Il significato visivo degli operatori gradiente, divergenza, rotore

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il significato visivo degli operatori gradiente, divergenza, rotore"

Transcript

1 Il significato visivo degli operatori gradiente, divergenza, rotore 8 luglio 4 Luca Goldoni PhD Università di Trento-Dipartimento di Informatica Università di Modena -Dipartimento di Ingegneria Premessa Le seguenti note hanno il solo scopo di aiutarvi a capire meglio i concetti di gradiente, divergenza e rotore. Naturalmente nessuno vi interrogherà su queste cose che non sono state esplicitamente fatte a lezione. Tuttavia, per una migliore comprensione della materia mi è sembrato opportuno fornirvi questo materiale. Il gradiente. Il caso di un campo bidimensionale Consideriamo una funzione f : D R con D dominio connesso di R che sia almeno C D Una possibile visualizzazione di f consiste nel rappresentare in un riferimento cartesiano tridimensionale i punti del tipo x, y, fx, y ottenendo quello che abbiamo chiamato il supporto di una superficie cartesiana. Un altro modo per visualizzare la funzione consiste nel tracciare le cosiddette linee di livello. Se consideriamo un valore c R fissato, possiamo considerare poi l insieme L c = {x,y D : f x,y = c}.

2 Figura : La rappresentazione cartesiana di una funzione è il supporto di una superficie. Esso può essere vuoto o non vuoto. Nel secondo caso, generalmente parlando, esso è costituito da una curva che si dice appunto curva di livello relativa al livello c. Esempio. Consideriamo f : R R x,y x +3y Gli insiemi L c sono vuoti per c <. Per c = si ha che L si riduce ad un solo punto: l origine, mentre per c > abbiamo che rappresenta un ellisse. x +3y = c Consideriamo ora il gradiente di f. Per definizione si ha che gradf : D R f f x,y x,y, x,y Possiamo visualizzare il gradiente nel seguente modo:. Dato un punto x,y D calcoliamo il gradiente in tale punto. Esso sarà costituito da un coppia ordinata di numeri reali e cioè un vettore uscente dall origine.

3 Figura : Le linee di livello della funzione considerata. corrispondono ai valori di c. I numeri. Invece di considerare questo vettore, immaginiamo di trasportarlo e di applicarlo nel punto in cui esso è stato calcolato. Per ogni punto abbiamo dunque un vettore ed è per questo che si parla del gradiente e più in generale delle funzioni f : R n R m come di campi vettoriali quando m e di campi scalari quando m =. Si tratta di una terminologia che viene dalla Fisica e che ha i suoi vantaggi. Si può dimostrare che i vettori del campo gradiente sono ortogonali alle linee di livello. Questo può essere detto in modo più amichevole come segue: se mi trovo su di una linea di livello e voglio raggiungerne un altra, il percorso più ripido è quello che avviene nella direzione del gradiente. La cosa si vede bene dalla figura qui sotto: se parto da un punto situato sulla linea corrispondente a c = 6.4 e voglio raggiungere la linea di livello c = 9.6, muovendomi nella direzione del gradiente compio il percorso di lunghezza minore e dunque quello più ripido freccia gialla. Se invece scelgo un altro percorso, esso sarà più lungofreccia azzurra e la pendenza sarà minore.. Il caso di un campo tridimensionale Consideriamo una funzione f : E R con E dominio connesso di R 3 che sia almeno C E In questo caso non è più possibile la visualizzazione di f attraverso il suo grafico dal momento che dovremmo rappresentare punti del tipo x,y,z,fx,y,z necessitando quindi di poter vedere in R 4. Possiamo 3

4 Figura 3: Il gradiente di f può essere visualizzato come un insieme di vettori applicati. Figura 4: Il gradiente indica il percorso di maggiore ripidità. 4

