MECCANICA DEL CONTINUO - TENSIONI
|
|
|
- Annalisa Cenci
- 8 anni fa
- Visualizzazioni
Transcript
1 MECCANICA DEL CONTINUO - TENSIONI Si consideri un corpo continuo in equilibrio sotto l azione di un sistema di forze esterne (P 1, P,, P N ). Per studiare l effetto di queste sollecitazioni in un generico punto O, immaginiamo il corpo diviso in due parti A e B, mediante una superficie piana mm passante per O. Rimuovendo la parte B, quella A rimane in equilibrio se sulla superficie mm si fanno agire le sollecitazioni che esercitava la parte rimossa (B). In particolare, sull areola elementare δs agirà una sollecitazione δf. δf Si definisce tensione il vettore t n : tn lim δs 0 δs Considerando la normale n all area δs, le componenti di t secondo n e nel piano mm prendono il nome di: σ n - tensione normale τ n - tensione tangenziale P 1 P P 7 m δft n δs τ n δs σ n δs O δs n B P 3 P 6 A m P 4 P 5 Fondamenti di Geotecnica fascicolo 3/1
2 σ z τ z τ z τ z τ σ τ z τ z σ Note le componenti speciali di tensione nel generico riferimento,, z, è possibile ottenere le componenti di tensione agenti sul generico piano di normale n, attraverso le relazioni: p n σ cos( n, ) + τ cos( n, ) + τ z cos( n, z) p n τ cos( n, ) + σ cos( n, ) + τ z cos( n, z) p nz τ z cos( n, ) + τ z cos( n, ) + σ z cos( n, z) p p p Fondamenti di Geotecnica fascicolo 3/
3 Le equazioni indefinite dell equilibrio statico in un punto qualsiasi di un semispazio soggetto al peso proprio sono descritte dalle ben note relazioni: γ 0 z σ z τ τ z + + z τ σ τz + + z τ τ σ 0 0 z z + + γ z Queste individuano un sistema di 3 equazioni in 6 incognite (3 σ e 3 τ): da sole, non permettono di risolvere il problema della definizione dello stato tensionale. Fondamenti di Geotecnica fascicolo 3/3
4 È sempre possibile individuare una terna d assi rispetto alla quale le tensioni tangenziali τ ij sono tutte nulle e le tensioni normali attingono i valori estremi. Le direzioni di questi assi si chiamano direzioni principali di tensione, i corrispondenti piani coordinati piani principali di tensione e le tensioni agenti normalmente ad essi sono dette tensioni principali. Le tensioni principali vengono indicate con i simboli: σ 1 - la massima σ - l intermedia σ 3 - la minima σ 1 3 σ σ 3 1 Fondamenti di Geotecnica fascicolo 3/4
5 In alcuni casi, la particolare geometria del problema semplifica la ricerca delle direzioni principali di tensione. ESEMPIO 1: caso piano La direzione normale al piano è principale. Fondamenti di Geotecnica fascicolo 3/5
6 In alcuni casi, la particolare geometria del problema semplifica la ricerca delle direzioni principali di tensione. ESEMPIO : in corrispondenza di un asse di simmetria La direzione dell asse è principale. Fondamenti di Geotecnica fascicolo 3/6
7 Noti i valori delle tensioni principali σ 1 e σ 3 può essere tracciato il cerchio di Mohr corrispondente, di centro (σ 1 +σ 3 )/ e raggio (σ 1 -σ 3 )/. τ n σ 1 σ 3 (σ 1 -σ 3 )/ σ n (σ 1 +σ 3 )/ Viceversa, se sono noti i valori delle tensioni normali e tangenziali secondo due assi ortogonali (, z) del piano 1-3, il cerchio di Mohr può essere tracciato tra i punti (σ, τ z ) e (σ z, τ z ), con centro (σ + σ z )/. τ n (σ z,τ z ) (σ +σ z )/ σ n (σ,τ z ) Fondamenti di Geotecnica fascicolo 3/7
8 Tracciato il cerchio di Mohr ed individuato il polo delle giaciture è possibile ricavare i valori delle tensioni agenti su un qualsiasi piano normale al piano 1-3. σ z τ n Giaciture di riferimento per il polo (σ z,τ z ) POLO K τ z σ σ τ z σ n τz σ z (σ +σ z )/ (σ,τ z ) Il polo (K) è il punto del cerchio di Mohr che gode della seguente proprietà: qualsiasi retta passante per esso interseca il cerchio in un punto le cui coordinate (σ n, τ n ) sono rappresentative dello stato tensionale agente su quella giacitura. Nella convenzione di Mohr sono positive le τ n che danno luogo ad una coppia antioraria rispetto al centro del cubetto. τ n > 0, dà luogo ad una coppia antioraria τ z τ z τ n < 0, dà luogo ad una coppia oraria Fondamenti di Geotecnica fascicolo 3/8
