Modellazione e Identificazione Dinamica della Cupola della Basilica di S. Gaudenzio in Novara

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Modellazione e Identificazione Dinamica della Cupola della Basilica di S. Gaudenzio in Novara"

Transcript

1 Modellzone e Identfczone Dnmc dell Cupol dell Bslc d S. Gudenzo n Novr Ing. Slvno Erlcher Sommro Nell prm prte dell rtcolo s present un modello gl element fnt dell Cupol dell Bslc d S. Gudenzo. S mostrno le prncpl forme modl del modello ottenute mednte l nls modle. Nell second prte s presentno le elborzon de dt reltv d un cmpgn d msurzon ccelerometrche esegute nelle condzon d ecctzone d tpo mbentle. L pplczone d opportune tecnche d nls del segnle h permesso l dentfczone spermentle delle prncpl frequenze e forme modl dell struttur. Il confronto con rsultt reltv l modello numerco consente lcune consderzon n merto ll clbrzone del modello stesso. Introduzone L vlutzone dell scurezz d strutture storco-monumentl è un problem d notevole complesstà che rchede l rcorso lle pù moderne tecnche d clcolo. Orm d molt nn nelle pù svrte pplczon ngegnerstche s rcorre ll modellzone gl element fnt, che è stt pplct estensvmente tutt tp d strutture. Nel cso degl edfc d nteresse storco, uno de problem pù compless dell modellzone è quello dell scelt e successv clbrzone de legm costtutv d ssegnre mterl, ed n prtcolre ll murtur. L pprocco trdzonle questo tpo d problem è quello dell scelt d legm costtutv elstco lner, o n qulche cso d legg costtutve non lner dtte però ll modellzone d mterl come l clcestruzzo e non dtte ll murtur. Un ltro tpo d pprocco l problem dell modellzone è quello bsto sulle tecnche del model updtng. Esso prevede l correzone del modello gl element fnt n modo tle che le crtterstche dnmche globl del modello stesso e dell struttur rele concdno. Le propretà globl consderte sono le frequenze propre e le forme modl corrspondent. Tle nls presuppone percò l esecuzone dell dentfczone spermentle delle crtterstche dnmche dell struttur. Cò rchede

2 l ubczone n poszon opportune d ccelerometr e l successv nls de dt. Questo tpo d procedur prevede, nell su pplczone pù trdzonle, l msurzone non solo delle vbrzon dell struttur (output), m nche dell cus ecctnte (nput). L ecctzone è soltmente ndott mednte eccttore elettromeccnco. Nel cso d strutture murre, soprttutto quelle l cu stbltà non è stt verfct, s rtene pù opportuno rcorrere ll regstrzone dell sol rspost. L cus ecctnte è d tpo mbentle, s trtt coè del vento, del trffco vecolre o, pù rrmente, d un ssm. Nel cso degl edfc relgos l ecctzone può essere dovut nche l moto delle cmpne. Nel seguto s presentno rsultt dell elborzone de dt d un cmpgn d regstrzon dnmche ottenute n condzone d vbrzone mbentle. S sono pplcte due tecnche d nls del segnle, l prm ndct con l nome d Bsc Frequency Domn tecnque (BFD) [1], l second Frequency Domn Decomposton tecnque (FDD) [2]. L fse successv dell nls, non ffrontt n quest sede, conssterà nell utlzzo de dt dell dentfczone dnmc per l clbrzone del modello gl element fnt (Model updtng). Il modello gl element fnt: nls modle Il modello gl element fnt dell Cupol è rppresentto n fg. 1. S può notre che l sezone d bse è quell quot 26.5 m., ed è qund post ppen l d sopr de cosddett rcon. Le condzon d vncolo ssunte per l sezone d bse sono quelle d ncstro. Il modello è costtuto d element, per un totle d nod. Il cstello centrle d colonne e volte n murtur che s trov nell prte superore dell cupol è l cosddetto cvtpp, mentre l nvolucro pù esterno che lo contene è ndcto con l nome d Grn tzz. L equzone lnere dell dnmc strutturle h l form M & x ( t) + C x& ( t) + K x( t) = P( t) (1) dove M è l mtrce d mss, C è l mtrce d smorzmento e K è l mtrce d rgdezz

3 dell struttur; P(t) è l vettore delle forze nodl esterne (ecctzone); x (t) è l vettore degl spostment nodl, mentre punt ndcno l operzone d dervzone rspetto l tempo. L Eq. (1) è un sstem ccoppto d equzon dfferenzl lner. Nell potes d sstem lbero ( P (t) =0) e non smorzto ( C = 0 ) un generc soluzone dell Eq. 1 può essere scrtt come segue: x( t) = φ y( t) = φ sen( ωt + ϕ) (2) Sosttuendo l Eq. 2 nell Eq. 1 s ottene l problem gl utovlor 2 ( K ω M ) φ = 0 (3) che mmette soluzon costtute d coppe (ω, φ ), n cu ω è l generc frequenz nturle e φ è l vettore dell corrspondente form modle. Nel cso d sstem smorzto con smorzmento clssco, le forme modl restno nvrte rspetto quelle ppen determnte [3]. L soluzone dell Eq. (1) nel cso d oscllzon lbere del sstem strutturle ( P (t) =0), ssume llor l form x n () t = y () t = φ sen( ω t + ϕ ) = 1 n φ (4) = 1 Costruendo un modello gl element fnt dell Cupol e ssumendo per esso l potes d lnertà, è possble determnrne le mtrc d mss M e d rgdezz K e qund vlutrne le corrspondent frequenze nturl e forme modl. Rsult ltresì evdente che mod d vbrre (forme modl e frequenze) sono crtterstc d un cert struttur e l loro ndvduzone costtusce un psso mportnte nell comprensone del comportmento strutturle.