5 però ugualmente servirci di quelle che ora sono le superfici di livello. Come prima, per ogni valore c R fissato, possiamo considerare poi l insieme L c = {x,y,z E : f x,y,z = c}. Esso può essere vuoto o non vuoto. Nel secondo caso, generalmente parlando, esso ècostituito da una superficie di R 3 che si dice appunto superficie di livello relativa al livello c. Esempio. Consideriamo f : R 3 R x,y x +y +z Gli insiemi L c sono vuoti per c <. Per c = si ha che L si riduce ad un solo punto: l origine, mentre per c > abbiamo che x +y +z = c rappresenta una sfera di centro l origine e raggio c. Naturalmente, per consentire la visualizzazione delle diverse superfici, ho dovuto prendere un loro spaccato. E ancora possibile visualizzare anche il campo vettoriale dato dal gradiente di f e per esso valgono le stesse considerazioni del caso bidimensionale. In conclusione, possiamo dire che per quanto riguarda i campi scalari, ovvero le funzioni f : A R dove A è un dominio contenuto in R n, il gradiente rappresenta un adeguato strumento per descrivere come varia il campo seguendo, punto per punto la direzione del massimo cambiamento. 5

6 Figura 5: Le superfici di livello della funzione considerata per i valori di c =,4,9. 6

7 Figura 6: I vettori del campo gradiente sono ortogonali alle superfici di livello. 7

8 3 La divergenza Consideriamo una funzione f : E R con E dominio connesso di R 3 che sia almeno C E cioè quello che si chiama anche un campo vettoriale F x,y,z = F x,y,z,f x,y,z,f 3 x,y,z Per comprendere il significato visivo della divergenza, immaginiamo di considerare una sfera centrata in O =,, avente la solita parametrizzatione φ : [,π] [,π] R φψ,θ = rsinψcosθ,rsinψsinθ,rcosθ dove r > e piccolo. Il vettore normale uscente è ν = ν ψ,θ = r sin ψcosθ,r sin ψsinθ,r sinψcosψ Se sviluppiamo in serie di Taylor le componenti del campo in un intorno dell origine abbiamo F F x,y,z = F + x,y,z+... F x,y,z = F + F 3 x,y,z = F 3 + F F3 + F + F + F 3 + F + F + F 3 x,y,z+... x,y,z+... dove abbiamo indicato con =,, l origine e dove i puntini stanno al posto dei termini di ordine superiore al primo. Sceglieremo r abbastanza piccolo in modo che il contributo di tali termini sia anch esso piccolo rispetto al contributo dato dai termini del primo ordine e dai termini costanti. D ora in poi, trattandosi di considerazioni volutamente non del tutto rigorose, non indicherò più la presenza di questi termini. Non sarebbe molto difficile comunque tenerne conto attraverso l uso degli O-grandi di Landau. Ora calcoliamo il flusso del campo per la superficie della sfera considerata. Innanzitutto ci serve Sarà chiaro dopo cosa si intende F ν = F ν +F ν +F 3 ν 3 8

9 dove ν = ν,ν,ν 3 è sempre il vettore normale esterno e dove si intende che le componenti F i vanno calcolate nei punti della superficie. Sostituendo a x,y,z le loro espressioni date dalla parametrizzazione abbiamo F ψ,θ = F + F ψ,θ = F + F 3 ψ,θ = F 3 + Siccome F F F3 avremo che F ν = F r sin ψcosθ+ +r 3 F mentre sin 3 ψcos θ+ F F ν = F r sin ψsinθ+ +r 3 F ed infine sin 3 ψsinθcosθ + F F 3 ν 3 = F 3 r sinψcosψ+ +r 3 F3 rsinψcosθ+ F rsinψcosθ+ F rsinψcosθ+ F 3 ν = r sin ψcosθ ν = r sin ψsinθ ν 3 = r sinψcosψ sin ψcosψcosθ+ F 3 rsinψsinθ+ F rsinψsinθ+ F rsinψsinθ+ F 3 rcosψ rcosψ rcosψ sin 3 ψsinθcosθ + F sin ψcosψcosθ sin 3 ψsin θ+ F sin ψcosψcosθ sin ψcosψsinθ+ F 3 sinψcos ψ 9

10 Allora F ν = F ν +F ν +F 3 ν 3 = Σψ,θ = [ ] = r F sin ψcosθ+f sin ψsinθ+f 3 sinψcosψ + [ +r 3 F sin 3 ψcos θ+ F sin 3 ψsin θ+ F ] 3 sinψcos ψ + [ +r 3 F sin 3 ψsinθcosθ+ F sin ψcosψcosθ + F + sin 3 ψsinθcosθ + F sin ψcosψcosθ F + sin 3 ψcos θ + F ] sin 3 ψsin θ Ne segue che Φ = π π F ν dφ = Σψ,θdψdθ = I +I +I 3 S dove I = r mentre I = r 3 π π π π ed infine I 3 = r 3 +r 3 +r 3 ] [F sin ψcosθ+f sin ψsinθ+f 3 sinψcosψ dψdθ [ F π π π π π π F F F sin 3 ψcos θ+ F sin 3 ψsin θ+ F ] 3 sinψcos ψ dψdθ sin 3 ψsinθcosθ+ F sin ψcosψcosθ + sin 3 ψsinθcosθ + F sin ψcosψcosθ + sin 3 ψcos θ+ F sin 3 ψsin θ

