di Analisi Matematica I 15/09/2010

Prova scritta di Analisi Matematica I 15/09/2010 Prova scritta di Aalisi Matematica I VO 5/09/00 ) Data la fuzioe f ( ) + a) disegare il grafico illustrado i passaggi fodametali b) Euciare e dimostrare il Teorema di Rolle e se possibile applicarlo a

Dettagli

Formulazione del problema - 1

Formulazione del problema - 1 Formulazioe del problema - Date due variabili aleatorie X e Y si tratta di cercare ua relazioe lieare tra esse. Sappiamo già che se il modulo del coefficiete di correlazioe o vale esattamete, le determiazioi

Dettagli

FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E TRASLAZIONI. Angela Donatiello 1

FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E TRASLAZIONI. Angela Donatiello 1 FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E TRASLAZIONI Agela Doatiello 1 Ua fuzioe del tipo f() = m + q, co m e q umeri reali, è ua FUNZIONE LINEARE. Il umero q è detto INTERCETTA o ORDINATA ALL

Dettagli

Trasmissione del calore con applicazioni numeriche: informatica applicata

Trasmissione del calore con applicazioni numeriche: informatica applicata Corsi di Laurea i Igegeria Meccaica Trasmissioe del calore co applicazioi umeriche: iformatica applicata a.a. 17/18 Teoria Parte I Prof. Nicola Forgioe Dipartimeto di Igegeria Civile e Idustriale E-mail:

Dettagli

Matematica I, Limiti di successioni (II).

Matematica I, Limiti di successioni (II). Matematica I, 05102012 Limiti di successioi II) 1 Le successioi elemetari, cioe α, = 0, 1, 2, α R), b, = 0, 1, 2, b R), log b, = 1, 2, b > 0, b 1), si, = 0, 1, 2,, cos, = 0, 1, 2,, per + hao il seguete

Dettagli

Formulazione di Problemi Decisionali come Problemi di Programmazione Lineare

Formulazione di Problemi Decisionali come Problemi di Programmazione Lineare Formulazioe di Problemi Decisioali come Problemi di Programmazioe Lieare Cosideriamo i segueti problemi decisioali ed esamiiamo come possoo essere formulati come problemi di PL: Il problema del trasporto

Dettagli

11 Simulazione di prova d Esame di Stato

11 Simulazione di prova d Esame di Stato Simulazioe di prova d Esame di Stato Problema Risolvi uo dei due problemi e 5 dei quesiti i cui si articola il questioario I u sistema di riferimeto cartesiao ortogoale è assegata la seguete famiglia di

Dettagli

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza ANALISI MATEMATICA Commissioe L. Caravea, V. Casario, S. occate Igegeria Gestioale, Meccaica e Meccatroica, Viceza Nome, Cogome, umero di matricola: Viceza, 6 Settembre 25 TEMA - parte B Esercizio ( puti).

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Analisi I - IngBM COMPITO B 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO B 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO B 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018 Uiversitá di Roma Tor Vergata Aalisi, Igegeria CIO-FR), Prof. A. Porretta Esame del 9 febbraio 08 Esame orale : Esercizio [7 puti] Studiare la fuzioe f) = + 4 ) disegadoe u grafico qualitativo e idicado:

Dettagli

4 - Le serie. a k = a k. S = k=1

4 - Le serie. a k = a k. S = k=1 4 - Le serie E veiamo ad uo degli argometi più ostici (ma ache più iteressati) dell aalisi: le serie. Ricordiamo brevemete cos è ua serie e cosa vuol dire covergeza per ua serie. Defiizioe 1. Data ua successioe

Dettagli

le dimensioni dell aiuola, con le limitazioni 0 x λ λ

le dimensioni dell aiuola, con le limitazioni 0 x λ λ PROBLEMA a) idicate co e co che e esprime l area è: le dimesioi dell aiuola, co le limitazioi 0 A( )., la fuzioe Per la ricerca del massimo si studia il sego della derivata prima Si ha: 0 / / A' ( ). Si

Dettagli

v = ( v 1,..., v n ).

v = ( v 1,..., v n ). Lezioe del 21 ovembre. Sistemi lieari 1. Spaio vettoriale R Sia u itero positivo. ssatoمح Cosideriamo lلاiisieme R delle ple ordiate di umeri reali u (u 1, u 2,..., u ), u i R. Al posto di pla ordiata

Dettagli

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO A 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