4

5 Il processo d msur spermentle de mod rchede spesso un nls strutturle prelmnre che può essere utlmente esegut trmte un modello bsto sugl element fnt. L nls modle pplct l modello permette l ndvduzone qulttv delle forme modl e qund fclt l scelt dell ubczone pù opportun degl strument d msurzone delle vbrzon (tpcmente gl ccelerometr). In Fg. 2 s mostrno le prme tre forme modl del modello numerco gl element fnt. L prm form modle è crtterzzt d un semplce curvtur e corrsponde d un frequenz nturle pr, mentre nell second form modle flessonle s not un dopp curvtur. Un ltro tpo d modo d vbrre è quello crtterzzto d un form modle torsonle, n cu, come s può vedere nell fg. 2c, l struttur tende ruotre ttorno l propro sse vertcle. A quest rotzone è ssocto nche un ccorcmento, m è evdente che l scl delle deformzon è molto mplfct rspetto ll stuzone rele. Le Fgg. 2b e 2e ndcno n mggor dettglo come s deformno l cvtpp e l Grn tzz. L qurt form modle (fg. 3 3b) è ncor d tpo flessonle ed è crtterzzt d un dopp curvtur. S può vedere nche n questo cso un ngrndmento d cò che vvene nell zon ntern del cvtpp e s not un cert ndpendenz tr gl spostment del cvtpp e gl spostment subt dll volt estern. L fg. 3c mostr un ltro modo d vbrzone d tpo torsonle: le rotzon ttorno ll'sse vertcle hnno n questo cso segno vrble lungo l sse vertcle dell struttur. Infne, l'ultm delle forme modl presentte (fg. 3d 3e ), è l qurt form modle flessonle. S osserv che è sempre pù evdente n comportmento puttosto nomlo del cvtpp rspetto ll prte estern.

6

7 Identfczone modle Le forme e le frequenze modl possono essere ndvdute nche per v spermentle, utlzzndo le cosddette tecnche d dentfczone strutturle. Tl tecnche rchedono l poszonmento d strument d msurzone delle vbrzon strutturl (ccelerometr) e l successv elborzone de dt cqust. L ubczone degl ccelerometr è ndct n fg. 7: s può osservre che sono dspost su quttro lvell, n poszone l pù possble vcn prment estern. S hnno percò sedc strument che rlevno contempornemente le vbrzon dell Cupol. L drezone d msurzone del moto è sempre tngente rspetto qudrt che ndvduno schemtcmente le sezon orzzontl. In tl modo s sono potut regstrre non soltnto gl spostment flessonl, coè d esempo quell n drezone nord-sud o est-ovest, m s possono coglere nche eventul movment torsonl. È nftt evdente che d un moto torsonle dell'nter struttur corrspondono de mot rottor (ttorno l propro centro) d cscun delle sezon strutturl con gl ccelerometr. L tecnc d elborzone de dt utlzzt è quell pù semplce, ed è not con l nome d Bsc Frequency Domn tecnque. Dte due regstrzon ccelerometrche && x () t e & t, s ndcno con & (f e && f le reltve trsformte d Fourer, mentre l utospettro d && x () t G x b () è defnto dll relzone: 2 X & * X&& & ) ( ) X () t X b = (5) L defnzone dell utospettro d nlog, mentre l cross-spettro è dto d G b 2 X & * X&& =. b && x b è del tutto

8 L utospettro dell regstrzone dell ccelerometro n 1 dsposto sull Cupol è mostrto n Fg.. L nterpretzone del comportmento dnmco d un struttur prtre d dgrmm come quell mostrt n Fg. s bs su tre ssunzon: () le frequenze nturl del sstem sono ben seprte tr loro; () lo smorzmento del sstem è bsso; () l ecctzone h le propretà d un rumore bnco (whte nose). Qundo tl condzon sono verfcte le frequenze nturl d un struttur possono essere determnte d pcch dell utospettro d un regstrzone ccelerometrc [2]. In Fg. 5 s notno quttro pcch molto evdent, che possono essere ssoct d ltrettnte frequenze nturl dell Cupol. S ndvdu dunque l prmo modo flessonle n corrspondenz d un frequenz d 0.8 Hz (l perodo d vbrzone è percò d 1.25 second). Le stesse osservzon possono essere ftte per gl ltr pcch, crtterzzt d frequenze sempre crescent e pr 1.68, 2.65 e 4,72 Hz. Queste msurzon s rferscono d un ccelerometro posto n sommtà ll torre e qund pcch dell utospettro ndvduno solmente mot d tpo flessonle. In sommtà gl strument sono nftt post d un dstnz molto pccol dll'sse vertcle dell Cupol, ed è senz ltro verosmle che n que punt l energ ssoct mot torsonl s pressoché null. L'elborzone de dt cqust con gl ccelerometr permette d trccre n modo schemtco le forme modl. Dervndo rspetto l tempo prm due termn dell Eq. (4) e pplcndo successvmente l trsformt d Fourer,, s h nftt X& n = φ Y&& = 1 Consderndo le due generche component del vettore X & n ( ) Y ( ) X&& φ e f = && f X&&, b = φ by &&, = 1 n vrtù delle potes precedent, n corrspondenz dell frequenz nturle f s può scrvere: X && φ Y& ; X && φ Y&, b ;, b n = 1 (6) d cu è fcle ottenere l relzone φ φ, b, X&& b X&& ( f ) Y&& X&& b ( f ) = Y&& X&& (7)

