ELETTRONICA DELLO STATO SOLIDO Prova scritta del 7 luglio 2009

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ELETTRONICA DELLO STATO SOLIDO Prova scritta del 7 luglio 2009"

Transcript

1 EETTRONIC DEO STTO SOIDO Prov scritt dl 7 luglio 9 CONOME Nom Mtricol Posto. dll il. Es. I u rticolo cubico, ) trovt gli idici di Millr di du migli di ii ch ccio tr loro u golo di 6. ) Trovt l golo tr l migli () (), dimostrt il risultto gomtricmt, usdo il disgo dll cll cubic. Es. U trogiuzio vi rlizzt tr du smicoduttori itrisci, i ciscuo di quli l iità lttroic è mi quto il bd g. Ioltr, il bd g dl scodo è il doio dl rimo. Disgt il digrmm bd, il iù ossibil i scl (ust l surici qudrttt qui ricvcvcvcortt, s vi è comodo) Es.3 I u brr omog lug di smicoduttor di tio si istur u tsso di grzio ch, dov soo costti. No vi è cmo lttrico. rgim vl S i l dsità di mioritri, rgim, vl () i vl ( ) dsità di mioritri., trovt l

2 SOUZIONI Es.) ) Ovvimt qui si trtt di trovr du tr (h,k,l) (h,k,l ) r cui il rodotto sclr tr l corrisodti orm uitri di hˆ kyˆ lzˆ hˆ kyˆ lzˆ hh kk ll cos( 6 ) h k l h k l h k l h k l E bbstz rgiovol sr du tr divrs co du uo. d smio () () ˆ yˆ zˆ ˆ yˆ ˆ z () I qusto cso, l ormli idividut corroo rlll ll digoli di du cc dl cubo di bs. ià i u ssto srcizio si è mostrto com co tr di qust digoli si costruisco di trigoli quiltri, quidi si vriichi l rsz, tr ogi coi, di goli di 6. ) Pr il scodo cso, il clcolo dirtto dà: ˆ yˆ ˆ z ˆ yˆ zˆ 3 3 ormli corroo l rim rlll ll digol dl cubo l scod ll digol dll cci qudrt ch st sul io z. Il coso dll golo tr l du ormli è dto dl rorto tr il ctto mior (qullo vrticl) l iotus dl trigolo vidtmt rttgolo ch si è idividuto. S il ctto corto è lugo, qullo lugo è ovvimt, quidi l iotus è 3. Il loro rorto è quidi rorio 3 () () ()

3 Es. S trmb l rti dll giuzio soo itrisch, il livllo di Frmi è mtà g si dstr ch siistr. E costruzio, co l idiczioi χ dt, ort il limit E V dll bd E χ E C di vlz toccr il limit E C di E C qull di coduzio rorio i E F E g E g E F E V corrisodz dll giuzio, E V ddo l imrssio gric di u li cotiu. CHE NON C E!. Pr qusto motivo si soo trccit l li i colori sssori divrsi, si è msso i vidz il trtto vrticl ch uisc l rti corrttmt corrisodti. Es.3 Esrcizio iuttosto lugo i clcoli, comsto di du srcizi rcdti ssi smlici. Equzio di cotiuità rgim, sz cmo lttrico: D Tr i vri modi di risolvr qust quzio, sguimo qullo iù simil l modo solito, r mttr i vidz l dirz. S dividimo tutto r D rduimo tro il trmi di ricombizio tutti i trmii costti ottimo: D D Poimo l solit sostituzioi, qulcu ggiutiv r smliicrci l scrittur: D b D d cui: b Qust quzio dirzil NON OMOENE, h r soluzio l soluzio grl dll omog PIU u soluzio rticolr dll o omog stss. soluzio grl dll omog è, com l solito:

4 mtr r l o omog, l soluzio iù smlic è qull oliomil. Il oliomio o otrà ssr surior l rimo grdo, si vd subito ch u soluzio rticolr è b. Essdo D b, qusto quivl dir: I coclusio, l soluzio grl dll quzio di cotiuità è dt d:. codizioi l cotoro dtrmio or l costti : ossi : D qusto uto soo solo clcoli. S moltilichimo l scod rlzio r bbimo Sottrdo mmbro mmbro:, ossi sh Fcdo u gioco logo moltilicdo ivc l stss rlzio r, ottimo. I totl: sh sh

5 soluzio è or: sh sh sh sh sh sh sh sh Filmt, qudo ricordimo ch: bbimo il risultto il: sh sh sh sh Si uò vriicr dirttmt ch qust srssio è soluzio dll quzio di cotiuità ristt l codizioi l cotoro.