9 RICERCA TENSIONI PRINCIPALI σ z τ z σ τz σ z σ τ z τ n (σ z,τ z ) K σ 3 σ σ n (σ,τ z ) σ 3 σ 1 σ 1 σ 3 Fondamenti di Geotecnica fascicolo 3/9
10 RICERCA TENSIONI SU, z σ z τ z σ τz σ z σ τ z τ n (σ z,τ z ) K z σ n (σ,τ z ) σ z τ z σ σ τ z σ z Fondamenti di Geotecnica fascicolo 3/10
11 I cerchi di Mohr sono invarianti di tensione, ossia non cambiano al cambiare del sistema di riferimento. Altri parametri invarianti e comunemente utilizzati in geotecnica sono: 1 p ( σ1 + σ + σ3) 3 tensione totale media, o sferico q 1 ( σ 1 σ ) + ( σ σ 3 ) + ( σ 1 σ 3 ) tensione deviatorica, o deviatore Fondamenti di Geotecnica fascicolo 3/11
12 Gli invarianti p e q possono essere usati per rappresentare in modo sintetico le variazioni di stato tensionale (percorso di tensione) che subisce un elemento di volume appartenente ad un corpo continuo soggetto a variazioni delle sollecitazioni esterne. q B A p Fondamenti di Geotecnica fascicolo 3/1
13 MECCANICA DEL CONTINUO - DEFORMAZIONI Si definiscono le componenti di deformazione lineare secondo gli assi e come: ( L/L) ( L/L) ε Δ u/ ε Δ v/ assunte positive in geotecnica se corrispondono ad un accorciamento. Si definisce componente di deformazione di taglio: u γ α+β + v che rappresenta la variazione dell angolo A O B. Fondamenti di Geotecnica fascicolo 3/13
14 z z z z z z z z γ ε + ε γ ε + ε γ ε + ε Sfruttando le equazioni di congruenza è possibile scrivere altre 3 equazioni indipendenti, che si aggiungono alle equazioni indefinite dell equilibrio ma introducono 6 ulteriori incognite (3 ε e 3 γ): Il pareggio tra incognite ed equazioni si ottiene introducendo altre 6 equazioni che definiscono il legame costitutivo del materiale e che permettono di esprimere le deformazioni in funzione delle tensioni (o viceversa). Fondamenti di Geotecnica fascicolo 3/14
15 Per esempio, facendo riferimento alla teoria dell elasticità, ossia ad un mezzo continuo, omogeneo ed isotropo a comportamento elastico lineare, il legame costitutivo si scrive mediante le ben note relazioni di Navier: ε ε ε γ γ γ z z z 1 E 1 E 1 E [ σ ν( σ + σ )] [ σ ν( σ + σ )] [ σ ν( σ + σ )] z ( + ν) 1 E ( + ν) 1 E ( + ν) 1 E con E modulo di Young e ν coefficiente di Poisson. τ τ τ z z z z Fondamenti di Geotecnica fascicolo 3/15
16 Nei mezzi granulari non è possibile definire σ e τ all interno del dominio di interesse come funzioni continue. F 1 F F 3 F 4 F 5 ΔS Si definiscono le grandezze medie: N i Σ σ ' Δ S ΣT τ ' i Δ S Fondamenti di Geotecnica fascicolo 3/16
17 I terreni naturali sono tipicamente costituiti da granuli di dimensioni variabili entro un campo molto ampio (μm cm) e di forme molto diverse. Il meccanismo di trasmissione degli sforzi è intermedio tra quello di un insieme di sferette tutte uguali e quello di particelle appiattite tutte parallele tra loro. Lo studio dei dettagli della trasmissione degli sforzi sarebbe estremamente complesso. Conviene invece pensare a un modello che da un lato schematizzi il terreno come un mezzo ideale continuo e che dall altro tenga conto dell esistenza dei pori e quindi delle pressioni dell aria e/o dell acqua. Fondamenti di Geotecnica fascicolo 3/17
18 PRINCIPIO DELLE TENSIONI EFFICACI σ AT Ni + u (AT A C) F i forza agente sull area i-esima di contatto intergranulare N i componente normale a - delle F i u pressione interstiziale σ tensione totale A C <<A T Ni σ + A T σσ+ ' u u Fondamenti di Geotecnica fascicolo 3/18
19 Lo stato tensionale totale in un punto può essere determinato una volta note le tensioni principali σ 1, σ, σ 3. Se lo spazio intergranulare è riempito da acqua avente la pressione u, le tensioni totali possono essere scomposte in due parti. Una di esse, chiamata pressione interstiziale, agisce sull'acqua (...) in ogni direzione con uguale intensità. Le differenze: σ' 1 σ 1 u, σ' σ u, σ' 3 σ 3 u rappresentano le aliquote di tensione sopportate interamente dalla fase solida. Tali frazioni delle tensioni totali sono chiamate tensioni efficaci. Un cambio delle sole pressioni interstiziali non produce cambio di volume, né ha influenza sulle condizioni tensionali che provocano la rottura. Tutti gli effetti prodotti da un cambio di stato tensionale, quali una compressione, una distorsione o una variazione di resistenza al taglio sono esclusivamente dovuti a una variazione delle tensioni efficaci. Di conseguenza, OGNI INDAGINE DI STABILITÀ IN UN MEZZO SATURO RICHIEDE LA CONOSCENZA SIA DELLE TENSIONI TOTALI CHE DELLE PRESSIONI INTERSTIZIALI Karl Terzaghi, 1936 Fondamenti di Geotecnica fascicolo 3/19