9 L Eq. (7) esprme lo stretto legme tr le trsformte d Fourer de segnl ccelerometrc rlevt spermentlmente e le forme modl negl stess punt. S possono noltre determnre relzon nloghe reltve gl utospettr ed cross-spettr: φ φ, b, G G bb ( f ) G = G b ( f ) In un prm fse s è scelto d rppresentre le forme modl dell Cupol n modo schemtco, mednte semplc grfc bdmensonl (Fg. 5b). L deformt corrspondente 0.8 Hz h semplce curvtur, mentre per frequenze superor s not che l complesstà dell deformzone ument. L elevto numero d ccelerometr e l complesstà ntrnsec dell struttur hnno subto messo n evdenz l necesstà d utlzzre tecnche d elborzone de dt ccelerometrc pù complesse, n grdo d coglere dstntmente nche le forme modl rferte frequenze molto vcne (coè n contrsto con l potes () enunct n precedenz). S è percò pplct l tecnc dell Frequency Domn Decomposton (FDD) [3]. Il softwre utlzzto, messo punto presso l Unverstà d Trento, permette d costrure n modo utomtco le forme modl corrspondent d un ssegnt frequenz, e d mostrrne un nmzone trdmensonle. S ndvdu l prm form modle flessonle n corrspondenz d un frequenz d 0,8 Hz. (Fgg. 6-6b). Per un frequenz d 1.61 Hz s h l secondo modo flessonle (Fgg. 6c-6d). Per un frequenz molto vcn, 1.68 Hz crc, s h un form modle molto smle quell precedente, che però è contenut n un pno vertcle ortogonle quello precedente. Le Fgg. 6e-6f mostrno chrmente l'ortogonltà de due mot. Nel secondo è noltre evdente un notevole effetto torcente che non è stto possble seprre rspetto ll'effetto flessonle prncple.

10

11 Pssndo ll frequenz modle superore, s not l presenz d un dopp curvtur, tpc dell terz form modle flessonle (Fgg. 7-7b). In corrspondenz d 3.8 Hz s h un moto d tpo purmente torsonle (Fg. 7c), molto evdente n un vst dll lto dell struttur (Fg. 7d). S not chrmente che s trtt d un second form modle torsonle, vsto che l rotzone de pn con gl ccelerometr vvene n due drezon opposte. Un moto d tpo torsonle può verfcrs per un struttur che è perfettmente smmetrc ttorno l propro sse centrle, solo se su d ess è stt ndott un sollectzone d tpo torsonle. Qund s potrebbe supporre che dll bse s rrvt un sollectzone torsonle: quest elborzone s rfersce un cmpgn d msurzone esegut mentre suonvno le cmpne del cmpnle dcente e qund le vbrzon del cmpnle trsmesse ll Cupol ttrverso le mur dell Bslc potrebbero vere provocto l'ecctzone d questo modo torsonle. Un'ltr spegzone, che sembr pù relstc, è l non perfett smmetr dell struttur stess. Le scle per l ccesso vr lvell dell Cupol costtuscono ndubbmente un dsturbo dell smmetr ssle dell struttur. Accettndo quest ssunzone, llor nche l semplce zone del vento (prescndendo d fenomen legt l dstcco d vortc dlle pret esterne dell Cupol) può fr sorgere questo tpo d deformt. L'ultm frequenz dentfct è pr 4.73 Hz; s not nelle Fgg. 7e-7f che s trtt d un form modle flessonle, crtterzzt dll tendenz del secondo lvello d ccelerometr muovers n modo molto ccentuto rspetto gl ltr. L cus d questo è ncor d ndgre, nche se sembr rgonevole ssocre l moto d questo lvello d ccelerometr quello del cvtpp centrle, vsto che gl strument sono stt dspost n corrspondenz degl rch d collegmento del cvtpp lle murture esterne. Per gl ltr strument l moto regstrto è nvece quello dell prte estern dell struttur.

12

13 Concluson Nell prm prte dell rtcolo s è presentt l nls modle condott su un modello gl element fnt dell Cupol dell Bslc d S. Gudenzo, mentre nell second prte s sono llustrt rsultt dell dentfczone strutturle dell Cupol stess. S sono ndvdute le frequenze e le forme modl prncpl. In prtcolre è emers l presenz d forme modl torsonl, che ndcno l non perfett smmetr ssle dell struttur. L dentfczone modle v complett trmte l vlutzone de cosddett smorzment modl. S ntende noltre pplcre l modello gl element fnt le tecnche bste sul model-updtng, n modo tle che le crtterstche modl dell struttur rele e del modello sno n ccordo tr loro. Bblogrf [1] Chopr, A.K. (1995) Dynmcs of Structures: Teory nd Applctons to Erthquke Engneerng, Prentce Hll, New Jersey. [2] Ventur, C., Brncker, R. (2000) Modl Identfcton of Output-Only Systems, Course Notes of the two-dy short course, Unversdd Poltecnc de Mdrd. [3] Brncker, R., Zhng, L., Andersen, P. (2000) Modl Identfcton of Output-Only Systems usng Frequency Domn Decomposton, Proc. of the Europen COST F3 Conf. On System Identfcton & Structurl Helth Montorng, Mdrd. Rngrzment L utore desder rngrzre l Prof. Ing. Oreste Burs e l Ing. Stefno Morv per l loro prezos collborzone nell stesur dell rtcolo.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI MATEMATICA FINANZIARIA Pro. Andre Berrd 999 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 PROGETTO ECONOMICO-FINANZIARIO Un progetto economco-nnzro è un

Dettagli

Interpolazione dei dati

Interpolazione dei dati Unverstà degl Stud d Br Dprtmento d Chmc 9 gugno 0 F.Mvell Lortoro d Chmc Fsc I.. 0-0 Interpolzone Curve Interpolzone de dt Qundo s conosce l legge fsc che mette n relzone tr loro due vrl e, mednte prmetr,,

Dettagli

Unità Didattica N 32. Le trasformazioni geometriche

Unità Didattica N 32. Le trasformazioni geometriche 1 Untà Ddttc N Le trsformzon geometrche 1) Le trsformzon del pno n sé ) L smmetr centrle ) L smmetr ssle 4) L trslzone 5) L trslzone degl ss crtesn 6) L ' ffntà 7) L smltudne 8) L omotet 09) Le sometre

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Npol Prthenope Fcoltà d Ingegner Corso d Trsmssone Numerc docente: Prof. Vto Psczo 3 Lezone: /0/004 4 Lezone: /0/004 Sommro Quntzzzone sclre (unforme e non unforme) Quntzzzone vettorle (VQ)

Dettagli

Regressione Lineare Semplice

Regressione Lineare Semplice reressone lnere Reressone nere Semplce Per ottenere l veloctà d un corpo s msur l su poszone vr temp. Spendo che l relzone tr l poszone del corpo s l tempo t è dt dll lee s = v t trovre con l reressone

Dettagli

N 10 I NUMERI COMPLESSI

N 10 I NUMERI COMPLESSI Untà Ddttc N 0 I NUMERI COMPLESSI 0) Introduzone dell untà mmgnr 0) Introduzone elementre de numer compless 0) Alcune operzon su numer compless 0) Rppresentzone geometrc de numer compless 05) Rppresentzone

Dettagli

5. Coperture in acciaio: applicazione

5. Coperture in acciaio: applicazione 5. Coperture n cco: pplczone Le coperture n cco, d solto rservte costruzon non bttve, hnno tpologe costruttve bbstnz tpche ( FIGURA 1). Gl element costruttv ordnr sono: sol; le trv, sezone pen (rcrecc)

Dettagli

Il Circuito Elementare

Il Circuito Elementare Corso d IMPIEGO INDUSRIALE dell ENERGIA L ener, ont, trsormzon ed us nl Impnt vpore I enertor d vpore Impnt turbos Ccl combnt e coenerzone Il mercto dell ener 1 Corso d IMPIEGO INDUSRIALE dell ENERGIA

Dettagli

Calcolo della concentrazione e della densità del Silicio Monocristallino

Calcolo della concentrazione e della densità del Silicio Monocristallino Clcolo dell concentrzone e dell denstà del Slco Monocrstllno Clcolo del numero d tom per cell Contrbuto de vertc: 8 1 8 1 Contrbuto delle superfc: 6 1 2 3 Contrbuto tom ntern: 4 1 4 Totle: 8 tom equvlent

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Gnmr Mrtn UNIVERSITÀ DEGLI STUDI DI BERGAMO Fcoltà d Ingegner Isttuzon d Econom Lure Trennle n Ingegner Gestonle Lezone 9 Domnd del mercto Prof. Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner

Dettagli

3.1 Ridisegnando il circuito senza incroci e applicando la trasformazione triangolo-stella si ottengono gli schemi seguenti.

3.1 Ridisegnando il circuito senza incroci e applicando la trasformazione triangolo-stella si ottengono gli schemi seguenti. . dsegnndo l crcuto senz ncroc e pplcndo l trsformzone trngolostell s ottengono gl schem seguent. Ω Ω eq Ω Ω Ω Ω Ω Ω eq Ω Ω Ω Ω eq Ω eq // Ω. S trsform l stell edenzt n rosso n un trngolo (le resstenze

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

Circuiti di ingresso differenziali

Circuiti di ingresso differenziali rcut d ngresso dfferenzal - rcut d ngresso dfferenzal - Il rfermento per potenzal Gl stad sngle-ended e dfferenzal I segnal elettrc prodott da trasduttor, oppure preleat da un crcuto o da un apparato elettrco,

Dettagli

Strutture cristalline 1

Strutture cristalline 1 Chmc fsc de mterl Strutture crstllne Sergo Brutt Impcchettmento comptto n 2D Esstono 2 dfferent mod d rrngre n un pno 2D crconferenze dentche n modo d tssellre n modo comptto lo spzo dmensonle: Impcchettmento

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

I vettori. Grandezze scalari: Grandezze ve9oriali

I vettori. Grandezze scalari: Grandezze ve9oriali I ettor Grndee sclr: engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee e9orl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.uno.t/pers/mstr/ddttc.tm (ersone del 9-3-0) Teorem d Tellegen Ipotes: Crcuto con n nod e l lt ers d rfermento scelt per tutt lt secondo l conenzone dell utlzztore {,..., l } =

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Lez.9 Teoremi sulle reti 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 9 Pagina 1

Lez.9 Teoremi sulle reti 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 9 Pagina 1 Lez.9 Teorem sulle ret 2 Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A. 207-208, Elettrotecnc. Lezone 9 Pgn Teorem d non mplfczone In un rete costtut d sol pol, n cu è presente un unco polo che erog

Dettagli

Inps - Messaggio 27 marzo 2009, n. 6952

Inps - Messaggio 27 marzo 2009, n. 6952 Fondo Tesorer: v lber ll procedur per l pgmento dretto delle prestzon Antonno Cnnoto Esperto n mter prevdenzle Guseppe Mccrone Consulente del lvoro n Rom Inps - Messggo 27 mrzo 2009, n. 6952 Oggetto: Erogzone

Dettagli

Azionamenti Elettrici Parte 2 Tipologie dei motori e relativi azionamenti: Motori a collettore e Sincroni

Azionamenti Elettrici Parte 2 Tipologie dei motori e relativi azionamenti: Motori a collettore e Sincroni Azonment Elettrc Prte 2 Tpologe de motor e reltv zonment: Motor collettore e Sncron Prof. Alberto Tonell DEIS - Unverstà d Bologn Tel. 051-6443024 E-ml ml: tonell@des des.unbo.tt Prte 1 Indce generle del

Dettagli

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse.