11 Nonostante le apparenze, è facile rendersi conto che I = I 3 =. Infatti, questi integrali si scrivono a loro volta come somme di altri integrali che sono tutti nulli perchè o sono integrali doppi che si fattorizzano e uno dei loro fattori è del tipo π cos θdθ o π sin θdθ che sono nulli oppure sono del tipo π sinψcosψdψ che è ancora nullo. Per quanto riguarda I si ha invece che ciascuno degli integrali che lo costituiscono vale 4 π In definitiva quindi 3 Φ = S F ν dφ = 4 3 πr3 [ F + F F3 ] e dunque Φ = Φr = 4 3 πr3 div F Abbiamo allora che Φr = div F πr3 4 3 Questo è come dire che se la sfera ha raggio sufficientemente piccolo in modo che si possano trascurare i termini di ordine superiore, la divergenza è uguale al rapporto tra il flusso attraverso la sfera e il suo volume. Il discorso esatto è ovviamente che lim r Φr = div F πr3 4 3 Ma la sfera di raggio nullo è un punto e quindi si può dire che la divergenza rappresenta la densità di flusso nel punto per unità di volume.

12 Figura 7: Si è considerata un piccola sfera di raggio l origine e il campo F = x,,. L origine è una sorgente di flusso uscente dalla sfera lungo l asse x. La divergenza di tale campo è e quindi questa è la densità di flusso nell origine.

13 4 Il rotore Per cercare di capire meglio il rotore, consideriamo il solito campo. F x,y,z = F x,y,z,f x,y,z,f 3 x,y,z Consideriamo una circonferenza di raggio r piccolo con centro nell origine e situata nel piano xy. La sua parametrizzazione sarà come al solito γt = rcost,rsint, t [,π] Calcoliamo la circuitazione del campo usando la stessa tecnica di prima e cioè approssimando le componenti del campo mediante lo sviluppo di Taylor troncato al primo ordine. Come prima avremo che F x,y,z = F + F x,y,z = F + F 3 x,y,z = F 3 + Avremo allora che F F F3 F dγ = π + F + F + F 3 + F + F + F 3 F γtγ tdt x,y,z+... x,y,z+... x,y,z+... Se teniamo conto del fatto che γ γ t = rsint,rcost, e se calcoliamo il campo nei punti della curva, abbiamo ] F γtγ t = r [F cost F sint + [ +r F cos t F sin F t + F Avremo allora che γ +r F dγ = π π F ] r [F cost F sint dt+ cos t F sin t dt+r 3 π F ] sintcost +... F sintcostdt

14 Come prima è facile vedere che il primo e il terzo integrale sono nulli e quindi γ F dγ = r π F cos t F sin t dt = πr F F e quindi e quindi, se r è molto piccolo, F dγ γ F dγ = πr F γ πr = F F F Il secondo membro è la componente lungo l asse z del rotore. In realtà dovremmo scrivere F dγ γ F lim = r πr F Calcoli analoghi forniscono le altre componenti. Quindi si può dire che il rotore rappresenta la densità di circuitazione per unità di area. La divergenza e il rotore sono davvero importanti: si può dimostrare che quando di un campo vettoriale si conoscono entrambi il campo è completamente determinato. 4

15 Figura 8: Si è considerata un piccola circonferenza di raggio l origine e il campo F = y, x,z. L origine è un punto intorno al quale il campo si arrotola ed infatti l suo rotore in quel punto ha la componente lungo l asse z che vale. 5

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 )

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) Esercizi 1. Determinare le derivate parziali di f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) 2. Scrivere l equazione del piano tangente e della retta normale al grafico ln(xy) + cos(x + y) nel punto

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Analisi Matematica II Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 5//14 Michela Eleuteri 1 eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