Esercitazioni di Geometria II

Esercitazioni di Geometria II Esercitazioi di Geometria II Letizia Perigotti - perigotti@sciece.uit.it 20 aprile 2012 Esercizio 1. Dimostrare che la famiglia degli itervalli chiusi e limitati B 1 = {[a, b] R : a < b} o è base di alcua

Dettagli

Programma dettagliato del Corso di Analisi 1

Programma dettagliato del Corso di Analisi 1 Programma dettagliato del Corso di Aalisi Ig. per l Ambiete e il Territorio, Ig. Civile, Ig. dei Trasporti a.a. 2006-2007 http://www.dmmm.uiroma.it/persoe/capitaelli I NUMERI E LE FUNZIONI REALI Itroduzioe

Dettagli

Esame di Stato - Liceo Scientifico Prova scritta di Matematica - 21 giugno Problema 1 Soluzione a cura di L. Tomasi

Esame di Stato - Liceo Scientifico Prova scritta di Matematica - 21 giugno Problema 1 Soluzione a cura di L. Tomasi Esame di Stato - Liceo Scietifico Prova scritta di Matematica - giugo 8 Problema Soluzioe a cura di L. Tomasi Soluzioe Puto Co riferimeto all esempio semplice del mauale d uso della macchia che colora

Dettagli

SOLUZIONI COMPITO del 04/02/2016 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A

SOLUZIONI COMPITO del 04/02/2016 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A SOLUZIONI COMPITO del 0/0/06 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A Esercizio Osserviamo, iazitutto, che la serie proposta è ua serie a termii o egativi. Applicado il criterio della radice, dopo

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

2 Criteri di convergenza per serie a termini positivi

2 Criteri di convergenza per serie a termini positivi Uiversità Roma Tre L. Chierchia 65 (29//7) 2 Criteri di covergeza per serie a termii positivi I questo paragrafo cosideriamo serie a termii positivi ossia serie a co a > 0. Si ricordi che ua serie a termii

Dettagli

APPENDICE 1 Richiami di algebra lineare

APPENDICE 1 Richiami di algebra lineare APPENDICE Richiami di algebra lieare vettore: isieme ordiato di elemeti (umeri reali, umeri complessi, variabili, fuzioi,...) B = b b M b 2 { } = b, co i =, L, i il vettore sopra defiito è detto ache vettore

Dettagli

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1 Aalisi Matematica I modulo Soluzioi prova scritta prelimiare 1 Corso di laurea i Matematica, aa 004-005 9 ovembre 004 1 (a) Calcolare il seguete limite: **A***** Soluzioe Si ha ( + log ) ( + log ) lim

Dettagli

Richiami sulle potenze

Richiami sulle potenze Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

1. (Punti 8) Deteminare modulo e argomento delle soluzioni della seguente equazione nel campo complesso. 1 x = 0. x 2 e 8.

1. (Punti 8) Deteminare modulo e argomento delle soluzioni della seguente equazione nel campo complesso. 1 x = 0. x 2 e 8. Corso di Laurea i Igegeria Biomedia ANALISI MATEMATICA Prova sritta del giugo 7 Fila. Esporre il proedimeto di risoluzioe degli eserizi i maiera ompleta e leggibile.. Puti 8) Detemiare modulo e argometo

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria aalitica: rette e piai Coordiate polari Cambiameti di riferimeto el piao Cambiameti di riferimeto i geerale Isometrie Simmetrie Isometrie el piao Isometrie ello spazio 2 2006 Politecico di Torio

Dettagli

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello)

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello) Itroduzioe all Aalisi di Prof. Luigi Ladii Ig. Nicola Vaello (presetazioe a cura di N. Vaello) ANALII DI FOURIER egali tempo cotiui: egali periodici egali aperiodici viluppo i serie di Itroduzioe alla

Dettagli

Risposta Armonica (vedi Marro Par. 3.1 a 3.2) (vedi Vitelli-Petternella par.vii.2, VII.2.1)

Risposta Armonica (vedi Marro Par. 3.1 a 3.2) (vedi Vitelli-Petternella par.vii.2, VII.2.1) Risposta Armoica (vedi Marro Par. 3. a 3.) (vedi Vitelli-Petterella par.vii., VII..) Che Cosa e Come si calcola (Come si misura) Criteri di stabilita automatica ROMA TRE Stefao Pazieri- Che Cosa è (vedi

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

Il discriminante Maurizio Cornalba 23/3/2013

Il discriminante Maurizio Cornalba 23/3/2013 Il discrimiate Maurizio Coralba 3/3/013 Siao X 1,..., X idetermiate. Cosideriamo i poliomi V (X 1,..., X ) = i>j(x i X j ) (X 1,..., X ) = V (X 1,..., X ) Il poliomio V (X 1,..., X ) è chiaramete atisimmetrico.