( a) 1 a + Es. Data la funzione:

( a) 1 a + Es. Data la funzione: Es. Dt l uzio: ' ' ( Esrcizi Complmtri. A( ( b. Dtrmir pr quli vlori di b l uzio mmtt u puto di mssimo d u puto di miimo pr quli vlori l uzio o mmtt tli puti.. Dtrmir i vlori di b i modo ch l uzio prsti

Dettagli

x ; sin x log 1 x ; 4 0 0,0.

x ; sin x log 1 x ; 4 0 0,0. .. Pr quli vlori dl prmtro l sri S (i uzio dl prmtro ). q ch covrg s solo s q. q Ricordimo ch pr q è q q q q q h soluzio pr tli vlori l sri covrg S E' u sri gomtric di rgio covrg? Pr tli vlori sprimi l

Dettagli

Es. Data la funzione:

Es. Data la funzione: Es. D l uzio: Esrcizi Complmri. A b. Drmir pr quli vlori di b l uzio mm u puo di mssimo d u puo di miimo pr quli vlori l uzio o mm li pui.. Drmir i vlori di b i modo ch l uzio prsi u mssimo rlivo co ordi

Dettagli

I LIMITI DI FUNZIONI - CALCOLO

I LIMITI DI FUNZIONI - CALCOLO Autor: Erico Mfucci - // I LIMITI DI FUNZIONI - CALCOLO Dopo vr studito l tori di iti, dobbimo dsso vdr com si clcolo. Storicmt il clcolo di iti vi smplificto d u procsso ch prd il om di ritmtizzzio dll

Dettagli

se ne costruisca un altra s 1 L operazione che fa passare dalla prima successione alla seconda è detta serie e si indica con il

se ne costruisca un altra s 1 L operazione che fa passare dalla prima successione alla seconda è detta serie e si indica con il 07 SERIE NUMERICHE Dt l succssio,,...,,... s costruisc u ltr s, s,..., s,... tl ch: s... s... s... L oprzio ch f pssr dll prim succssio ll scod è dtt sri si idic co il simbolo...... k. k Gli k si dicoo

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

Esonero di Materia Condensata del 28 Gennaio 2009

Esonero di Materia Condensata del 28 Gennaio 2009 Esoro di Mtri Codst dl 8 Gio 9 Risolvr du srcizi sclt fr i tr proposti. Proff. Polo Clvi Mrio Cpizzi º Esrcizio U ct lir è ftt di N toi di ss M 6 u.., ltrti N toi di ss M 8 u.. Lugo l ct si propgo soltto

Dettagli

dell'intervallo in cui si hanno discontinuità di prima o terza specie. Supponiamo, per semplicità (ma b ed ivi continua b h lim c h b ] e si pone

dell'intervallo in cui si hanno discontinuità di prima o terza specie. Supponiamo, per semplicità (ma b ed ivi continua b h lim c h b ] e si pone INTEGRALI IMPROPRI L tori dll'itgrzio di u fuzio f cotiu i u itrvllo ciuso itto [ ] si può stdr sostitudo l'ipotsi di cotiuità i [ ] dll fuzio f co qull dll ittzz I tl cso si ffrot il prolm dll'itgrzio

Dettagli

[MnO - 4 ]=0,1 M [Mn 2+ ]=0,1M [H + ] = 0,001 M. Ag 3 PO 4 soluzione satura

[MnO - 4 ]=0,1 M [Mn 2+ ]=0,1M [H + ] = 0,001 M. Ag 3 PO 4 soluzione satura II FALTÀ DI INGEGNERIA dl i Iggri ivil pr l Ambitl il Trritorio (x DM 70/00) IMIA (1 FU) rov d sm scritt dl sttmbr 011 E1) All tmprtur di 80 i u rcipit vuoto si itroduc u qutità sufficit di mooidrogofosfto

Dettagli

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota:

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota: Rpporto Icrmtl α Δ Δy y m tα y. Il rpporto icrmtl dll uzio l puto rltivo d u icrmto è il coicit olr dll sct l rico dll uzio i puti di sciss d Not: Nll smpio rico è riportto > m, i rl, può ssr c tivo. rivt

Dettagli

all equilibrio: = n diff drift

all equilibrio: = n diff drift ma d q d q diff drift diff drift ε µ ε µ all quilibrio: drift drift diff diff V > ε V bi V diff diff dcrsc dcrsc crsc crsc drift drift ivariata ivariata crsc crsc quidi è crsct co V, dirtta da s vrso V

Dettagli

+ J n. dp dx J n. pε qd p. J p. = J p/drift. + J p/diff. dn dx. nε + qd n. = J n/drift. + J n/diff. J J = 0 J = J p. diff. drift.

+ J n. dp dx J n. pε qd p. J p. = J p/drift. + J p/diff. dn dx. nε + qd n. = J n/drift. + J n/diff. J J = 0 J = J p. diff. drift. /drift /diff qµ ε d /drift /diff qµ ε d all quilibrio: ma / drift / drift / diff / diff 1 V > ε V bi V diff diff dcrsc dcrsc crsc crsc drift drift ivariata ivariata crsc crsc quidi è crsct co V, dirtta

Dettagli

L equazione del reticolo cristallino

L equazione del reticolo cristallino Chmc sc supror Modulo L quzo dl rtcolo crstllo Srgo Brutt Rchmo d mtmtc: l sr d ourr U quluqu uzo () può ssr rpprstt spso d Tylor purchè l uzo () s drzbl - volt : ( )!... Nl cso cu ()=g() s u uzo prodc

Dettagli

Analisi Matematica I Soluzioni del tutorato 4

Analisi Matematica I Soluzioni del tutorato 4 Corso di laura i Fisica - Ao Accadmico 07/08 Aalisi Matmatica I Soluzioi dl tutorato 4 A cura di David Macra Esrcizio ( i) Domiio di dfiizio: La fuzio o è dfiita s è tal ch l argomto sotto radic sia gativo,