20 IL TERRENO COME CONTINUI SOVRAPPOSTI ED INTERAGENTI L IMPOSSIBILITÀ PRATICA DI TRATTARE I PROBLEMI DI MECCANICA DEI TERRENI CON UN APPROCCIO TIPO MEZZO PARTICELLARE HA SPINTO VERSO L ADOZIONE DI UNO SCHEMA DI MEZZO CONTINUO BIFASE CONTINUO TOTALE (σ ij ) SCHELETRO SOLIDO (σ ij ) FLUIDO DI POROSITÀ (u) IL SISTEMA BIFASE TOTALE È COSTITUITO DALLA SOVRAPPOSIZIONE DI DUE CONTINUI INTERAGENTI: SCHELETRO SOLIDO, rappresenta lo stato di sforzo sui granelli (mediante le tensioni efficaci, σ ij ) FLUIDO DI POROSITÀ, rappresenta lo stato di pressione interstiziale (u) nel fluido di porosità Fondamenti di Geotecnica fascicolo 3/0
21 Per chiarire il ruolo dello scheletro solido e quello del fluido di porosità, si può fare riferimento allo schema che segue, in cui: la molla rappresenta lo scheletro solido; il liquido nel recipiente rappresenta il fluido di porosità. V δ F V Δu/γ w Se la valvola (V) è chiusa, sotto l azione della forza F il recipiente deve mantenere il volume costante. Fondamenti di Geotecnica fascicolo 3/1
22 Il principio delle tensioni efficaci è dunque valido per i terreni saturi e stabilisce che: 1) gli sforzi efficaci controllano le deformazioni (variazioni di volume e di forma) e la resistenza; ) Le tensioni efficaci si calcolano per differenza tra le tensioni totali e le pressioni interstiziali: σ' σ u [τ τ] Le evidenze sperimentali avvalorano le due asserzioni. Fondamenti di Geotecnica fascicolo 3/
23 B C v h v h A σ v D σ h v ε 0 ε h v 0 σ K σ h 0 v OCR Fondamenti di Geotecnica fascicolo 3/3
24 Una volta assimilato lo scheletro solido ad un continuo è possibile estendere al regime di tensioni efficaci tutto quanto già esposto riguardo gli stati tensionali in generale. La pressione interstiziale è uguale in tutte le direzioni. Perciò: - le direzioni che risultano principali per le tensioni totali lo sono anche per le tensioni efficaci - è possibile disegnare cerchi di Mohr relativi alle tensioni efficaci - si possono definire invarianti in termini di tensioni efficaci 1 p ' ( σ ' 1+σ ' +σ ' 3) p u 3 tensione efficace media 1 q' ( σ' 1 σ ' ) + ( σ' σ ' 3) + ( σ' 1 σ ' 3) q tensione deviatorica, o deviatore Fondamenti di Geotecnica fascicolo 3/4
Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico
5 Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico Tema 5.1 Si consideri un corpo continuo libero nello spazio, di forma parallelepipedica e di dimensioni a
Comportamento meccanico dei terreni
Comportamento meccanico dei terreni Terreni non coesivi Metodi di analisi Non è possibile raccogliere campioni indisturbati di terreni non coesivi Si ricorre a prove in sito per la determinazione delle
LEZIONE 7 CRITERI DI RESISTENZA
LEZIONE 7 CRITERI DI RESISTENZA La resistenza di un materiale e definita dallo stato tensionale ultimo che esso puo sopportare prima della rottura. Un CRITERIO DI RESISTENZA (o di ROTTURA) e una relazione
Corso di Geologia Applicata
Tecnologie per i Beni Culturali Corso di Geologia Applicata Dott. Maria Chiara Turrini Applicando uno sforzo (stress carico - pressione) crescente al mattone questo, superata una certa soglia di carico
Caratteristiche di materiali
Caratteristiche di materiali Caratteristiche macroscopiche Lavorazione Microstruttura Formula chimica Legami chimici Struttura atomica Meccaniche Materiale Fisiche Elettriche Megnetiche Termiche Meccaniche
LEZIONE 4 STATO TENSIONALE NEL TERRENO
LEZIONE 4 STATO TENSIONALE NEL TERRENO Per definire il concetto di TENSIONE e quello di DEFORMAZIONE e stato necessario confondere la era natura del terreno con quella di un mezzo CONTINUO EQUIALENTE.
