TRASFORMAZIONI GEOMETRICHE DEL PIANO
|
|
|
- Dionisia Antonella
- 9 anni fa
- Visualizzazioni
Transcript
1 TRASFORMAZIONI GEOMETRICHE DEL PIANO INTRODUZIONE Per trsformzione geometric pin si intende un corrispondenz iunivoc fr i punti di un pino, ossi un funzione iiettiv che ssoci d ogni punto P del pino un punto P dello stesso pino. Questo signific che tutti gli elementi dell insieme A hnno un corrispondente in B e tutti gli elementi dell insieme B sono immgini di un elemento di A. Queste trsformzioni sono lineri perché le relzioni che legno le coordinte di un punto e del suo corrispondente sono espresse d polinomi di primo grdo. Le trsformzioni operno sulle figure geometriche e possono cmire o no le crtteristiche delle figure. Le trsformzioni vengono clssificte secondo le proprietà che non cmino nell trsformzione, dette proprietà invrinti. TRASFORMAZIONI ISOMETRICHE Le più semplici trsformzioni geometriche sono le trsformzioni isometriche o isometrie. Si definisce isometri un trsformzione del pino che conserv le distnze. Le isometrie si distinguono in dirette e inverse second che mntengno o no l orientmento fr i punti. Sono isometrie dirette: le TRASLAZIONI, che sono trsformzioni in cui i segmenti che uniscono ogni punto l proprio corrispondente sono congruenti, prlleli e concordi. t: le ROTAZIONI di centro O, che sono trsformzioni in cui rimne fisso il punto O, detto centro di rotzione, e ogni punto P del pino h per corrispondente un punto P tle che le distnze OP e OPsino uguli e l ngolo POP si congruente un ngolo ssegnto di mpiezz : : cos sin sin cos Se l ngolo è un ngolo pitto, l rotzione corrispondente è dett SIMMETRIA CENTRALE, in qunto i punti corrispondenti sono simmetrici rispetto l centro O: o : Sono isometrie inverse: 1
2 le SIMMETRIE ASSIALI in cui i punti dell sse r rimngono fissi e sono detti punti uniti dell trsformzione. Ogni punto P del pino h per corrispondente il punto P tle che r si sse del segmento PP. Fr queste considerimo le: o Simmetrie rispetto ll sse : : o Simmetrie rispetto ll sse : TRASFORMAZIONI NON ISOMETRICHE Si definiscono trsformzioni non isometriche quelle trsformzioni che non conservno le distnze fr i punti. Le SIMILITUDINI Si definisce similitudine un funzione iiettiv del pino in sé tle che, dti due punti P e Q e i loro corrispondenti P e Q, fr l distnz dei punti P e Q e quell dei loro corrispondenti P e Q sussist l relzione: PQ PQ dove, rele e positivo, è detto rpporto di similitudine. Nelle similitudini ogni distnz reltiv tr i punti è modifict secondo un fttore costnte. Se =1, le distnze rimngono uguli e si h un isometri: così le isometrie sono un cso prticolre di similitudine. Fr le più semplici similitudini vi sono le OMOTETÌE. Si definisce omotetì con centro in un punto O del pino, un trsformzione che soddisf lle seguenti condizioni: l punto O corrisponde se stesso; d ogni punto P diverso d O corrisponde il punto P llineto con O e P, tle che risulti: OP OP con rele positivo. Se >1, l omotetì è un diltzione; se K<1, l omotetì è un contrzione. 2
3 Le TRASFORMAZIONI AFFINI Fissto un sistem di ssi crtesini (non necessrimente ortogonli), si definisce ffinità un trsformzione del pino in sé tle che d ogni punto P(; ) corrisponde un punto P ( ; ) le cui coordinte sono dte d: c d e f con,, c, d, e, f R e det(a) = 0 d e. Le proprietà crtteristiche dell ffinità sono: un ffinità trsform rette in rette; un ffinità trsform rette prllele in rette prllele e rette incidenti in rette incidenti; in un ffinità il rpporto fr le ree di due figure corrispondenti è egule l vlore ssoluto del determinnte dell mtrice dell trsformzione. 3