Dettagli

2.1 Il motore elettrico: considerazioni iniziali. Un motore è una macchina elettrica in cui la potenza di

2.1 Il motore elettrico: considerazioni iniziali. Un motore è una macchina elettrica in cui la potenza di Cpitolo Il motor lttrico. Il motor lttrico: cosidrzioi iizili U motor è u mcchi lttric i cui l potz di igrsso si di tipo lttrico qull di uscit si di tipo mccico [6]. I motori lttrici i corrt cotiu ho u

Dettagli

CORRENTI NEL TRANSITOR BIPOLARE A GIUNZIONE (BJT)

CORRENTI NEL TRANSITOR BIPOLARE A GIUNZIONE (BJT) O AO POA A GUZO (J) osidrimo qui di sguito il cso di u trsistor di tio l qul l coctrzioi di drogti ll tr rgioi soddisfio l sguti disugugliz (l giustificzio vrrà dt iù vti): >> >>. Assumimo com vrsi ositivi

Dettagli

1 - Estremo superiore ed estremo inferiore di insiemi Soluzioni 1. arctan(n), n N

1 - Estremo superiore ed estremo inferiore di insiemi Soluzioni 1. arctan(n), n N - Estrmo suprior d strmo ifrior di isimi Soluzioi Dato l isim A = { 7 arcta, N calcolar strmo suprior d strmo ifrior, spcificado s siao rispttivamt massimo miimo. Studiamo sparatamt pr pari d dispari.

Dettagli

ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI

ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI Esrcizio ( (i + + + Razioalizziamo: ( + + + ( + + + + ( + + + + [ ( ( ] ( + ( + + + + + + + [ ( + [( + ] ( ] + ( + ( + + + + ( + [( + ] ( + + + ( + ( + Dividiamo

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Tema di MATEMATICA a. s

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Tema di MATEMATICA a. s WWWMATEMATICAMENTEIT Corso di ordimto - Sssio ordiri - s 9- ROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Tm di MATEMATICA s 9- Si ABCD u qudrto di lto, u puto di AB γ l circofrz di

Dettagli

1 Studio di funzioni, sviluppi di Taylor e serie

1 Studio di funzioni, sviluppi di Taylor e serie Studio di fuzioi, sviluppi di Taylor sri. Esrcizi. Sia fx = x +. Dtrmiar l isim di dfiizio. Studiar il sgo. Calcolar i iti agli strmi dll isim di dfiizio. Dir s ci soo asitoti. Dtrmiar l isim di cotiuità

Dettagli

( )( ) ( ) ( ) k. Appunti di Skuola.it. Analisi matematica. Calcolo combinatorio. (0 k n) diff. Per un elemento o per l ordine

( )( ) ( ) ( ) k. Appunti di Skuola.it. Analisi matematica. Calcolo combinatorio. (0 k n) diff. Per un elemento o per l ordine Aisi ttic Apputi di Suo.it Ccoo cobitorio Disposizioi spici D (-)(-)...(-) ( ) di. Pr u to o pr ordi co riptizio D r N di. Pr du. Dist. Ch occupo o stsso posto Prutzioi spici P D ti riptuti... (...) P

Dettagli

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA Nom Cognom cls D 6 Dicmr 8 VERIFICA di MATEMATICA PROBLEMA Considr l unzion, studin l ndmnto trccin il grico proil punti: Di l dinizion di unzion inittiv Sull dl grico proil ch hi trccito, l unzion è inittiv?

Dettagli

Esercizi Svolti di Idrologia. Problemi di bilancio idrologico

Esercizi Svolti di Idrologia. Problemi di bilancio idrologico Esrcizi Svolti di drologi roblmi di bilcio idrologico roblm 1 All szio di ciusur di u bcio idrogrfico di 0 km di suprfici è stt rgistrt u portt mdi u di 0.m s -1. L prcipitzio totl u rgguglit sull r dl

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sstm olog dll Comuzo Complmt : sr trsformt d Fourr Formul d prostfrs L formul d prostfrs sprmoo l vlor d so o d somm d gol prodott d s d gol gol, vvrs: ( α β ) ( α ) ( β ) ( α ) ( β ) ( α β ) ( α ) ( β

Dettagli

Sensori Segnali Rumore - Prof. S. Cova - appello 21/07/ P1 pag.1. (B) Approssimazione dell ottimo con semplice filtro a parametri costanti

Sensori Segnali Rumore - Prof. S. Cova - appello 21/07/ P1 pag.1. (B) Approssimazione dell ottimo con semplice filtro a parametri costanti sori gali Rumor - Pro.. Cova - allo /07/04 - P ag. PROBLEM Quadro di dati gal: P amizza da misurar P 5 µs costat di tmo dll sozial R ms itrvallo tra u imulso il succssivo Rumor: u 50 /(Hz) / (uilatra)

Dettagli

SPOSTAMENTO E RETTIFICA DI CONFINE

SPOSTAMENTO E RETTIFICA DI CONFINE SPOSEO E REIFI I OFIE Lo SPOSEO si qundo un confin ià rttilino vin sostituito con un ltro smpr rttilino L REIFI si qundo un confin polionl o curvilino vin sostituito con un ltro rttilino. SPOSEO REIFI

Dettagli

Propulsione Aerospaziale. Cap. 4 Sez. d Ugelli per esoreattori e endoreattori. Esercizi svolti

Propulsione Aerospaziale. Cap. 4 Sez. d Ugelli per esoreattori e endoreattori. Esercizi svolti Politcnico di ilno Fcoltà di Innri Industril Corso di Lur in Innri roszil Insnmnto di Proulsion roszil nno ccdmico / C. 4 Sz. d Ulli r sorttori ndorttori Esrcizi svolti rv. dicmbr ESERCIZIO 4d. Un ullo

Dettagli

dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di

dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di Quesiti ord 010 Pgi 1 di 5 Si p( ) u poliomio di grdo. Si dimostri che l su derivt esim è coefficiete è il coefficiete di ( p ) ( ) =! dove il 1 Si p( ) = + 1 +... + 0 Applicdo l regol di derivzioe delle

Dettagli

METODI MULTIVARIATI PER LA STIMA DELLA CONNETTIVITA

METODI MULTIVARIATI PER LA STIMA DELLA CONNETTIVITA Uiversità di Rom Siez - Fcoltà di Igegeri Corso di odelli di Sistemi Biologici Pro. S. Sliri ETDI UTIVRITI PER STI DE CETTIVIT. stoli - odelli utoregressivi er l coettività tr segli biologici - Corso di

Dettagli

Limiti di successioni - svolgimenti

Limiti di successioni - svolgimenti Limiti di succssioi - svolgimti Scrivrmo a b quado a b =. Calcoliamo qusto it, raccoglido il fattor al umrator al domiator. Si ha 2 + 2 4 = + 2 2 3! 4 3!. Iazitutto, ricordiamo ch Ioltr, si ha utilizzado

Dettagli

SUCCESSIONI IN R esercizi. R. Argiolas. lim = n

SUCCESSIONI IN R esercizi. R. Argiolas. lim = n SUCCESSIONI IN R srcizi R. Argiols L? Qust piccol rccolt di srcizi sull succssioi l cmpo di rli è rivolt tutti gli studti dl corso di lisi mtmtic I, m è prcisr fi d or ch possdr svolgr gli srcizi di qust

Dettagli

j Verso la scuola superiore Gli insiemi N, Z, Q, R

j Verso la scuola superiore Gli insiemi N, Z, Q, R j Vrso l suol suprior Gli insimi N, Z, Q, R Individu l rispost orrtt Un numro è divisor sondo di un numro s L oprzion è impossiil possiil in Z possiil in R Trdundo il tsto nll simologi mtmti si h ; pplindo

Dettagli

Prova scritta di Materia Condensata del 14 Febbraio 2011

Prova scritta di Materia Condensata del 14 Febbraio 2011 Po ctt d Mt odt dl bbo 0 Pof. Polo l Pof. Mo zz czo S cod u ct d to blt dot lugo x, co o tcol =, Å. Utlzzdo l todo dl lg fot (tgt bdg) ltto c, co u b coot d u obtl d to x uo d to : ) - c l o lct dll g

Dettagli

Diodo: V D > 0 RCS. p n (x) p n0. x n. Figura 1

Diodo: V D > 0 RCS. p n (x) p n0. x n. Figura 1 CORRENI NE IOO Pr il calcolo dlla corrt l diodo i rsza di ua tsio di olarizzazio stra facciamo l sguti iotsi smlificativ: 1. i cotatti mtallo-smicoduttor co l zo d soo di tio ohmico, ovvrosia ad ssi è

Dettagli

Liceo scientifico comunicazione opzione sportiva

Liceo scientifico comunicazione opzione sportiva PRVA D ESAME SESSINE RDINARIA Lico scitifico comuicazio opzio sportiva Il cadidato risolva uo di du problmi rispoda a qusiti dl qustioario Durata massima dlla prova: 6 or È costito l uso dlla calcolatric

Dettagli

Polinomi, disuguaglianze e induzione.

Polinomi, disuguaglianze e induzione. Allemeti Disid Mtemtic Geio 03 Poliomi, disuguglize e iduzioe. Qul è l mssim re di u rettgolo vete perimetro ugule 576? [Suggerimeto: utilizzre le medie e le loro disuguglize.] Svolgimeto. Predimo i cosiderzioe

Dettagli

Gli elettroni nei cristalli

Gli elettroni nei cristalli Gli lttroi i cristalli sio i ua disio: VVa fuzio d oda lttroica: dv risolvr l quazio di Schrödigr i rsza di u otzial riodico co si risolv il robla r il sigolo lttro: fi fuzio d oda ch riscchia la riodicità

Dettagli

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE)

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) Mggi C. & Bccesci P. Soluzioe problem V Puto 1: T Clcolre l soluzioe stziori dell (1) euivle d imporre l

Dettagli

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE220

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE220 Uiversità degli Studi Rom Tre - Corso di Lure i Mtemtic Tutorto di GE220 A.A. 2010-2011 - Docete: Prof. Edordo Seresi Tutori: Filippo Mri Boci, Amri Iezzi e Mri Chir Timpoe Soluzioi Tutorto 4 (7 Aprile

Dettagli

Algebra. c d. 1. Operazioni con le potenze. 2. Operazioni con le frazioni. 3. Identità notevoli. (somma algebrica tra frazioni)

Algebra. c d. 1. Operazioni con le potenze. 2. Operazioni con le frazioni. 3. Identità notevoli. (somma algebrica tra frazioni) ler. Oerzioi o le oteze m m m m : m / m m m, m / m. Oerzioi o le rzioi d d somm leri tr rzioi d rodotto tr rzioi d d d : rorto tr rzioi d otez di u rzioe 3. Idetità otevoli. 3 3, 3 3 3, 3 3 3 3,, 4 4 3

Dettagli

&1 Generalità Def. 1.1 Se V e V sono due spazi vettoriali su K, dicesi applicazione lineare di V in V' ogni applicazione. f : V V

&1 Generalità Def. 1.1 Se V e V sono due spazi vettoriali su K, dicesi applicazione lineare di V in V' ogni applicazione. f : V V CAP 4 - APPLICAZIONI LINEARI & Grlità D S V V soo d spi ttorili s K dicsi pplicio lir di V i V ogi pplicio : V V ch riic l sgti codiioi: V : h K V : h h Si dic i tl cso ch è comptibil co l oprioi di somm

Dettagli

L INTEGRALE DEFINITO b f (x) d x a 1

L INTEGRALE DEFINITO b f (x) d x a 1 L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio

Dettagli

Lezione 3. Omomorfismi di gruppi

Lezione 3. Omomorfismi di gruppi Lzio 3 Prrquisiti: Applicazioi tra isimi. Rlazioi di quivalza. Lzio. Omomorismi di gruppi I qusta lzio itroduciamo uo strumto util a corotar l struttur di gruppi distiti. Diizio 3. Siao (, (, gruppi. U'applicazio

Dettagli

c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} =

c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} = Laura Trial i Matmatica, Uivrsità La Sapiza Corso di Probabilità 2, A.A. 26/27 Prova scritta dl 26 Giugo 27 Soluzioi dgli srcizi proposti Esrcizio. Gli arrivi di mssaggi -mail ad u dato idirizzo di posta

Dettagli

CAPITOLO I INTRODUZIONE ALLA FISICA DEI MATERIALI SEMICONDUTTORI

CAPITOLO I INTRODUZIONE ALLA FISICA DEI MATERIALI SEMICONDUTTORI I. 1 CAPITOLO I INTRODUZION ALLA FISICA DI MATRIALI SMICONDUTTORI 1.1 - Richiami di fisica atomica. L lttroica studia i disositivi, i circuiti d i sistmi i quali la rsza d il movimto dgli lttroi gioca

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure i Scieze e Tecologie Agrrie Corso Itegrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioi CFU Esercitzioi) Corso di Lure i Tutel e Gestioe del territorio e del Pesggio Agro-Forestle

Dettagli

L IPERBOLE. x a. y b

L IPERBOLE. x a. y b L IPERBOLE ± ARGOMENTI TRATTATI L quzio coic dll iprol Qustioi silri 3 Qustioi rltiv ll rtt tgti Curv dduciili dll iprol 5 L fuzio omogrfic 6 Discussio sistmi grdo co prmtro 7 Proprità ottic dll iprol

Dettagli

. La n a indica il valore assoluto della radice.

. La n a indica il valore assoluto della radice. RADICALI Defiizioe: U umero irrziole è u umero decimle illimitto o periodico. Esempio:, 0, π Per clcolre il vlore pprossimto di u espressioe coteete rdici coviee mipolre l espressioe per ridurre l mssimo

Dettagli

Esercitazioni di Calcolo delle Probabilità (04/04/2012) Soluzioni

Esercitazioni di Calcolo delle Probabilità (04/04/2012) Soluzioni Esrcitazioi di Calcolo dll Probabilità (4/4/) Soluzioi Esrcizio. Si trovi il valor dlla costat pr cui f, (>,

Dettagli

RADICALI RADICALI INDICE

RADICALI RADICALI INDICE RADICALI INDICE Rdici qudrte P. Rdici cubiche P. Rdici -esime P. Codizioi di esistez P. Proprietà ivritiv e semplificzioe delle rdici P. Poteze d espoete rziole P. 7 Moltipliczioe e divisioe di rdici P.

Dettagli

Esercizi Circuiti Resistivi

Esercizi Circuiti Resistivi srcizi Circuiti sistivi srcizio n isolvr il circuito in figur: v v v v 4 4 5 4 0 0Ω 5Ω 5Ω 4 5Ω Ω 5 v 5 5 4 () isolvr un circuito signific in gnrl dtrminr tnsioni corrnti in tutti i lti dl circuito. Trsformimo

Dettagli

ESERCIZI SULLA MECCANICA DEI SOLIDI

ESERCIZI SULLA MECCANICA DEI SOLIDI ESERZ SULLA MEANA DE SOLD ESERZO Assegto el puto P di u corpo cotiuo il seguete tesore dell tesioe, si determii il vettore dell tesioe sull gicitur vete per ormle ; i j k 6 6 6 4 i, j, k versori degli

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Successioni. (0, a 0 ), (1, a 1 ), (2, a 2 ),...

Successioni. (0, a 0 ), (1, a 1 ), (2, a 2 ),... Successioi U successioe di umeri reli e u legge che ssoci ogi umero turle = 0, 1, 2, u umero rele, i breve: e u fuzioe N R, Puo essere rppresett co l isieme delle coppie ordite (0, 0 ), (1, 1 ), (2, 2

Dettagli

Limite Inferiore per l Ordinamento. Algoritmi e Strutture Dati (Mod. A) Limite Inferiore per l Ordinamento. Limite Inferiore per l Ordinamento

Limite Inferiore per l Ordinamento. Algoritmi e Strutture Dati (Mod. A) Limite Inferiore per l Ordinamento. Limite Inferiore per l Ordinamento Limit Ifrior pr l Ordiamto Ma quato può ssr fficit, i pricipio, u algoritmo di ordiamto? Algoritmi Struttur Dati (Mod. A) Limit Ifrior pr l Ordiamto Qusta è ua dll domad più ambizios itrssati ma ach ua

Dettagli

OPERAZIONI CON LE FRAZIONI ALGEBRICHE

OPERAZIONI CON LE FRAZIONI ALGEBRICHE OPERAZIONI CON LE FRAZIONI ALGEBRICHE A] SEMPLIFICAZIONE DI UNA FRAZIONE ALGEBRICA Sempliicre u rzioe lgeric sigiic dividere umertore e deomitore per uo stesso ttore diverso d zero. Procedur per sempliicre

Dettagli

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR Tizin Rprlli 5/5/8 RICHIAMI DI TEORIA Proposizion.. Si f C ([, b]) g C ([, b]), llor f(x)g(x)dx = [F (x)g(x)] b F (x)g (x)dx. dov F (x) è un

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte

Dettagli

tx P ty P 1 + t(z P 1)

tx P ty P 1 + t(z P 1) Esrcizi dll dcim sttimn - Soluzioni Indichimo con S R 3 l sfr unitri nll mtric Euclid di R 3, oro S {x, y, z R 3 x + y + z 1}. Indichimo con N S il polo nord il polo sud di S, rispttimnt, oro N,, 1 S,,

Dettagli

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio.

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio. ppunti di Mtemtic Polinomi Un polinomio è un somm lgebric di monomi. Esempio: b ; y y ; b c sono polinomi. I vri monomi che compongono il polinomio si chimno termini del polinomio. Un monomio può nche

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Mtodi Mtmtici pr l Fisic Prov scritt - 7 sttmbr 011 Esrcizio 1 6 punti Si clcoli l intgrl I snx snhx dx Ci sono du mtodi, di sguito il primo Ci sono infiniti poli smplici inftti il sno iprbolico si nnull

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Itegrli i seso geerlizzto Pol Rubbioi Itegrzioe di fuzioi o itte Deizioe.. Dt f : [; b[! R cotiu ed ilitt i prossimit di b, ovvero tle che!b f () = + oppure!b f () =, ess si dice itegrbile i seso geerlizzto

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

Esercizi sulla Geometria Analitica

Esercizi sulla Geometria Analitica Esrcizi sulla Gomtria Analitica Esrcizio Siano dat l rtt di quazion x + y + 4 0 x + y 0 Dir s ciascuna dll sgunti affrmazioni è vra o falsa: a) l rtt sono paralll b) l du rtt si intrscano nl punto (, 5

Dettagli

Stime per intervalli. Corso di Misure Meccaniche e Termiche. David Vetturi

Stime per intervalli. Corso di Misure Meccaniche e Termiche. David Vetturi Corso di Dvid Vetturi Iferez ttistic Il cmpo dell iferez sttistic è costituito d metodi utilizzti per ssumere decisioi o per trrre coclusioi su u popolzioe e per tle scopo si bso sull iformzioe coteut

Dettagli

LICEO SCIENTIFICO SESSIONE STRAORDINARIA PROBLEMA 2

LICEO SCIENTIFICO SESSIONE STRAORDINARIA PROBLEMA 2 www.mtfili.it LICEO SCIENTIFICO SESSIONE STRAORDINARIA 27 - PROBLEMA 2 L funzioni g, g 2, g, g 4 sono dfinit nl modo sgunt: g (x) = 2 x2 2 g 2 (x) = x g (x) = 2 π cos (π 2 x) ) g 4 (x) = ln( x ) Vrific

Dettagli

Chimica fisica superiore. Modulo 1. Recupero di matematica. Sergio Brutti

Chimica fisica superiore. Modulo 1. Recupero di matematica. Sergio Brutti Chimi fisi suprior Modulo Rupro di mtmti Srgio Brutti Numri omplssi U umro omplsso è u sprssio mtmti ostituit d 3 lmti ( umri rli, l uità immgiri i: i i dfiiio R Im Dti du umri omplssi: Algr di s i id

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Capitolo 4. Z Trasformata: richiami

Capitolo 4. Z Trasformata: richiami itolo 4. Tsfomt: ichimi Itoduio L -tsfomt è u imott stumto di lisi di sgli di sistmi lii tmoiiti (LTI). Ess, ll lisi di sistmi tmo discto LTI, gioc lo stsso uolo dll Tsfomt di Llc ll lisi di sistmi tmo

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

( ) ( ) exp 2 X. m m CV m CV. Complementi di Idrologia Appello del 1 Febbraio Problema n 1 (8 punti)

( ) ( ) exp 2 X. m m CV m CV. Complementi di Idrologia Appello del 1 Febbraio Problema n 1 (8 punti) Colti di Idrologia Allo dl Fbbraio 0 Probla (8 uti. Si cosidri la fuzio =l(. La variabil è distribuita scodo ua oral N(,. Qual è la distribuzio di il suo doiio di dfiizio?. Posto ch = l + l = ( l, drivar