Sollecitazioni semplici Il Taglio
Sollecitazioni semplici Il Taglio Considerazioni introduttive La trattazione relativa al calcolo delle sollecitazioni flessionali, è stata asata sull ipotesi ce la struttura fosse soggetta unicamente a
Trasformazione delle tensioni I Cerchi di Mohr
Trasformazione delle tensioni I Cerchi di Mohr Riferimenti Bibliografici 1. Beer 4 Ed. pp. 354 e ss.. Shigle Ed. pp. 7 e ss. Sintesi della lezione Obiettivi: Definire completamente lo stato tensionale
Giacomo Sacco Appunti di Costruzioni Edili
Giacomo Sacco Appunti di Costruzioni Edili Le tensioni dovute a sforzo normale, momento, taglio e a pressoflessione. 1 Le tensioni. Il momento, il taglio e lo sforzo normale sono le azioni che agiscono
Statica delle murature
Statica delle murature Corso di Laurea Specialistica in Ingegneria Edile - A.A. 2006-2007 Università degli Studi di Cagliari Prof. ing. Antonio Cazzani [email protected] http://www.ing.unitn.it/~cazzani/didattica/sdm
Insegnamento di Progetto di Infrastrutture viarie
Insegnamento di Progetto di Infrastrutture viarie Opere in terra Caratteristiche di un terreno Compressibilità e costipamento delle terre Portanza sottofondi e fondazioni stradali Instabilità del corpo
Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale
Esercizio N.1 Un asta di acciaio è lunga 2.2 m e non può allungarsi più di 1.2 mm quando le si applica un carico di 8.5 kn. Sapendo che E = 200 GPa, determinare: (a) il più piccolo diametro dell asta che
Sommario 1 VOLUME CAPITOLO 1 - Matrici 1 VOLUME CAPITOLO 3 - Geometria delle masse 1 VOLUME CAPITOLO 2 - Notazione indiciale
Sommario CAPITOLO 1 - Matrici...! Definizione! Matrici di tipo particolare Definizioni relative-! Definizioni ed operazioni fondamentali! Somma di matrici (o differenza)! Prodotto di due matrici! Prodotti
modulo E Le volte f 2 + l2 4 2 f Con i valori numerici si ha: 1, , , 40 = 5,075 m r =
Unità Il metodo alle tensioni ammissibili 1 ESERCIZIO SVOLTO Le volte Verificare una volta circolare a sesto ribassato in muratura di mattoni pieni che presenta le seguenti caratteristiche geometriche:
Quadro riassuntivo di geometria analitica
Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive
Indice I vettori Geometria delle masse
Indice 1 I vettori 1 1.1 Vettori: definizioni................................ 1 1.2 Componenti scalare e vettoriale di un vettore secondo una retta orientata. 2 1.3 Operazioni di somma, differenza tra
Prova di compressione monoassiale
Prova di compressione monoassiale σ σ f σ y Y G ε e F OY : comportamento elastico YF : comportamento elastoplastico GB : scarico - ricarico F : rottura σ y : tensione di snervamento σ f : tensione di rottura
Definizione di Lavoro
Definizione Lavoro Caso Forza intensità costante che agisce lungo una retta: L = F s = Fs Caso Forza intensità e rezione variabile: s L = F ds = F ( s) ds 0 0 F(s) componente della forza lungo s. s Nel
Criteri di Resistenza e Sicurezza
Criteri di Resistenza e Sicurezza Per uno stato di tensione monoassiale sono sufficienti le due tensioni limiti t e c per delimitare il dominio di crisi. z F z z z t y z x ε z F Teorie di rottura Carichi
Resistenza dei materiali
Scheda riassuntiva capitoli 8-1 Resistenza dei materiali a resistenza dei materiali mette in relazione tra loro i seguenti elementi: Trazione/ Carichi compressione Taglio Flessione Torsione Deformazioni
Analisi di stabilita di un pendio naturale