4 Trsformzioni Geometriche(2) Le definizioni che seguono sono generlmente riferite ll sistemzione ssiomtic post d Feli Klein nel fmoso trttto di Erlngen. I numeri n] indicno gli invrinti topologici. Trsformzioni geometriche: funzioni iiettive dello spzio in sé. Trsformzioni topologiche [luogo - studio]: trsformzioni geometriche che conservno: 1] Dimensionlità (linee in linee, punti in punti ecc.) 2] Crttere delle curve (curve chiuse in curve chiuse, curve perte in curve perte) 3] Singolrità (nodi in nodi ecc.) Trsformzioni proiettive: trsformzioni topologiche che conservno: 4] Le linee rette (rettilinerità) Trsformzioni ffini: trsformzioni proiettive che conservno: 5] Il prllelismo (m non l direzione delle rette prllele) Trsformzioni omotetiche: trsformzioni ffini che conservno: 6] L direzione 7] Gli ngoli 8] Il rpporto tr lti omologhi Trsformzioni isometriche: trsformzioni ffini che conservno: 7 ] Gli ngoli 8 ] Le distnze (trslzioni, rotzioni, roto-trslzioni, le simmetrie ssili e centrli) Trsformzioni simili: trsformzioni ffini che conservno l form Oss.: Eseguendo un composizione di un omotetì con un isometri, si ottengono le similitudini ossi: similitudine = omotetì Isometri. Ovvimente si le trsformzioni omotetiche si quelle isometriche rppresentno due sottogruppi delle similitudini. Si osservi più vnti che le isometrie non risultno, in generle, delle prticolri omotetìe poiché il coefficiente di diltzione di un omotetì è lo stesso per l e per l mentre nelle isometrie tle coefficiente può risultre 1. Similitudini Isometrie Identità Omotetie 4
5 5 Le Affinità Dopo ver introdotto le ffinità, ne studieremo il sottogruppo delle similitudini ossi, più in prticolre, le omotetìe e le isometrie (trslzioni, rotzioni, simmetrie). Le ffinità: eseguono due stirmenti sulle figure geometriche che possono determinre (nche se ciò può merviglire) un vrizione di ngoli e di direzioni. Le corrispondenti equzioni sono: h Le omotetìe sono ffinità prticolri con h = : Le isometrie sono ffinità suddivise in trslzioni, rotzioni e simmetrie (ssili e centrli).
TEOREMI FONDAMENTALI DI GEOMETRIA ELEMENTARE
uthor: Ing, Giulio De Meo GEOMETRIA TEOREMI FONDAMENTALI DI GEOMETRIA ELEMENTARE L somm degli ngoli interni di un poligono di n lti è (n - ) 180. L somm degli ngoli esterni di un qulsisi poligono vle 360.
1 COORDINATE CARTESIANE
1 COORDINATE CARTESIANE In un sistem di ssi crtesini (,) un punto P è identificto dll su sciss e dll su ordint : Asciss : distnz di P dll sse delle ordinte Ordint :distnz di P dll sse delle scisse P(-4,4)
Proiettività della Retta e del Piano.
Introduzione. In queste note proponimo l clssificzione delle proiettività per l rett proiettiv ed il pino proiettivo su un corpo lgebricmente chiuso. Nel cso dell rett studieremo nche il cso del corpo
5 Geometria analitica
58 Formulrio di mtemtic 5 eometri nlitic 5.1 Punti e rett distnz di due punti d ( ) + ( y y ) 1 1 distnz tr due punti con ugule sciss d y y1 distnz tr due punti con ugule ordint d 1 punto medio di un segmento
Contenuti di matematica classe prima liceo scientifico di ordinamento e delle scienze applicate.
Contenuti di mtemtic clsse prim liceo scientifico di ordinmento e delle scienze pplicte. SAPERE Sper definire, rppresentre e operre con gli insiemi. Conoscere gli insiemi numerici N, Z, Q e sperci operre
La parabola con asse parallelo all ady
L prbol con sse prllelo ll dy I Prbol con vertice nell origine degli ssi crtesini I disegni degli esercizi dll 1 l 3 dell sched di lbortorio, sono i seguenti: Quindi il segno del coefficiente di x determin
Superfici di Riferimento (1/4)
Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie
Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,
CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un
AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.
AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert
Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione.
Le trsformzioni geometriche ITL 7 TERI Letture llo specchio! Ingegni, ossesso, nilin: tre esempi di plindromi, ovvero di prole che si possono leggere si d sinistr verso destr, si d destr verso sinistr.
Operazioni sulle Matrici
Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 9 Ottore Operzioni sulle Mtrici F. Cliò Addizione e Sottrzione Lezione 9 Ottore Operzioni sulle Mtrici Pgin Addizione
MATEMATICA Classe Prima
Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi
Teoremi di geometria piana
l congruenz teoremi sugli ngoli γ teorem sugli ngoli complementri Se due ngoli sono complementri di uno stesso ngolo α β In generle: Se due ngoli sono complementri di due ngoli congruenti α γ β teorem
Definizioni fondamentali
Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d
Verifica per la classe seconda COGNOME... NOME... Classe... Data...
L rett Cpitolo Rett erifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt............................... Rett Rette
FUNZIONI IPERBOLICHE
FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,
ACCADEMIA NAVALE. Syllabus POLIGRAFICO ACCADEMIA NAVALE LIVORNO
ACCADEMIA NAVALE Sllbus POLIGRAFICO ACCADEMIA NAVALE LIVORNO PREFAZIIONE È noto che in tluni ordini dell scuol medi superiore l'insegnmento dell mtemtic non giunge sino ll'ultimo nno, in ltri, lo svolgimento
24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze
Alunno/.. Alunno/ Pgin Esercitzione in preprzione ll PROVA d ESAME Buon Lvoro Prof.ss Elen Sper. Il piccolo fermcrte dell figur è relizzto nel seguente modo. Si prende un cubo di lto cm e su un fcci si
Equazioni parametriche di primo grado
Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,
Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001
Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +
TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 3
TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 3 Le Isometrie trasformazioni geometriche che lasciano invariate la forma e le dimensioni delle figure I movimenti Traslazioni Rotazioni Ribaltamenti Principali
Erasmo Modica. : K K K
L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic [email protected] www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce
Il problema delle aree. Metodo di esaustione.
INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.
SUGLI INSIEMI. 1.Insiemi e operazioni su di essi
SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.
L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi.
prof.ss Cterin Vespi 1 Appunti di geometri nliti L IPERBOLE L iperole è il luogo geometrio dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi detti fuohi. Sino F1 e F i
( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S
Sessione ordinri 996 Liceo di ordinmento Soluzione di De Ros Nicol ) In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le prbole di equzione:, dove è un numero rele positivo.
30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna
verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?
Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano
Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria
ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico
Note di geometria. Prof. Domenico Olanda. Anno accademico
1 Note di geometri Prof. Domenico Olnd Anno ccdemico 008-09 Prefzione Questo testo rccoglie lcune lezioni di geometri d me svolte negli nni ccdemici 008-009 per gli studenti del corso di lure in Mtemtic
Verifica 10 ESPONENZIALI E LOGARITMI
Verific 0 SPONNZIALI LOGARITMI TST I FIN APITOLO Qule delle seguenti figure non rppresent un funzione? A È dt l funzione f : R R, descritt dll legge 4. Qunto vle l immgine di 0? A 0... 4. 4. L funzione
Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo
Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle
Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa.