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse. Y Lnerzzzone Il dgrmm d dspersone suggersce che le funzone d nterpolzone de dt non sono lner, m presentno un ndmento che n un cso (dots ner) potree essere d tpo esponenzle, mentre nell ltro cso (dots ross)

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

Elettrotecnica - Ing. Aerospaziale, Ing. Meccanica A.A. 2017/18 - Prova n. 4 7 settembre gv 2. L 1 = 5 mh R 2 = 4 R 1 = 10 C 2 = 125 F R 3 = 10

Elettrotecnica - Ing. Aerospaziale, Ing. Meccanica A.A. 2017/18 - Prova n. 4 7 settembre gv 2. L 1 = 5 mh R 2 = 4 R 1 = 10 C 2 = 125 F R 3 = 10 Cognome Nome Mtrcol Frm Prt svolte: E E D Eserczo V G A B C 4 I G4 5 6 gv D Supponendo not prmetr de component, llustrre l procedmento d rsoluzone del crcuto rppresentto n fgur con l metodo delle tenson

Dettagli

ROTAZIONI ( E TEOREMA DI PITAGORA

ROTAZIONI ( E TEOREMA DI PITAGORA ROTAZIONI ( E TEOREMA DI PITAGORA ) Defnzone Defnmo rotzone nel pno R un funzone (,) --> f(,) = (',') R, tle che : ) f(,) = f(,) + ort(f(,), per ogn (,) R dove : ort(,b) := (-b,) "ortogonle (ntorro)" d

Dettagli

Convenzione Il vettore di modulo 0 é indicato con 0. Definizione Un vettore di modulo 1 é chiamato versore

Convenzione Il vettore di modulo 0 é indicato con 0. Definizione Un vettore di modulo 1 é chiamato versore Vettor. Un vettore è ndvduto nello spo o nel pno ssegnndo tre grndee: Lunghe o Modulo o Intenstà: defnt d un numero rele non negtvo Dreone nlnone d un rett rspetto gl ss rtesn Verso Può rppresentto d segment

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorem Fondmentle dell'artmetc Defnzone 7 Un nmero ntero p dverso d 0 e s dce prmo se per ogn b Z Altrment p s dce composto p b p oppre p b Defnzone

Dettagli

Convenzione Il vettore di modulo 0 é indicato con 0. Definizione Un vettore di modulo 1 é chiamato versore

Convenzione Il vettore di modulo 0 é indicato con 0. Definizione Un vettore di modulo 1 é chiamato versore Vettor. Un vettore è ndvduto nello spo o nel pno ssegnndo tre grndee: Lunghe o Modulo o Intenstà: defnt d un numero rele non negtvo Dreone nlnone d un rett rspetto gl ss rtesn Verso Può rppresentto d segment

Dettagli

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

Teoremi su correnti e tensioni

Teoremi su correnti e tensioni Teorem su corrent e tenson 1) ombnzone lnere efnzone: n un crcuto, ogn corrente e tensone è dt un combnzone lnere d genertor: V = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... I = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... oe

Dettagli

Quadratura S = S = F (b) F (a).

Quadratura S = S = F (b) F (a). Qudrtur Formule d qudrtur nterpoltore S f un funzone rele defnt su un ntervllo [, b]. studre è quello dell pprossmzone dell ntegrle Il problem che s vuole S = f(x) dx. () Nel cso n cu l f s un funzone

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Capitolo 5. Il Sistema Satellitare GPS

Capitolo 5. Il Sistema Satellitare GPS Cptolo 5 Il stem telltre GP 5. Descrzone del sstem L nvgzone stelltre nsce con l lnco dello putn d prte dell U nell ottobre 957; l osservzone dello shft-doppler sull frequenz delle converszon dllo putn

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 [m 3 ]) l rnnovo d r è n 0.5 (1/h). Nell potes d un tempertur estern t e - 5 [ C], qunto vle l flusso termco per ventlzone v.

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 m 3 ) l rnnovo d r è n 5 (1/h). Nell potes d un tempertur estern t e - 5 C qunto vle l flusso termco per ventlzone v. ssumere:

Dettagli

del prodotto cartesiano A B. Diremo che un elemento a A è in relazione con un elemento b B, e scriveremo a b se, e solo se, ( a,

del prodotto cartesiano A B. Diremo che un elemento a A è in relazione con un elemento b B, e scriveremo a b se, e solo se, ( a, Relzon bnre Un relzone bnr d un nseme A d un nseme B è un sottonseme R del prodotto crtesno A B Dremo che un elemento A è n relzone con un elemento b B, e scrveremo b se, e solo se, (, b) R Rppresentzone

Dettagli

I segmenti orientati

I segmenti orientati I vettor Untà Pgn 1 d 5 I egment orentt Dll geometr euclde ppmo che l egmento è l prte fnt d rett delmtt d due punt dett etrem del egmento. Defnmo egmento orentto un qul egmento ul qule è tto fto un vero

Dettagli

Modelli equivalenti del BJT

Modelli equivalenti del BJT Modll ulnt dl JT Pr lo studo dll pplczon crcutl dl JT, s è rso opportuno formulr d modll ulnt dl dsposto ch srssro rpprsntr n modo connnt l suo comportmnto ll ntrno d crcut. A scond dl tpo d pplczon (mplfczon

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

Soluzione a) Detta F la forza impulsiva dovuta al corpo, il momento dell impulso, calcolato rispetto al punto di sospensione, è dato da