Integrali multipli - Esercizi svolti

Integrali multipli - Esercizi svolti Integrali multipli - Esercizi svolti Integrali di superficie. Si calcoli l integrale di superficie Σ z +y +4(x +y ) dσ, dove Σ è la parte di superficie di equazione z = x y che si proietta in = {(x,y)

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log(1 + x 2 y) lim x 2 x

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log(1 + x 2 y) lim x 2 x Analisi Matematica II Corso di Ingegneria Gestionale Compito del -7-14 Esercizio 1. (14 punti) Data la funzione = log(1 + x y) i) determinare il dominio e studiare l esistenza del ite (x,y) (,) x x ii)

Dettagli

Istituzioni di Matematiche Modulo B (SG)

Istituzioni di Matematiche Modulo B (SG) Istituzioni di Matematiche Modulo B (SG) II foglio di esercizi ESERCIZIO 1. Per ciascuna funzione f(, ) calcolare le derivate parziali f (, ) e f (, ) e determinare il relativo dominio di definizione.

Dettagli

Teoremi di Stokes, della divergenza e di Gauss Green.

Teoremi di Stokes, della divergenza e di Gauss Green. Matematica 3 Esercitazioni eoremi di tokes, della divergenza e di Gauss Green. Esercizio 1 : Calcolare l area del dominio avente per frontiera la linea chiusa γ di equazioni parametriche x (1 t) t γ :,

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

Esercizi di Analisi Matematica 3. Prima parte

Esercizi di Analisi Matematica 3. Prima parte Esercizi di Analisi Matematica 3 per le Facoltà di Ingegneria Prima parte Corrado Lattanzio e Bruno Rubino Versione preliminare L Aquila, ottobre 5 Indice 1 Curve, superfici e campi vettoriali 3 1.1 Curve

Dettagli

R. Capone Analisi Matematica Integrali multipli

R. Capone Analisi Matematica Integrali multipli Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

Forme differenziali e campi vettoriali: esercizi svolti

Forme differenziali e campi vettoriali: esercizi svolti Forme differenziali e campi vettoriali: esercizi svolti 1 Esercizi sul Teorema di Green......................... 2 2 Esercizi sul Teorema di Stokes......................... 4 3 Esercizi sul Teorema di

Dettagli

1 Sistemi di riferimento

1 Sistemi di riferimento Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Vedremo tra breve un metodo per studiare il problema di trovare il minimo e il massimo di una funzione su di un sottoinsieme dello spazio ambiente che non sia un aperto. Abbiamo

Dettagli

1 Il Teorema della funzione implicita o del Dini

1 Il Teorema della funzione implicita o del Dini 1 Il Teorema della funzione implicita o del Dini Ricordiamo che dato un punto x R n, un aperto A R n che contiene x si dice intorno (aperto) di x. Teorema 1.1. (I Teorema del Dini) Sia f : A (aperto) R

Dettagli

3. Generalità sulle funzioni

3. Generalità sulle funzioni ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 3. Generalità sulle funzioni A. A. 2013-2014 1 DALLA RETTA REALE AL PIANO CARTESIANO L equivalenza tra numeri reali e punti di una retta permette

Dettagli

1 CIRCUITAZIONE E FLUSSO DEL CAMPO MAGNETICO. 2 Circuitazione di B: il teorema di Ampère

1 CIRCUITAZIONE E FLUSSO DEL CAMPO MAGNETICO. 2 Circuitazione di B: il teorema di Ampère CRCUTAZONE E FLUSSO DEL CAMPO MAGNETCO Abbiamo gia detto che per determinare completamente un campo vettoriale dobbiamo dare il valore della sua circuitazione ed il flusso del campo attraverso una superficie

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--7 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:

Dettagli

vettori V Sia inoltre l angolo che il primo vettore deve percorrere per sovrapporsi al secondo. * **

vettori V Sia inoltre l angolo che il primo vettore deve percorrere per sovrapporsi al secondo. * ** Prodotto scalare di vettori. Consideriasmo due vettori u e v e siano O e O due rappresentanti applicati in O. Indichiamo come al solito con u = O la norma (cioè l intensità) del vettore u Sia inoltre l

Dettagli

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri:

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: 1. modulo: la lunghezza del segmento 2. direzione: coincidente con la direzione

Dettagli

Esercizi di Analisi Matematica L-B

Esercizi di Analisi Matematica L-B Esercii di Analisi Matematica L-B Marco Alessandrini Gennaio-Maro 7 Indice Funioni di più variabili reali. Calcolo differeniale........................................... Ricerca di massimi e minimi.......................................