Università degli Studi di Napoli FEDERICO II Dipartimento di Ingegneria Idraulica, Geotecnica ed Ambientale (DIGA) Corso di perfezionamento - Gestione e mitigazione dei rischi naturali Analisi di stabilita
(x B x A, y B y A ) = (4, 2) ha modulo
GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()
Piano cartesiano e Retta
Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L
OSCILLATORE ARMONICO SEMPLICE
OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato
Corso di Fisica. Lezione 2 Scalari e vettori Parte 1
Corso di Fisica Lezione 2 Scalari e vettori Parte 1 Scalari e vettori Consideriamo una libreria. Per determinare quanti libri ci sono su uno scaffale basta individuare lo scaffale in questione e contare
Meccanica dei solidi
Università di Napoli Parthenope Facoltà di Ingegneria Laurea in Ingegneria per l Ambiente e il Territorio anno accademico 2005-06 Meccanica dei solidi Prof. Ing. Stefano Aversa Meccanica dei Solidi Prof.
RELAZIONI FRA STRESS E STRAIN
RELAZIONI FRA STRESS E STRAIN Il comportamento dei materiali varia in funzione del tipo di materiale, delle sue caratteristiche e delle condizioni esistenti al momento della deformazione. I materiali possono
Corso di Geologia Applicata
Tecnologie per i Beni Culturali Corso di Geologia Applicata Dott. Maria Chiara Turrini Cerchio di Mohr P σ 3 σ 1 È un metodo grafico che consente di avere i valori degli sforzi che agiscono in un punto,
IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO
A - IDRAULICA IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO' SUBIRE RILEVANTI VARIAZIONI
Le lettere x, y, z rappresentano i segnali nei vari rami.
Regole per l elaborazione di schemi a blocchi Oltre alle tre fondamentali precedenti regole (cascata, parallelo, retroazione), ne esiste una serie ulteriore che consente di semplificare i sistemi complessi,
1 Equilibrio statico nei corpi deformabili
Equilibrio statico nei corpi deformabili Poiché i materiali reali non possono considerarsi rigidi, dobbiamo immaginare che le forze esterne creino altre forze interne che tendono ad allungare (comprimere)
FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni
FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA Le competenze di base a conclusione dell obbligo di istruzione sono le seguenti: Osservare, descrivere ed analizzare fenomeni appartenenti alla realtà
Capitolo 11. TORSIONE (prof. Elio Sacco) 11.1 Sollecitazione di torsione Torsione nella sezione circolare
Capitolo TORSIONE (prof. Elio Sacco). Sollecitazione di torsione Si esamina il caso in cui la trave è soggetta ad una coppia torcente e 3 agente sulla base L della trave. Si utilizza il metodo seminverso
Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica
DISCIPLINA: MATEMATICA Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica RESPONSABILE: CAGNESCHI F. - IMPERATORE D. CLASSE/INDIRIZZO: prima tecnico della grafica calcolo numerico
CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 2012
CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 01 1) FLUIDI: Un blocchetto di legno (densità 0,75 g/ cm 3 ) di dimensioni esterne (10x0x5)cm 3 è trattenuto mediante una fune
Argomenti Capitolo 1 Richiami
Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme
PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/12/2011 Esercizio n 1
PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/1/011 Esercizio n 1 Sia data una sezione di c.a. avente dimensioni 40 x 60 cm. I materiali impiegati sono: a) calcestruzzo Rck=0 N/, b) acciaio tipo B450C.