Dettagli

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3 MINIERO DELL'IRUZIONE,DELL'UNIERIÀ E DELLA RICERCA CUOLE IALIANE ALL EERO EAMI DI AO DI LICEO CIENIFICO essioe Ordiri s 00/005 ECONDA PROA CRIA em di Mtemtic Il cdidto risolv uo dei due problemi e quesiti

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

Esercizi di Segnali Aleatori per Telecomunicazioni

Esercizi di Segnali Aleatori per Telecomunicazioni Corso di Lur in Inggnri Inormic corso di Tlcomunicioni (ro. G. Giun) (diing cur dll ing. F. Bndo) srcii di Sgnli Alori r Tlcomunicioni Diniioni di momni sisici (di rimo scondo ordin) di vriili lori: -

Dettagli

Introduzione all uso di MATLAB

Introduzione all uso di MATLAB Itroduzioe ll uso di MATLAB Miscioe Giusee g.miscioe@virgilio.it Idice Descrizioe di MATLAB Defiizioe di mtrici Accesso gli elemeti di u mtrice Oerzioi comui sulle mtrici Oerzioi lgebriche tr mtrici Esemio:

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO a.s. 2002/2003 CORSO SPERIMENTALE PNI e Progetto Brocca SESSIONE SUPPLETIVA

ESAME DI STATO DI LICEO SCIENTIFICO a.s. 2002/2003 CORSO SPERIMENTALE PNI e Progetto Brocca SESSIONE SUPPLETIVA ESAME DI STATO DI LICEO SCIENTIFICO.s. / CORSO SPERIMENTALE PNI e Progetto Brocc SESSIONE SUPPLETIVA Il cdidto risolv uo dei due problemi e 5 dei quesiti i cui si rticol il questiorio. PROBLEMA. I u pio,

Dettagli

ESERCIZI SULLE SUCCESSIONI. a n := 2n + 3 3n 7. n n cos 2 n + 2. (3) Dimostrare, attraverso la definizione, che la successione

ESERCIZI SULLE SUCCESSIONI. a n := 2n + 3 3n 7. n n cos 2 n + 2. (3) Dimostrare, attraverso la definizione, che la successione ESERCIZI SULLE SUCCESSIONI VALENTINA CASARINO Esrcizi pr il corso di Aalisi Matmatica, Iggria Gstioal, dll Iovazio dl Prodotto, Mccaica Mccatroica, Uivrsità dgli studi di Padova) ) Vrificar, attravrso

Dettagli

IL PROBLEMA DEI QUADRATI

IL PROBLEMA DEI QUADRATI IL PROBLEMA DEI QUADRATI MICHELE ROVIGATTI MARGHERITA MORETTI SIMONE MORETTI CATERINA COSTANZO GABRIELE ARGIRÒ 0. INTRODUZIONE. Il problem sce d u quesito di combitoric iserito el testo di u gr di mtemtic

Dettagli

Integrale indefinito

Integrale indefinito 04//05 Intgrl indinito unzion intgrl Dinizion Si un unzion intgrbil scondo Rimnn nll intrvllo [,b] [,b], si dinisc unzion intgrl di, l intgrl dinito: t 04//05 Torm ondmntl dl clcolo intgrl Si continu in

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esrcizi pr il corso Matmatica cla Dail Ritlli ao accadmico 008/009 Lzio : Succssioi Sri gomtrica Esrcizi svolti. Provar ch: + ) /. Provar ch: + ) + ) 0. Provar ch: + 4. Provar ch 5. Provar ch + ) + ) 4

Dettagli

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza Alri Informtic II Cpitolo 5 Alri E' un gnrlizzzion dll struttur squnz Si rilss il rquisito di linrità: ogni lmnto (nodo) h un solo prdcssor m può vr più succssori. Il numro di succssori (figli) può ssr

Dettagli

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2 Appunti dll lzion dl Prof Stfno D Mrchi dl //6 cur dl Prof Frnndo D Anglo Soluzion di un srcizio ssgnto nll scors lzion (srcizio h) (8) L soluzion gnrl dll quzion ssocit è dt d: (8) ( ) o Ossrvto ch il

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

Fig. 1. 1) La resistenza totale della bobina vale: (*) 2) Il modulo B del campo di induzione magnetica B r nel punto medio M della spira vale: L (*)

Fig. 1. 1) La resistenza totale della bobina vale: (*) 2) Il modulo B del campo di induzione magnetica B r nel punto medio M della spira vale: L (*) Fcoltà di nggnri Prov Scritt di Fisic uglio 4 - Compito usito n. n un filo rttilino lungo fluisc un corrnt. Ad un distnz dl filo è post un oin, il cui punto mdio è ll stss quot dl punto mdio O dl filo.