Dettagli

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y.

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y. Funzioni di più variabili Derivate parziali Qui saranno considerate soltanto funzioni di due variabili, ma non c è nessuna difficoltà ad estendere le nuove nozioni a funzioni di n ( > variabili ( Definizione:

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima.

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima. Estremi 1. Determinare gli estremi relativi di f(x, y) = e x (x 1)(y 1) + (y 1).. Determinare gli estremi relativi di f(x, y) = y (y + 1) cos x. 3. Determinare gli estremi relativi di f(x, y) = xye x +y..

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008 Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto

Dettagli

= Acos ω 0 t B sinω 0 t (2)

= Acos ω 0 t B sinω 0 t (2) Un vettore complesso è un ente che rappresenta una grandezza vettoriale che varia sinusoidalmente nel tempo. Consideriamo infatti un vettore e(t) che vari sinusoidalmente nel tempo. In tal caso le tre

Dettagli

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze

Dettagli

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) =

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = Derivate parziali, derivate direzionali, differenziabilità 1. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = 3 x (y 1) + 1. b) Calcolare D v f(0, 1), dove v è il versore

Dettagli

Versione di Controllo

Versione di Controllo Università degli Studi di Trento test di ammissione ai corsi di laurea in Fisica - Matematica - Informatica Ingegneria dell Informazione e Organizzazione d Impresa Ingegneria dell Informazione e delle

Dettagli

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim DIFFERENZIAZIONE 1 Regola della catena Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim = f (x 0 ). x x 0 x x 0 Questa

Dettagli

1.3. Logaritmi ed esponenziali

1.3. Logaritmi ed esponenziali 1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono.

(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono. Esercizio 1 Si consideri la funzione f(x, y) = x 2 y + xy 2 + y (a) Determinare i punti di massimo e minimo relativo e di sella del grafico di f. (b) Determinare i punti di massimo e minimo assoluto di

Dettagli

7. Integrazione delle funzioni di più variabili (II)

7. Integrazione delle funzioni di più variabili (II) 7. Integraione delle funioni di più variabili (II) http://eulero.ing.unibo.it/~baroi/scam/scam-tr.7b.pdf 7.5 Area del parallelogramma costruito su due vettori. Volume del parallelepipedo costruito su tre

Dettagli

Una funzione è continua se si può tracciarne il grafico senza mai staccare la matita dal foglio.

Una funzione è continua se si può tracciarne il grafico senza mai staccare la matita dal foglio. 1 Funzione Continua Una definizione intuitiva di funzione continua è la seguente. Una funzione è continua se si può tracciarne il grafico senza mai staccare la matita dal foglio. Seppure questa non è una

Dettagli

Derivata materiale (Lagrangiana) e locale (Euleriana)

Derivata materiale (Lagrangiana) e locale (Euleriana) ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 )

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 ) FUNZIONI DI PIÙ VARIABILI. Siano date le seguenti funzioni: (a) f(x, y) = 3x + y (c) h(x, y) = x y (b) g(x, y) = xy (d) k(x, y) = x + y Determinare e disegnare nel piano cartesiano il dominio delle funzioni

Dettagli

Funzioni vettoriali di variabile scalare

Funzioni vettoriali di variabile scalare Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.

Dettagli

Prodotto interno (prodotto scalare definito positivo)

Prodotto interno (prodotto scalare definito positivo) Contenuto Prodotto scalare. Lunghezza, ortogonalità. Sistemi e basi ortonormali. Somma diretta: V = U U. Proiezioni. Teorema di Pitagora, disuguaglianza di Cauchy-Schwarz. Angoli. Federico Lastaria. Analisi

Dettagli

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO Quando un punto materiale P si sposta di un tratto s per effetto di una forza F costante applicata

Dettagli

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1 Corso di Fisica Lezione 2 Scalari e vettori Parte 1 Scalari e vettori Consideriamo una libreria. Per determinare quanti libri ci sono su uno scaffale basta individuare lo scaffale in questione e contare

Dettagli

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Le Derivate Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato durante

Dettagli

LINEE CON CAVO COASSIALE

LINEE CON CAVO COASSIALE LINEE CON CAVO COASSIALE Coefficiente di autoinduzione di un cavo coassiale Sia dato il cavo coassiale di fig. 1 Fig. 1 Cavo coassiale esso è costituito da due conduttori coassiali lunghi, di sezione e

Dettagli

1 Applicazioni lineari

1 Applicazioni lineari 1 Applicazioni lineari 1 Applicazioni lineari 1.1 Definizione Si considerino lo spazio tridimensionale euclideo E e lo spazio vettoriale V ad esso associato. Definizione. 1.1. Sia A una applicazione di

Dettagli

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo.

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo. Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): 04-02-2016 Problema 1. Un punto materiale si muove nel piano su una guida descritta dall equazione y = sin kx [ = 12m, k

Dettagli

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli

Funzioni reali di variabile reale

Funzioni reali di variabile reale Funzioni reali di variabile reale Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni reali di variabile reale 1 / 50 Funzioni Definizione Sia A un sottoinsieme di R.

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. ott. Franco Obersnel Esercizio 1 Sia R = [a 1, b 1 ] [a, b ] [a 3, b 3 ] IR 3 un parallelepipedo di IR 3. Si diano le

Dettagli

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni Svolgimento Esercizi Esercizi: 1) Una particella arriva nel punto (-2,2) dopo che le sue coordinate hanno subito gli incrementi x=-5, y=1. Da dove è partita? 2) Disegnare il grafico di C = 5/9 (F -32)

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Lezione 5 MOTO CIRCOLARE UNIFORME

Lezione 5 MOTO CIRCOLARE UNIFORME Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 MOTO CIRCOLARE UNIFORME 2 Per descrivere un moto curvilineo occorrono due assi cartesiani ortogonali ed un orologio.

Dettagli

L insieme prodotto cartesiano

L insieme prodotto cartesiano L insieme prodotto cartesiano L insieme prodotto cartesiano Definizione Dato un insieme A e un insieme B non vuoti, sia a un qualunque elemento di A e b un qualunque elemento di B. Chiamiamo coppia ordinata

Dettagli

Cinematica. Descrizione dei moti

Cinematica. Descrizione dei moti Cinematica Descrizione dei moti Moto di un punto materiale Nella descrizione del moto di un corpo (cinematica) partiamo dal caso più semplice: il punto materiale, che non ha dimensioni proprie. y. P 2

Dettagli

Nozioni introduttive e notazioni

Nozioni introduttive e notazioni Nozioni introduttive e notazioni 1.1 Insiemi La teoria degli insiemi è alla base di tutta la matematica, in quanto ne fornisce il linguaggio base e le notazioni. Definiamo un insieme come una collezione

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011 LUISS Laurea specialistica in Economia e Finanza Anno Accademico 1/11 Corso di Metodi Matematici per la Finanza Prof. Fausto Gozzi, Dr. Davide Vergni Soluzioni esercizi 4,5,6 esame scritto del 13/9/11

Dettagli

3. Coordinate omogenee e trasformazioni dello spazio

3. Coordinate omogenee e trasformazioni dello spazio 3. Coordinate omogenee e trasformazioni dello spazio Passiamo ora a considerare le trasformazioni dello spazio tridimensionale. Lo spazio sarà identificato, mediante l'introduzione di un sistema di riferimento

Dettagli

Curve e lunghezza di una curva

Curve e lunghezza di una curva Curve e lunghezza di una curva Definizione 1 Si chiama curva il luogo geometrico dello spazio di equazioni parametriche descritto da punto p, chiuso e limitato. Definizione 2 Si dice che il luogo C è una

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

ELEMENTI di TEORIA degli INSIEMI

ELEMENTI di TEORIA degli INSIEMI ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)

Dettagli

Curve e integrali curvilinei: esercizi svolti

Curve e integrali curvilinei: esercizi svolti Curve e integrali curvilinei: esercizi svolti 1 Esercizi sulle curve parametriche....................... 1.1 Esercizi sulla parametrizzazione delle curve............. 1. Esercizi sulla lunghezza di una

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Massimi e minimi assoluti vincolati: esercizi svolti

Massimi e minimi assoluti vincolati: esercizi svolti Massimi e minimi assoluti vincolati: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio 1. Determinare i punti di massimo e minimo assoluti