3 Geometria delle masse e momento di 2 ordine 3.3 Ellisse centrale d inerzia e nocciolo centrale d inerzia
3 Geometria delle masse e momento di ordine ESERCIZI SVOLTI Considerata la sezione rappresentata in figura, calcolare i raggi d inerzia massimo e minimo, tracciare l ellisse d inerzia e il nocciolo centrale
Stabilità dei galleggianti Erman Di Rienzo
Erman Di Rienzo tabilità dei galleggianti 1 tabilità dei galleggianti Erman Di Rienzo M B Erman Di Rienzo tabilità dei galleggianti 2 Abbiamo quindi visto che un corpo di peso specifico minore del liquido
29. Mezzi elastici RELAZIONE SFORZO-DEFORMAZIONE
29. Mezzi elastici I mezzi continui solidi sono caratterizzati da piccole deformazioni, che consentono di stabilire una relazione lineare tra sforzo e deformazione nota come legge di Hook. Linearizzando
La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da:
Statica Distribuzione delle pressioni La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da: z+p/γ= cost LEE DI STEVIN Il valore della costante è
PROVE TRIASSIALI. Università degli Studi di Trento - Facoltà di Ingegneria Geotecnica A / Geotecnica B (Dr. A Tarantino) 1.1
PROVE TRIASSIALI. Tipologie di proa Compressione triasiale era Compressione cilindrica (triassiale) Stato piano di compressione Compressione semplice Compressione isotropa. . Tensore della tensione Tensore
Calcolo della deformazione a rottura di un tirante metallico
MICHELE VINCI Calcolo della deformazione a rottura di un tirante metallico Collana Calcolo di edifici in muratura (www.edificiinmuratura.it) Articolo 1 Marzo 014 Bibliografia: Michele Vinci Metodi di calcolo
Geometria delle Aree. Finora ci si è occupati di determinare le sollecitazioni che agiscono su sezioni di elementi monodimensionali
eometria delle ree Finora ci si è occupati di determinare le sollecitazioni che agiscono su sezioni di elementi monodimensionali In realtà lo studio della Meccanica delle Strutture non si accontenta di
GEOMETRIA DELLE MASSE
IL BARICENTRO GENERALITA' GEOMETRIA DELLE MASSE Un corpo può essere immaginato come se fosse costituito da tante piccole particelle dotate di massa (masse puntiformi); a causa della forza di gravità queste
Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio
Esercizi Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Per ciascun esercizio disegnare su ciascun corpo del sistema il diagramma delle forze, individuando e nominando ciascuna forza.
VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.
VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:
EQUAZIONI DIFFERENZIALI
Indice 1 EQUAZIONI DIFFERENZIALI 3 1.1 Equazioni fisicamente significative...................... 3 1.1.1 A cosa servono?............................. 3 1.1.2 Legge di Newton............................
Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15
Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali
Uno di questi casi è rappresentato dal cedimento in elementi di strutture soggetti a carichi di compressione che danno luogo ad instabilità elastica
In alcuni casi una struttura soggetta a carichi statici può collassare con un meccanismo diverso da quello del superamento dei limiti di resistenza del materiale. Uno di questi casi è rappresentato dal
1 Nozioni utili sul piano cartesiano
Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x
Lezione 17 - Il solido isotropo
Lezione 17 - Il solido isotropo ü [A.a. 2011-2012 : ultima revisione 23 agosto 2011] Si e' visto che le costanti elastiche previste dalla teoria di Green sono, in generale, 21. Non sembra possibile ridurre
CRITERI DI RESISTENZA DEI MATERIALI
CRTER D RESSTENZA DE MATERAL Tutti i materiali da costruzione rimangono in campo elastico sino ad una certa entità delle sollecitazioni su di essi agenti. Successivamente, all incrementare dei carichi,
Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco
Robotica industriale Richiami di statica del corpo rigido Prof. Paolo Rocco ([email protected]) Sistemi di forze P 1 P 2 F 1 F 2 F 3 F n Consideriamo un sistema di forze agenti su un corpo rigido.
Equilibrio di un punto materiale (anelli, giunti ecc.)
Equilibrio di un punto materiale (anelli, giunti ecc.) Per l equilibrio di un punto basta Obiettivo: verificare che Σ F i 0 Determinare le forze trasmesse al nodo da tutti gli elementi concorrenti, e
L EQUILIBRIO DEL PUNTO MATERIALE
1 L EQUILIBRIO DEL PUNTO MATERIALE La statica studia l equilibrio dei corpi. Un corpo è in equilibrio se è fermo e persevera nel suo stato di quiete al trascorrere del tempo. Un modello è la semplificazione
RELAZIONE ESERCITAZIONI AUTODESK INVENTOR
20 Ottobre 2015 RELAZIONE ESERCITAZIONI AUTODESK INVENTOR Corso di Costruzione di Macchine e Affidabilità C.d.L.M. in Ingegneria Meccanica Docente: Prof.ssa Cosmi Francesca Assistente: Dott.ssa Ravalico
Lezione 12 - I cerchi di Mohr
Lezione 1 - I cerchi di Mohr ü [A.a. 011-01 : ultima revisione 3 novembre 013] In questa lezione si descrive un classico metodo di visualizzazione dello stato tensionale nell'intorno di un punto generico
Fondamenti di Meccanica Esame del
Politecnico di Milano Fondamenti di Meccanica Esame del 0.02.2009. In un piano verticale un asta omogenea AB, di lunghezza l e massa m, ha l estremo A vincolato a scorrere senza attrito su una guida verticale.