Soluzione a) Detta F la forza impulsiva dovuta al corpo, il momento dell impulso, calcolato rispetto al punto di sospensione, è dato da A) meccnc Un srr omogene d lunghezz l, lrghezz trscurle e mss M è ppes vertclmente d un estremtà mednte un perno ttorno cu puo` ruotre. Contro l estremt` ler dell srr vene scglto un corpo che nell urto

Dettagli

Appunti su. Elementi fondamentali di Algebra Lineare

Appunti su. Elementi fondamentali di Algebra Lineare CORSO DI RICERC OPERTIV ppunt su Element fondmentl d lger Lnere cur del Prof. Guseppe runo Ultmo ggornmento: prle VETTORI, MTRICI E DETERMINNTI. Defnzon generl Un mtrce d dmensone o ordne (m n) è un nseme

Dettagli

E definito prodotto di due cracoviani W V un cracoviano A il cui generico elemento vale

E definito prodotto di due cracoviani W V un cracoviano A il cui generico elemento vale Rsoluzoe de sstem ler co l metodo d Bchewcz U semplce e effcete metodo per rsolvere sstem d equzo ler è quello recetemete proposto d Bchewcz che cosete d rsolvere sstem geerc smmetrc e o smmetrc che sez

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

Analisi sistematica delle strutture. Rigidezza

Analisi sistematica delle strutture. Rigidezza Anls sstemt elle strutture Rgezz u U x y v Trve nel pno v Vettore forze nol Vettore spostment nol θ u θ u U u V v Tre gr lertà per noo Due no per elemento x U θ u Se gr lertà per elemento V v tre rgezz

Dettagli

Analisi Matematica Lezione 26, 25 novembre 2014 Integrale di Riemann

Analisi Matematica Lezione 26, 25 novembre 2014 Integrale di Riemann Dprtmento d Scenze Sttstche Anls Mtemtc Lezone 26, 25 novembre 2014 Integrle d Remnn prof. Dnele Rtell dnele.rtell@unbo.t 1/28? Teorem du Bos-Reymond e Drboux Condzone necessr e suffcente ffnché f R ([,

Dettagli

DETERMINAZIONE GRAFICA DEL BARICENTRO

DETERMINAZIONE GRAFICA DEL BARICENTRO DETERMNZONE GRFC DEL BRCENTRO (SSTEM D MSSE) Geometria delle masse 1/75 L BRCENTRO D UN SSTEM D MSSE È L CENTRO D UN QULSS SSTEM D VETTOR PRLLEL E CONCORD (DETT VETTOR MSS), PPLCT N CORRSPONDENZ DELLE

Dettagli

Progettazione agli Elementi Finiti

Progettazione agli Elementi Finiti Progettzone gl Element Fnt Test Consglt: AA /, doente: Prof. Dro Amodo A. Guglott Element Fnt, Otto Edtore, R.D. Cook, D.S. Mlkus, M.E. Plesh, R.J. Wtt Conepts nd Appltons of Fnte Element Anlyss, th ed.,

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Spettroscopia rotazionale

Spettroscopia rotazionale Spettrosop rotzonle n prm pprossmzone l desrzone dello spettro rotzonle d un moleol tom f rfermento ll trttzone QM del rottore rgdo due msse he ruotno ttorno d un sse perpendolre l legme e pssnte per l

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI

METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI Per l rsoluzone d un sstem lnere A b, oltre metod drett, è possble utlzzre nche metod tertv che rggungono l soluzone estt come lmte d un procedmento

Dettagli

Relazioni Input/Output c

Relazioni Input/Output c Relon Input/Output c 44 Vrble d stto L pprocco con le vrbl d stto è un generlone delle equon lle dfferene per fltr cusl che ncludere un descrone dello stto nterno dell rete, usndo relon nloghe lle relon

Dettagli

Integrazione numerica

Integrazione numerica Cludo Esttco cludo.esttco@usur.t Itegrzoe umerc Itegrzoe Numerc Itegrzoe umerc Formule d qudrtur. Grdo d esttezz. 3 Metodo de coecet determt. 4 Formule d Newto-Cotes semplc. Formule d Newto-Cotes composte.

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Versione 20 dicembre. Integrali curvilinei. 2.1 Curve nel piano e nello spazio

Versione 20 dicembre. Integrali curvilinei. 2.1 Curve nel piano e nello spazio 2 Integrl curvlne 2. Curve nel pno e nello spzo S I un qulunque ntervllo dell rett rele e s : I R 3 un funzone. Indchmo con (t) = ( x(t), y(t), z(t) ) R 3 l punto mmgne d t I ttrverso. Dcmo che è un funzone

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure in Scienze e Tecnologie Agrrie Corso Integrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioni + CFU Esercitzioni) Corso di Lure in Tutel e Gestione del territorio e del Pesggio

Dettagli

DETERMINAZIONE GRAFICA DEL BARICENTRO

DETERMINAZIONE GRAFICA DEL BARICENTRO DETERMNZONE GRFC DEL BRCENTRO (SSTEM D MSSE) Geometria delle masse 1/97 L BRCENTRO D UN SSTEM D MSSE È L CENTRO D UN QULSS SSTEM D VETTOR PRLLEL E CONCORD (DETT VETTOR MSS), PPLCT N CORRSPONDENZ DELLE

Dettagli

Dipartimento di Ingegneria Civile Università di Pisa. Anno accademico 2010 / 2011 STABILITA PENDII. Prof. Lo Presti

Dipartimento di Ingegneria Civile Università di Pisa. Anno accademico 2010 / 2011 STABILITA PENDII. Prof. Lo Presti Dprtmento d Ingegner Cvle Unverstà d Ps Anno ccdemco 2010 / 2011 STABILITA PENDII Prof. Lo Prest 1 CLASSIFICAZIONE FRANE TIPO DI TERRENO rocce terren TIPO DI MOVIMENTO croll, rbltment scvolment solflusson