Dettagli

R. Capone Analisi Matematica Calcolo Differenziale Funzioni di due variabili

R. Capone Analisi Matematica Calcolo Differenziale Funzioni di due variabili Richiami teorici Sia una funzione di due variabili definita in un insieme A e sia un punto interno ad A. Se R è un dominio regolare di centro e di dimensioni e la funzione della sola variabile x, risulta

Dettagli

Esercizi Riepilogativi Svolti. = 1 = Or(v, w)

Esercizi Riepilogativi Svolti. = 1 = Or(v, w) Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia FORMULE DI GEOMETRIA IN R TRASFORMAZIONI DI R CIRCONFERENZE Docente: Prof F Flamini

Dettagli

Limiti di successioni

Limiti di successioni Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche

Dettagli

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7.

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7. NUMERI COMPLESSI Esercizi svolti. 1 Calcolare la parte reale e la parte immaginaria di z = i i. Determinare il valore assoluto e il coniugato di az = 1 + i 6 e bw = i 17. Scrivere in forma cartesiana i

Dettagli

0.1 Numeri complessi C

0.1 Numeri complessi C 0.1. NUMERI COMPLESSI C 1 0.1 Numeri complessi C Abbiamo visto sopra come l introduzione dei numeri irrazionali può essere motivata dalla necessità di trovare soluzione all equazione x = 0 che non ha soluzioni

Dettagli

Il Principio di Piero della Francesca e il volume della volta a padiglione

Il Principio di Piero della Francesca e il volume della volta a padiglione Il Principio di Piero della Francesca e il volume della volta a padiglione Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche Ancona La volta a padiglione è la regione

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici Superfici e integrali di superficie 1. Scrivere una parametrizzazione per le seguenti superfici (a) Il grafico della funzione f(x, y) = x 2 y 3 (b) La superficie laterale di un cilindro di raggio R e altezza

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

Soluzione - calcolo di {t} 1 e {t} 2 : {t} 1 =[σ]{n} 1 = {t} 2 =[σ]{n} 2 =

Soluzione - calcolo di {t} 1 e {t} 2 : {t} 1 =[σ]{n} 1 = {t} 2 =[σ]{n} 2 = Unità : Stato di tensione e di deformazione Esercizio Dato un tensore della tensione [σ], date inoltre due dimensioni {n} e {n} - trovare le componenti dei vettori della tensione {t} e {t} agenti sulle

Dettagli

Teorema di Gauss per il campo elettrico E

Teorema di Gauss per il campo elettrico E Teorema di Gauss per il campo elettrico E Dove vogliamo arrivare? Vogliamo arrivare al teorema di Gauss per il campo elettrico E : Φ E = q ε 0 Che dice fondamentalmente questo: il flusso attraverso una

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni + CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio

Dettagli

Prodotto scalare e norma

Prodotto scalare e norma Capitolo 7 Prodotto scalare e norma Riprendiamo ora lo studio dei vettori da un punto di vista più geometrico. È noto, per esempio dalla Fisica, che spesso è comodo visualizzare un vettore del piano o

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO Sappiamo che mettendo una carica positiva q chiamata carica di prova o carica esploratrice in un punto vicino all oggetto carico si manifesta un vettore campo

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h.

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h. LEZIONE 15 15.1. Polinomi a coefficienti complessi e loro e loro radici. In questo paragrafo descriveremo alcune proprietà dei polinomi a coefficienti complessi e delle loro radici. Già nel precedente

Dettagli

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori Esercizio 1 Corso di Matematica II Anno Accademico 29 21. Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori May 7, 21 Commenti e correzioni sono benvenuti. Mi scuso se ci fosse qualche

Dettagli

Matematica Applicata Tutoraggio 3. in serie di Laurent nella corona circolare 0 < z 1 < 2.

Matematica Applicata Tutoraggio 3. in serie di Laurent nella corona circolare 0 < z 1 < 2. Serie di Laurent Esercizio Sviluppare z 2 in serie di Laurent nella corona circolare 0 < z < 2. Soluzione con il calcolo dei coefficienti. Scomponendo f(z) in frazioni semplici, si ha ( 2 z ) z + il primo

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/0/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/0/03) Università di Verona - Laurea in Biotecnologie

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 5 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 10.1,

Dettagli