Proprietà meccaniche. Proprietà dei materiali
Proprietà meccaniche Proprietà dei materiali Proprietà meccaniche Tutti i materiali sono soggetti a sollecitazioni (forze) di varia natura che ne determinano deformazioni macroscopiche. Spesso le proprietà
Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo
Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante
ESERCIZI SVOLTI. Verifica allo SLU di ribaltamento (tipo EQU) 9 Spinta delle terre e muri di sostegno 9.3 Il progetto dei muri di sostegno
ESERCIZI SVOLTI Seguendo le prescrizioni delle N.T.C. 008 effettuare le verifiche agli SLU di ribaltamento, di scorrimento sul piano di posa e di collasso per carico limite dell insieme fondazione-terreno
Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa
Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa t = 15 h = 175 Si consideri la sezione rappresentata in figura (sezione di trave inflessa) sulla quale agisca un taglio verticale T
SOLUZIONE DELLA TRACCIA N 2
SOLUZIONE DELLA TRACCIA N La presente soluzione verrà redatta facendo riferimento al manuale: Caligaris, Fava, Tomasello Manuale di Meccanica Hoepli. - Studio delle sollecitazioni in gioco Si calcolano
( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come
Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata
La modellazione delle strutture
La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012
UNIVERSITA DEGLI STUDIO DI PADOVA Facoltà di Agraria Collegio dei Geometri CORSO DI AGGIORNAMENTO PROFESSIONALE DI PROGETTAZIONE COSTRUTTIVA
UNIVERSITA DEGLI STUDIO DI PADOVA Facoltà di Agraria Collegio dei Geometri CORSO DI AGGIORNAMENTO PROFESSIONALE DI PROGETTAZIONE COSTRUTTIVA LEZIONE 4 STATI SEMPLICI DI TENSIONE E COMPORTAMENTO DEI MATERIALI:
Il valore assoluto (lunghezza, intensita )
Il valore assoluto (lunghezza, intensita ) = se 0 - se < 0 = 5 5-0, = 0 3, = 3 Il valore assoluto di un numero reale è quindi sempre un numero positivo. Geometricamente rappresenta la misura della distanza
Dimensionamento delle strutture
Dimensionamento delle strutture Prof. Fabio Fossati Department of Mechanics Politecnico di Milano Lo stato di tensione o di sforzo Allo scopo di caratterizzare in maniera puntuale la distribuzione delle
Traslazioni. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali
Traslazioni ALTAIR http://metropolis.sci.univr.it Argomenti Velocitá ed accelerazione di una massa che trasla Esempio: massa che trasla con condizioni iniziali date Argomenti Argomenti Velocitá ed accelerazione
Problemi di massimo e minimo
Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi
6.E. Indagini in sito: Misura delle pressioni interstiziali
6.E Indagini in sito: Misura delle pressioni interstiziali MISURA DELLE PRESSIONI INTERSTIZIALI Il Piezometro è un elemento poroso, pieno d acqua, la cui pressione è uguale a quella dell ambiente circostante.