Dettagli

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA Politecico di Torio 7 Fuzioi Radice FUNZIONI RADICE RICHIAMI DI TEORIA f ( x) = x dom f Im f grafici. = = =7 =9. dispari R R -. - -. - - -. Grafici di fuzioi radici co pari pari [,+ ) [,+ ).. = = =6 =8

Dettagli

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo

Dettagli

Problema 1 - soluzione a cura di E. Castagnola e L. Tomasi, con l uso della calcolatrice grafica TI-Nspire CX (non CAS)

Problema 1 - soluzione a cura di E. Castagnola e L. Tomasi, con l uso della calcolatrice grafica TI-Nspire CX (non CAS) Esame di Stato - Liceo Scietifico Prova scritta di Matematica - giugo 8 Problema - soluzioe a cura di E. Castagola e L. Tomasi, co l uso della calcolatrice grafica TI-Nspire CX (o CAS) Soluzioe ) Co riferimeto

Dettagli

Luogo delle Radici. Università degli Studi di Firenze. L. Chisci, P. Falugi

Luogo delle Radici. Università degli Studi di Firenze. L. Chisci, P. Falugi Università degli Studi di Firenze Luogo delle Radici L. Chisci, P. Falugi Corso di Fondamenti di Automatica per CdL Ing. dell Informazione e Ing. dell Ambiente e delle Risorse Anno Accademico 005/06 Fondamenti

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA 1 Area dell Igegeria dell Iformazioe Appello del 18.9.17 TEMA 1 Esercizio 1 Si cosideri la fuzioe fx) := 3x log x. i) Determiare il domiio D e studiare le evetuali simmetrie ed il sego

Dettagli

Radici, potenze, logaritmi in campo complesso.

Radici, potenze, logaritmi in campo complesso. SOMMARIO NUMERI COMPLESSI... Formula di Eulero... Coiugato di u umero complesso... 3 Poteza -esima di u umero complesso z (formula di De Moivre... 3 Radice -esima di z... 3 Osservazioi... Logaritmo di

Dettagli

STATISTICA 1 ESERCITAZIONE 5

STATISTICA 1 ESERCITAZIONE 5 STATISTICA ESERCITAZIONE 5 Dott. Giuseppe Padolfo 28 Ottobre 203 VARIABILITA IN TERMINI DI DISPERSIONE DA UN CENTRO Cetro Me o μ La dispersioe viee misurata come sitesi delle distaze tra le uità statistiche

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

0.1 Esercitazioni V, del 18/11/2008

0.1 Esercitazioni V, del 18/11/2008 1 0.1 Esercitazioi V, del 18/11/2008 Esercizio 0.1.1. Risolvere usado Cramer il seguete sistema lieare x + y + z = 1 kx + y z = 0 x kz = 1 Soluzioe: Il determiate della matrice dei coefficieti è (k 2)(k

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioi differeziali Defiizioe 1 Si chiama equazioe differeziale u tipo particolare di equazioe fuzioale, ella quale la fuzioe icogita compare isieme ad alcue sue derivate, ossia u equazioe ella quale,

Dettagli

Non presenta difficoltà concettuali il passaggio dalle equazioni lineari a coefficienti costanti del secondo ordine a quelle di ordine maggiore.

Non presenta difficoltà concettuali il passaggio dalle equazioni lineari a coefficienti costanti del secondo ordine a quelle di ordine maggiore. Le equazioi differeziali lieari di ordie > a coefficieti costati. No preseta difficoltà cocettuali il passaggio dalle equazioi lieari a coefficieti costati del secodo ordie a quelle di ordie maggiore.

Dettagli

Soluzioni degli esercizi del corso di Analisi Matematica I

Soluzioni degli esercizi del corso di Analisi Matematica I Soluzioi degli esercizi del corso di Aalisi Matematica I Prof. Pierpaolo Natalii Roberta Biachii & Marco Pezzulla ovembre 015 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x

Dettagli

LA INTERPOLAZIONE Appartamenti venduti nel 2006 da un agenzia immobiliare di Treviso.