τ : P P' oppure P'=τ(P) P immagine di P trasformato di P secondo τ se α è una figura geometrica α =τ(α) è la figura geometrica trasformata x' = f (x, y) τ : y' = g(x, y) espressione analitica della trasformazione
TRASFORMAZIONI GEOMETRICHE
TRASFORMAZIONI GEOMETRICHE Def. Una trasformazione geometrica T tra i punti di un piano è una corrispondenza biunivoca che ad ogni punto P del piano associa uno e un solo punto P' appartenente al piano
APPLICAZIONI LINEARI e MATRICI ASSOCIATE
APPLICAZIONI LINEARI e MATRICI ASSOCIATE Dt un ppliczione f: V W con V e W spzi vettorili si dice che f è un ppliczione linere o omomorfismo f(v + v 2 ) = f(v ) + f(v 2 ) v, v 2 V f(αv) = α f(v) v V e
Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi
Rdicli Definizioni Vrizioni di rdicli Operzioni Rzionlizzzione Rdicli doppi Potenze con esponente rzionle Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni n L espressione è comunemente dett rdice
Geometria analitica. punti, rette, circonferenza, ellisse, iperbole, parabola. ITIS Feltrinelli anno scolastico Il piano cartesiano
Geometri nlitic punti, rette, circonferenz, ellisse, iperbole, prbol ITIS Feltrinelli nno scolstico 007-008 Il pino crtesino Si dice pino crtesino un sistem formto d due rette perpendicolri che si intersecno
Esponenziali e logaritmi
Teori in sintesi ESPONENZIALI Potenze con esponente rele Esponenzili e ritmi L potenz è definit: se, per ogni R se, per tutti e soli gli R se, per tutti e soli gli Z. Sono definite: 7 7. Non sono definite:.
26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:
ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di
Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi
Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz
Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi
Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz
I MOVIMENTI E LA CONGRUENZA DI FIGURE GEOMETRICHE
I MOVIMENTI E L ONGRUENZ DI FIGURE GEOMETRIHE Due figure geometriche F ed F' sono congruenti se, sovrapposte mediante movimenti che non le deformino, coincidono perfettamente. G E D ' G' E' D' ' G' G EE'
{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.
Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8
Anno 5. Applicazione del calcolo degli integrali definiti
Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei
b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.
Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()
Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE
Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz
Geometria Analitica Domande, Risposte & Esercizi
Geometri Anliti Domnde, Risposte & Eserizi L ellisse. Dre l definizione di ellisse ome luogo di punti. L ellisse è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d due punti fissi
C C B B. Fig. C4.1 Isometria.
4. Isometrie 4.1 Definizione di isometria Date due figure congruenti è possibile passare da una all altra con una trasformazione. Una trasformazione geometrica in un piano è una funzione biunivoca che
Antonella Greco, Rosangela Mapelli. E-Matematica. E-Book di Matematica per il triennio. Volume 1
Antonell Greco, Rosngel Mpelli E-Mtemtic E-Book di Mtemtic per il triennio Volume COPIA SAGGIO Cmpione grtuito fuori commercio d esclusivo uso dei docenti Grmond 009 Tutti i diritti riservti Vi Tevere,
Progettazione strutturale per elementi finiti Sergio Baragetti
Progettzione strutturle per elementi finiti Sergio Brgetti Fcoltà di Ingegneri Università degli Studi di Bergmo Il metodo degli Elementi Finiti permette di risolvere il problem dell determinzione dello
RECUPERO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO CARTESIANO
RECUPER LE TRSFRMZINI GEMETRICHE NEL PIN CRTESIN La traslazione di punti, rette, parabole secondo un vettore assegnato 1 Data la retta r di equazione 0 e la traslazione secondo il vettore v (; ), scrivi
Gli angoli corrispondenti sono congruenti; I lati corrispondenti, che si dicono lati omologhi, sono in rapporto costante:
ome sai, se vuoi riprodurre una figura, puoi disegnarla perfettamente uguale rispettandone la forma e le dimensioni e cambiandone quindi solo la posizione. In questo caso la riproduci isometricamente,
VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE
VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte
LE TRASFORMAZIONI GEOMETRICHE
pag. 1 LE TRASFORMAZIONI GEOMETRICHE Trasformazione geometrica Movimento rigido Traslazione Simmetria Costruzione di due punti simmetrici rispetto ad una retta Poligoni aventi assi di simmetria Rotazione
punti uniti rette di punti uniti rette unite qual è la trasformazione inversa
3) Dì quali sono i punti uniti, le rette di punti uniti, le rette unite di una a) simmetria centrale b) simmetria assiale c) traslazione d) rotazione e) omotetia Simmetria centrale: si ha un solo punto
Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica
Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione
IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:
IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono