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

PROGETTO DEFINITIVO (GENERALE) PROGETTO ESECUTIVO CANTIERE

PROGETTO DEFINITIVO (GENERALE) PROGETTO ESECUTIVO CANTIERE L PROGETTO DRESTURO PROGETTO PRELMNRE PROGETTO DEFNTVO (GENERLE) PROGETTO ESECUTVO CNTERE CONSUNTVO SCENTFCO FNLE 1 L PROGETTO PRELMNRE CONOSCENZ DEL MNUFTTO CONOSCENZ NDRETT RCERC STORC CONOSCENZ DRETT

Dettagli

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I)

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I) Elettronic dei Sistemi Digitli Il test nei sistemi elettronici: gusti ctstrofici e modelli di gusto (prte I) Vlentino Lierli Diprtimento di Tecnologie dell Informzione Università di Milno, 26013 Crem e-mil:

Dettagli

Università della Calabria

Università della Calabria Unverstà dell Clbr FACOLTA DI IGEGERIA Corso d Lure n Ingegner Cvle CORSO DI IDROLOGIA.O. Prof. Psqule Versce Y 6 ( 6, 6 (, e e 6 6 f( 6 (, e SCHEDA DIDATTICA 6 REGRESSIOE E CORRELAZIOE A.A. - REGRESSIOE

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Risultati esame scritto Fisica 2 del 03/10/2016 orali: 11/10/2016 alle ore presso aula H

Risultati esame scritto Fisica 2 del 03/10/2016 orali: 11/10/2016 alle ore presso aula H sultt esme scrtto Fsc del //6 orl: //6 lle ore. presso ul H gl student nteresst vsonre lo scrtto sono pregt d presentrs l gorno dell'orle mtrcol voto 98 7 mmesso 8 7 mmesso 7 7 mmesso 6 7 mmesso 9 7 mmesso

Dettagli

Capitolo 1. Il principio di equivalenza e la sua verifica. 1.1 Il principio di equivalenza. 1.1.1 Definizione e cenni storici

Capitolo 1. Il principio di equivalenza e la sua verifica. 1.1 Il principio di equivalenza. 1.1.1 Definizione e cenni storici Cptolo 1 Il prncpo d equvlenz e l su verfc 1.1 Il prncpo d equvlenz 1.1.1 Defnzone e cenn storc Il prncpo d equvlenz è un prncpo d fondentle portnz per l fsc odern, poché st ll bse delle teore etrche dell

Dettagli

Volume di un solido di rotazione

Volume di un solido di rotazione Volume di un solido di rotione Si un rco di curv vente equione f. Se f() è un funione continu e non negtiv nell'intervllo limitto e chiuso,, si dimostr che il volume del solido generto dl trpeoide CD in

Dettagli

6. Il telerilevamento passivo.

6. Il telerilevamento passivo. 6. Il telerlevmento pssvo. Il telerlevmento h lo scopo rlevre stnz le crtterstche fsco/chmche un oggetto trmte un sensore che s n gro msurre l energ elettromgnetc che l superfce ell oggetto rr nello spzo

Dettagli

Esercizi sulle curve in forma parametrica

Esercizi sulle curve in forma parametrica Esercizi sulle curve in form prmetric Esercizio. L Elic Cilindric. Dt l curv di equzioni prmetriche: xt cos t yt sin t t 0 T ] > 0 b IR zt bt trovre: versore tngente normle binormle vettore curvtur rggio

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

Temi d'esame (Seconda prova) Alcuni testi e relative soluzioni

Temi d'esame (Seconda prova) Alcuni testi e relative soluzioni Unverstà d Rom "L Spenz" Fcoltà d Ingegner Corso d Lure n Ingegner Informtc Corso d Clcoltor Elettronc II Tem d'esme (Second prov) Alcun test e reltve soluzon Appello del 23 luglo 2002 Tem n. 2 Un cche

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

GARA DI MATEMATICA ON-LINE (14/1/2019)

GARA DI MATEMATICA ON-LINE (14/1/2019) IN GIRO PER PRIGI [6] GR DI MTEMTI ON-LINE (4//09) Se n è un numero d due cfre, scrvendo un 4 dopo n s ottene l numero 0n 4, mentre scrverlo prm sgnfc vere l numero 400 n Il problem è rsolto dll equzone

Dettagli

Campi Elettromagnetici e Circuiti I Teoremi delle reti elettriche

Campi Elettromagnetici e Circuiti I Teoremi delle reti elettriche Fcoltà d Ingegner Unverstà degl stud d Pv Corso d ure Trennle n Ingegner Elettronc e Informtc Cmp Elettromgnetc e Crcut I Teorem delle ret elettrche Cmp Elettromgnetc e Crcut I.. 04/5 Prof. uc Perregrn

Dettagli

PROBLEMI DI TRASPORTO

PROBLEMI DI TRASPORTO Metod e modell per l supporto lle decso Prof Ferddo Pezzell - Ig Lug De Gov PROBLEMI DI TRSPORTO OFFERT IMPINTI UTENTI DOMND ( ) (org) (destzo) ( b ) (5) (8) (2) 2 2 (2) (3) 3 3 (9) 4 (9) c COSTO UNITRIO

Dettagli

Circuiti Elettrici Lineari Teoremi delle reti elettriche

Circuiti Elettrici Lineari Teoremi delle reti elettriche Fcoltà d Ingegner Unverstà degl stud d Pv Corso d ure Trennle n Ingegner Elettronc e Informtc Crcut Elettrc ner Teorem delle ret elettrche Crcut Elettrc ner.. 08/9 Prof. uc Perregrn Teorem delle ret elettrche,