LA INTERPOLAZIONE Appartamenti venduti nel 2006 da un agenzia immobiliare di Treviso. LA INTERPOLAZIONE Appartameti veduti el 006 da u agezia immobiliare di Treviso. superficie (mq) prezzo (k ) segue 10 160 45 70 80 95 85 110 64 98 106 140 10 170 50 80 100 150 90 15 115 165 140 165 98 145

Dettagli

Risoluzione del compito n. 3 (Febbraio 2018/2)

Risoluzione del compito n. 3 (Febbraio 2018/2) Risoluzioe del compito. 3 (Febbraio 08/ PROBLEMA a Determiate le soluzioi τ C dell equazioe τ iτ +=0. { αβ =4 b Determiate le soluzioi (α, β, co α, β C,delsistema α + β =i. c Determiate tutte le soluzioi

Dettagli

LA MISURA IN PSICOLOGIA

LA MISURA IN PSICOLOGIA Prof. Giulio Vidotto (Uiversità di Padova) Lez. 3 - Distribuzioe ormale e stadardizzazioe delle misure Argometi della lezioe Stadardizzazioe Distribuzioe Normale Distribuzioe Normale Stadard Stadardizzazioe

Dettagli

Soluzioni prova scritta del

Soluzioni prova scritta del Soluzioi prova scritta del 5.09.07 Esercizio : Calcolare il ite log Ñ 8? plog q? plog q e? plog q? p q log e? e plog q 4? plog q. Soluzioe. Cosideriamo il umeratore. Si ha??? log plog q plog q p plog q

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Soluzioi degli esercizi di Aalisi Matematica I (Prof. Pierpaolo Natalii) Roberta Biachii 6 ovembre 2016 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x2 1 x + 1 π/3. 2. Dimostrare,

Dettagli

2.4 Criteri di convergenza per le serie

2.4 Criteri di convergenza per le serie 2.4 Criteri di covergeza per le serie Come si è già acceato i precedeza, spesso è facile accertare la covergeza di ua serie seza cooscere la somma. Ciò è reso possibile da alcui comodi criteri che foriscoo

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

Lez. 23: Prestazioni Fuori Progetto di Turbine

Lez. 23: Prestazioni Fuori Progetto di Turbine Effetti di flusso compressibile Lez. 23: Prestazioi Fuori Progetto di Turbie Prestazioi Fuori Progetto di Turbie Per ua data turbia, il rapporto di espasioe varia co la portata elaborata, per diversi umeri

Dettagli

Analisi Matematica I

Analisi Matematica I Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La derivata della fuzioe f) log ) si è ) log )si B) log )cos ) log ) si cos loglog ) + si ) log

Dettagli

a n (x x 0 ) n. (1.1) n=0

a n (x x 0 ) n. (1.1) n=0 Serie di poteze. Defiizioi Assegati ua successioe {a } di umeri reali e u puto x dell asse reale si dice serie di poteze u espressioe del tipo a (x x ). (.) Il puto x viee detto cetro della serie e i umeri

Dettagli

Universitá di Roma Tor Vergata

Universitá di Roma Tor Vergata Uiversitá di Roma Tor Vergata Prof. A. Porretta ) Calcolare i segueti iti: ( ) + + 3 ( ) cos π + log 4 log( 3 + ) +! e + log ( ) si 3 + 3 5 e si + 3 4 + 3 log + ( ) 3 ( ) arctg + log ( ) + 5 + 3! si (log

Dettagli

Scuola di Architettura Corso di Laurea Magistrale quinquennale c.u.

Scuola di Architettura Corso di Laurea Magistrale quinquennale c.u. Scuola di Architettura orso di Laurea Magistrale quiqueale c.u. Sommario flessioe deviata M = M cos M = M si s f M m z mi M ( ) s s f m ( + ) z ma Nella precedete lezioe è stata esamiata u asta sollecitata

Dettagli

Diottro sferico. Capitolo 2

Diottro sferico. Capitolo 2 Capitolo 2 Diottro sferico Si idica co il termie diottro sferico ua calotta sferica che separa due mezzi co idice di rifrazioe diverso. La cogiugete il cetro di curvatura C della calotta co il vertice

Dettagli

Esercizi di Analisi Matematica 1 utili per la preparazione all esame scritto. File con soluzioni.