Dettagli

SISTEMI DINAMICI DEL SECONDO ORDINE

SISTEMI DINAMICI DEL SECONDO ORDINE SISTEMI DINAMICI DEL SECONDO ORDINE I sistmi diamici dl scodo ordi soo sistmi diamici SISO rarstati da quazioi diffrziali liari a cofficiti costati di ordi : d y(t dy(t d x(t dx(t a + a + ay(t b + b +

Dettagli

PRECORSO DI MATEMATICA EQUAZIONI ESPONENZIALI

PRECORSO DI MATEMATICA EQUAZIONI ESPONENZIALI CORSO DI LAUREA IN INFORMATICA APPLICATA PRECORSO DI MATEMATICA ESERCIZI SULLE EQUAZIONI ESPONENZIALI Esrcizio 1: Risolvr la sgunt quazion x+ = x+1. Svolgimnto: Dividndo il primo il scondo mmbro pr x+1

Dettagli

Corso di Automi e Linguaggi Formali Parte 3

Corso di Automi e Linguaggi Formali Parte 3 Esmpio Sdo il pumping lmm sist tl ch ogni prol di tin un sottostring non vuot ch puo ssr pompt o tglit rpprsntrl com Invc non in dv ssr in posso Corso di Automi Linguggi Formli Gnnio-Mrzo 2002 p.3/22 Corso

Dettagli

( x) n x. 0 altrove = 1. f n. g n

( x) n x. 0 altrove = 1. f n. g n co : L sm d Co l o d Vl. Ism d Co: Cosdo [ ] sddvdo l sm l cossco C [ /] U [/ ] o d ovo l oo oo C [ /9] U [/9 /] U [/ 7/9] U [8/9 ] Io l ocdmo s h ch: C C C */ C 4*/9 C / L sm d Co: I o d Vl: C C chso

Dettagli

spettroscopie ottiche

spettroscopie ottiche spttroscopi ottich Itrazio dl campo lttrico co il momto di dipolo lttrico molcolar assa dgli lttroi molto più piccola dlla massa di ucl i sparazio di moti uclari da qulli lttroici spttroscopi rotazioali

Dettagli

Verifica di Matematica n. 2

Verifica di Matematica n. 2 A.S. 0- Clsse I Verific di Mtemtic. ) Dto il trigolo equiltero ABC, si prolughi il lto AB di u segmeto BD cogruete l lto del trigolo. Si cogiug C co D e si dimostri che il trigolo ACD è rettgolo. ) Si

Dettagli

Da cartesiano geocentrico a cartesiano locale

Da cartesiano geocentrico a cartesiano locale Trsformzion tr sistmi di rifrimnto D crtsino gocntrico crtsino locl Si considri un punto l cui posizion è not risptto d un llissoid di rifrimnto. Si ssoci tl punto un sistm crtsino locl, ch h: origin nl

Dettagli

LE POTENZE. volte. a ogni potenza con esponente nullo è uguale a 1

LE POTENZE. volte. a ogni potenza con esponente nullo è uguale a 1 POTENZE AD ESPONENTE NATURALE LE POTENZE Si deiisce otez co bse e esoete u umero turle e si scrive.... ttori tutti uuli ll bse : csi rticolri: co. volte oi otez co esoete ullo è uule il rodotto di co oi

Dettagli

Il corpo nero e la crisi della fisica classica

Il corpo nero e la crisi della fisica classica Il corpo ro l crisi dll fisic clssic Emissio d ssorbimto dll rdizio lttromgtic di corpi Ogi corpo c si trov d u tmprtur mggior dllo zro ssoluto mtt u rdizio dtt rdizio trmic. Qust rdizio, d u puto di vist

Dettagli

FUNZIONI REALI TRASCENDENTI FRT. 1. Potenza a esponente reale

FUNZIONI REALI TRASCENDENTI FRT. 1. Potenza a esponente reale FRT FUNZIONI REALI TRASCENDENTI Potz spot rl Sppimo ch l fuzio rdic qudrt di è l'ivrs dll rstrizio dll fuzio ll'itrvllo [ 0 + [ mt l fuzio rdic cubic di è l'ivrs dll fuzio I modo o possimo iir l fuzio

Dettagli

NUMERI COMPLESSI. Definizione. Si dice numero complesso z la coppia ordinata di numeri reali (a, b), ossia: z = (a, b)

NUMERI COMPLESSI. Definizione. Si dice numero complesso z la coppia ordinata di numeri reali (a, b), ossia: z = (a, b) NUMERI COMPLESSI Dto u poliomio P(x) di grdo ell vribile (rele) x, o sempre esso mmette rdici, e, qudo le mmette, esse possoo essere i umero iferiore rispetto l grdo del poliomio. (Ricordimo che si dice

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Fcoltà di Igegeri - Lure Triele i Igegeri Meccic Corso di Clcolo Numerico Dott.ss M.C. De Bois Uiversità degli Studi dell Bsilict, Potez Fcoltà di Igegeri Corso di Lure i Igegeri Meccic Ao Accdemico 004/05

Dettagli

FOTODIODI. La fotorivelazione è basata sull effetto fotoelettrico.

FOTODIODI. La fotorivelazione è basata sull effetto fotoelettrico. OODIODI La otorivlazio è basata sull tto otolttrico. I N Ua radiazio lumiosa icidt lla rgio itrisca di u diodo smicoduttor drogato IN polarizzato ivrsamt produc di portatori libri. Ogi coppia di portatori

Dettagli

Distillazione. Obiettivi Arricchire la miscela dei componenti più volatili. Impoverire la miscela dei

Distillazione. Obiettivi Arricchire la miscela dei componenti più volatili. Impoverire la miscela dei istillzioe istillzioe Oerzioe che cosete di serre i comoeti di u miscel liquid, sfruttdo l differez di tesioe di vore degli stessi comoeti. Obiettivi Arricchire l miscel dei comoeti iù voltili. Imoverire

Dettagli