Dettagli

d x Campi magnetici e forze magnetiche nel vuoto Esercitazione n 7 FISICA SPERIMENTALE II (C.L. Ing. Mecc. A/L) (Prof. Gabriele Fava) A.A.

d x Campi magnetici e forze magnetiche nel vuoto Esercitazione n 7 FISICA SPERIMENTALE II (C.L. Ing. Mecc. A/L) (Prof. Gabriele Fava) A.A. Eserctzone n 7 ISICA SPERIMENTALE II (CL Ing Mecc A/L) (Prof Gbree v) AA / Cmp mgnetc e forze mgnetche ne vuoto Due f rettne ndefnt, fss e pre, post dstnz d, sono percors de corrent e rspettvmente Ne pno

Dettagli

SISTEMI DI CONDOTTE: La verifica idraulica

SISTEMI DI CONDOTTE: La verifica idraulica SISTEMI DI CONDOTTE: L vefc dulc Clo Cpon Unvestà degl Stud d Pv Dptmento d Ingegne Idulc e Ambentle Poszone del del poblem Rete esstente d cu è not l geomet E pefsst l eogzone (ppocco DDA: Demnd Dven

Dettagli

Scheda per il recupero 2

Scheda per il recupero 2 Sched A Ripsso Sched per il recupero Numeri rzionli e introduzione i numeri reli Definizioni principli DOMANDE RISPOSTE ESEMPI Che cos è un frzione? Qundo un frzione si dice ridott i minimi termini? Un

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verfca delle potes In molte crcostanze l rcercatore s trova a dover decdere quale, tra le dverse stuazon possbl rferbl alla popolazone, è quella meglo sostenuta dalle evdenze emprche. Ipotes statstca:

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI METODO DEGLI ELEMENTI FINITI Introduzone al metodo degl element fnt Il concetto base nella nterpretazone fsca del metodo degl element fnt è la decomposzone d un sstema meccanco complesso n pù semplc component

Dettagli

Dispense del Corso di Fisica. a.s Prof. Quintino d Annibale

Dispense del Corso di Fisica. a.s Prof. Quintino d Annibale Dspense del Corso d Fsc.s. 009-00 Prof. Quntno d Annle Meccnc Lezone Grndezze fsche ncertezz nell msur Grndezze Fsche Ogn grndezz fsc e compost d un numero e d un untà. Le legg fsche ndcno relzon tr grndezze

Dettagli

MISURE DELL ACCELERAZIONE DI GRAVITÁ g 1) PENDOLO REVERSIBILE DI KATER

MISURE DELL ACCELERAZIONE DI GRAVITÁ g 1) PENDOLO REVERSIBILE DI KATER MISURE DELL ACCELERAZIONE DI GRAVIÁ In questo espermento s vuole msurre l ccelerzone d rvtà. Dvers sono mod possl. S consderno qu le oscllzon d un pendolo fsco e l cdut ler d pllne d cco. All fne del esperment

Dettagli

3. Esercitazioni di Teoria delle code

3. Esercitazioni di Teoria delle code 3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come

Dettagli

Esercizi sul calcolo dei carichi invernali ed estivi di progetto

Esercizi sul calcolo dei carichi invernali ed estivi di progetto Esercz sul clcolo de crch nvernl ed estv d progetto CESARE MARIA JOPPOLO, STEFANO DE ANTONELLIS, LUCA MOLINAROLI DIPARTIMENTO DI ENERGIA POLITECNICO DI MILANO C. M. Joppolo, S. De Antonells, L. Molnrol

Dettagli

Campi Elettromagnetici e Circuiti I Parametri di diffusione

Campi Elettromagnetici e Circuiti I Parametri di diffusione Fcoltà d Ingegner Unverstà degl stud d Pv Corso d Lure Trennle n Ingegner Elettronc e Informtc Cmp Elettromgnetc e Crcut I Prmetr d dffusone Cmp Elettromgnetc e Crcut I.. 05/6 Prof. Luc Perregrn Prmetr

Dettagli

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006 Smulazone seconda prova Tema assegnato all esame d stato per l'abltazone alla professone d geometra, 006 roposte per lo svolgmento pubblcate sul ollettno SIFET (Socetà Italana d Fotogrammetra e Topografa)

Dettagli

FUNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO

FUNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO Pg. Pro. Muro D Ettorr UNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO PREMESSE DERIVATE PARZIALI DI UNA UNZIONE A DUE O PIU VARIABILI Dt un unzon d n vrbl z=... n s dc drvt przl l unzon

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

Esempi di programmazione assembly

Esempi di programmazione assembly Corso d Clcoltor Elettronc I Esemp d progrmmzone ssembly ng. Alessndro Clrdo Corso d Lure n Ingegner Bomedc Progrmm con mtrc Scrvere un progrmm che conteng n memor un mtrce d byte d dmensone RG x CL (RG

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

Capitolo 4 : Problema 45

Capitolo 4 : Problema 45 Cptolo 4 : Proble 45 Scelgo per convenenz l sse X lungo superfce dell tvol lsc col verso postvo concorde con l forz pplct F=+ ˆ N. S ssue che durnte l oto le tre sse sno sepre ccostte e = = = qund 3 Y

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

VARIABILI ALEATORIE (v.a.) DISCRETE

VARIABILI ALEATORIE (v.a.) DISCRETE Corso d Sttstc, Lure Ecoom Azedle, Uverstà C. Ctteo, Cstellz, 7 Ottobre 008. 008 R. D Agò VARIABILI ALEATORIE: SIMBOLOGIA, DEFINIIONI, PROPRIETA VARIABILI ALEATORIE (v.. DISCRETE pgg. -3 VARIABILI ALEATORIE

Dettagli