Esercizi di Analisi Matematica 1 utili per la preparazione all esame scritto. File con soluzioni. Esercizi di Aalisi Matematica. Paola Gervasio Es. Esercizi di Aalisi Matematica utili per la preparazioe all esame scritto. File co soluzioi. a.5.5.5.5 b 4 3.5 3.5.5.5 5 5 Figura 5 5.5 a 3 b 4 5.5 6 5

Dettagli

Serie di potenze / Esercizi svolti

Serie di potenze / Esercizi svolti MGuida, SRolado, 204 Serie di poteze / Esercizi svolti Si cosideri la serie di poteze (a) Determiare il raggio di covergeza 2 + x (b) Determiare l itervallo I di covergeza putuale (c) Dire se la serie

Dettagli

Prove d'esame a.a

Prove d'esame a.a Prove d'esame aa 22 Adrea Corli 2 settembre 2 Soo qui raccolti i testi delle prove d'esame assegati ell'aa 2, relativi al Corso di Aalisi Matematica I (semestrale, 2 crediti), Laurea i Igegeria Civile

Dettagli

Corso di ordinamento Liceo della Comunicazione- Sessione ordinaria - a.s

Corso di ordinamento Liceo della Comunicazione- Sessione ordinaria - a.s Corso di ordiameto Liceo della Comuicazioe- Sessioe ordiaria - as 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO LICEO DELLA COMUNICAZIONE Tema di: MATEMATICA a s 9- Corso di ordiameto Liceo

Dettagli

PROPRIETÀ DELLE POTENZE IN BASE 10

PROPRIETÀ DELLE POTENZE IN BASE 10 PROPRIETÀ DELLE POTENZE IN BASE Poteze i base co espoete itero positivo Prediamo u umero qualsiasi che deotiamo co la lettera a e u umero itero positivo che deotiamo co la lettera Per defiizioe (cioè per

Dettagli

Luogo delle Radici. Dr. Andrea Gasparri Dipartimento di Informatica ed Automazione Università degli studi Roma Tre

Luogo delle Radici. Dr. Andrea Gasparri Dipartimento di Informatica ed Automazione Università degli studi Roma Tre Dr. Andrea Gasparri gasparri@dia.uniroma3.it Dipartimento di Informatica ed Automazione Università degli studi Roma Tre October 21, 2009 Definizioni Il luogo delle radici è un procedimento grafico che

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

METODI MATEMATICI DELLA FISICA A.A. 2005/2006 Prof. C. Presilla. Prova di recupero 11 settembre 2006

METODI MATEMATICI DELLA FISICA A.A. 2005/2006 Prof. C. Presilla. Prova di recupero 11 settembre 2006 METODI MATEMATII DELLA FISIA A.A. 2005/2006 Prof.. Presilla Prova di recupero settembre 2006 ogome Nome i sostituzioe delle prove i itiere (segare) 2 pealità esercizio voto 2 3 4 5 6 Esercizio Determiare

Dettagli

Esame di maturità scientifica, corso sperimentale PNI a. s

Esame di maturità scientifica, corso sperimentale PNI a. s Esame di maturità scietifica, corso sperimetale PNI a. s. 003-004 Prolema 1 Sia γ la curva di equazioe y = ke ove k e λ soo parametri positivi. Puto 1 Si studi e si disegi γ ; Domiio: La fuzioe f ( ) =

Dettagli

Graficazione qualitativa del luogo delle radici

Graficazione qualitativa del luogo delle radici .. 5.3 1 Graficazione qualitativa del luogo delle radici Esempio. Si faccia riferimento al seguente sistema retroazionato: d(t) G(s) r(t) e(t) K 1(s 1) s(s + 1)(s + 8s + 5) y(t) Per una graficazione qualitativa

Dettagli

APPUNTI ANALISI MATEMATICA SABO

APPUNTI ANALISI MATEMATICA SABO APPUNTI DI ANALISI MATEMATICA SABO FUNZIONI cocetto: legame tra due (o più) variabili costituito da relazioi matematiche Fuzioe: Razioale: o è sotto radice Algebrica: le operazioi che costituiscoo il legame

Dettagli

f la cui derivata è sen x e il cui grafico passa per il punto ( ; 2)

f la cui derivata è sen x e il cui grafico passa per il punto ( ; 2) ESAME DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria 009 CORSO DI ORDINAMENTO Questioario Quesito Si trovi la fuzioe ( ) f la cui derivata è se e il cui grafico passa per il puto ( ; ) Ua primitiva della

Dettagli

Serie numeriche. Esercizi

Serie numeriche. Esercizi Serie umeriche. Esercizi Mauro Saita, aprile 204. Idice Serie umeriche.. Serie a termii defiitivamete positivi..............................2 Serie a termii di sego altero.................................

Dettagli