Geometria analitica del piano pag 32 Adolfo Scimone
Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema
Grandezze geometriche e fisiche. In topografia si studiano le grandezze geometriche: superfici angoli
Topografia la scienza che studia i mezzi e i procedimenti operativi per il rilevamento e la rappresentazione grafica, su superficie piana (un foglio di carta) di una porzione limitata di terreno.... è
Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue
1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare
Geometria analitica di base (seconda parte)
SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo
Meccanica e Macchine esame 2008 MECCANICA APPLICATA E MACCHINE A FLUIDO
Meccanica e Macchine esame 008 MECCANICA APPLICATA E MACCHINE A FLUIDO Sessione ordinaria 008 Lo schema riportato in figura rappresenta un motore elettrico che eroga una potenza nominale di 0 kw ad un
Una funzione può essere:
Date due grandezze variabili, variabile indipendente e y variabile dipendente, si dice che y è funzione di se esiste una legge o proprietà di qualsiasi natura che fa corrispondere a ogni valore di uno
Rotazioni. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali
Rotazioni ALTAIR http://metropolis.sci.univr.it Argomenti Propietá di base della rotazione Argomenti Argomenti Propietá di base della rotazione Leggi base del moto Inerzia, molle, smorzatori, leve ed ingranaggi
LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele
PROGRAMMA DI MATEMATICA Classe prima (ex quarta ginnasio) corso F NUMERI: Numeri per contare: insieme N. I numeri interi: insieme Z. I numeri razionali e la loro scrittura: insieme Q. Rappresentare frazioni
Corso di Idraulica ed Idrologia Forestale
Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe Bombino - Ing. Demetrio Zema Lezione n. 3: Idrostatica (parte II pressione e sua misura) proprietà
è completamente immerso in acqua. La sua
In un tubo scorre in regime stazionario un liquido ideale con densità 1.00 10 3 kg/m 3 ; in un punto A il tubo ha raggio R A = 2.00 cm, la velocità di scorrimento è v A = 5.00 m/se la pressione è P A =
MOLLE, MOLLE A SPIRALE E DI VARIA FOGGIA
MOLLE, MOLLE A SPIRALE E DI VARIA FOGGIA Molla a spirale per compressione Molla a spirale per trazione (estensione) Molle con tante forme diverse! Leonardo da Vinci, Codice di Madrid, 1490-99 MOLLA A SPIRALE
I materiali nel cemento armato
I materiali nel cemento armato Ipotesi alla base del calcolo del cemento armato Metodo TA Conservazione delle sezioni piane Perfetta aderenza acciaio-calcestruzzo Calcestruzzo non reagente a trazione Comportamento
ATTRITO VISCOSO NEI FLUIDI
ATTRITO VISCOSO NEI FLUIDI DOWNLOAD Il pdf di questa lezione (0319a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 19/03/2012 VISCOSITÀ La viscosità è un fenomeno che si manifesta in
Lezione 8 - Il teorema di Cauchy- Poisson
Lezione 8 - Il teorema di Cauchy- Poisson ü [A.a. 2012-2013 : ultima revisione 28 ottobre 2012] Come detto al termine della lezione precedente, occorre ora dare un criterio operativo per poter calcolare
Esercizi di Elementi di Matematica Corso di laurea in Farmacia
Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando
1 Cinematica del punto Componenti intrinseche di velocità e accelerazione Moto piano in coordinate polari... 5
Indice 1 Cinematica del punto... 1 1.1 Componenti intrinseche di velocità e accelerazione... 3 1.2 Moto piano in coordinate polari... 5 2 Cinematica del corpo rigido... 9 2.1 Configurazioni rigide......
Presentazione e obiettivi del corso
Presentazione e obiettivi del corso Il corso si propone di fornire gli strumenti per il calcolo e la verifica di elementi strutturali soggetti a carichi statici o variabili nel tempo A questo scopo vengono
Funzioni vettoriali di variabile scalare
Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.
ACCIAIO Calcolo Strutturale
ISTITUTO TECNICO COSTRUZIONI AMBIENTE TERRITORIO Appunti per il corso di PROGETTAZIONE COSTRUZIONI IMPIANTI ACCIAIO Calcolo Strutturale Aggiornamento: Aprile 2016 Prof. Ing. Del Giudice Tony GENERALITA
Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze
Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.
Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia
1 Principi di idraulica Definizioni MECCANICA DEI FLUIDI È il ramo della fisica che studia le proprietà dei fluidi, cioè liquidi, vapori e gas. Idrostatica Studia i fluidi in quiete Idrodinamica Studia
Michelangelo Laterza Principi di Statica e di Dinamica delle Strutture
Michelangelo Laterza Principi di Statica e di Dinamica Introduzione al concetto di sforzo Alle sollecitazioni di trazione, di compressione, di taglio, o ai momenti flettenti all interno di una struttura
Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica
Bilancio di energia: il Primo Principio della Termodinamica Termodinamica dell Ingegneria Chimica 1 I Sistemi termodinamici Un sistema è definito da una superficie di controllo, reale o immaginaria, che
Architettura Laboratorio di Costruzione I (A-L)
Università degli Studi di Parma Architettura Laboratorio di Costruzione I (A-L) Anno accademico 2012/2013 Docenti: Prof. Roberto Brighenti e-mail: [email protected] Tel.: 0521/905910 Ricevimento:
Introduzione. Michelangelo Laterza Principi di Statica e di Dinamica delle Strutture
Introduzione La meccanica è quella parte delle scienze applicate che studia le forze ed il moto. In questo campo è fondamentale la nozione di equilibrio, ovvero la condizione che si instaura quando le
GEOMETRIA DELLE AREE
Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ing. Francesco Zanghì GEOMETRIA DELLE AREE AGGIORNAMENTO DEL 29/09/2011 Baricentro In un sistema di punti materiali o nel caso di un solido può
