Lezioni di Aritmetica Modulare
|
|
|
- Ornella Fantini
- 8 anni fa
- Visualizzazioni
Transcript
1 Lezioni di Aritmetica Modulare Antonino Salibra Università Ca Foscari Venezia 2 Novembre 2016 Nel seguito scriveremo talvolta a b al posto di a divide b. Ricordiamo che, dati due interi a e b con b 0, esiste un unica coppia di interi q (quoziente) ed r (resto) tali che a = bq + r con 0 r < b, dove b è il modulo di b Massimo comun divisore Il massimo comun divisore MCD(a, b) di due interi a, b non entrambi nulli è il più grande numero naturale positivo che divide sia a che b. Quindi abbiamo MCD(a, b) = MCD( a, b ), dove a e b sono il modulo di a e b rispettivamente. Si estende la definizione di MCD a tutti gli interi con MCD(0, 0) = 0. Due numeri interi a, b si dicono primi fra di loro se MCD(a, b) = 1. Nel seguito supponiamo a, b > 0. Per calcolare il massimo comun divisore di a e b si considerino i numeri primi p 1,..., p n che sono minore di max(a, b) e poi si definisca MCD(a, b) = p k p kn n, dove p k i i a e pk i i b, mentre p k i+1 i non divide a oppure non divide b, oppure non divide entrambi. Un metodo più efficiente di calcolo del massimo comun divisore è l algoritmo di Euclide. Lemma Sia b a. Se b a allora MCD(a, b) = b. Se b non divide a allora MCD(a, b) = MCD(b, r), dove r è il resto della divisione di a per b Proof. Sia a = bq + r con 0 r < b. Se d a e d b allora d (a bq) = r. L inverso è anche vero. Il principio di induzione completa giustifica la seguente definizione ricorsiva: { b se a b; MCD(a, b) = MCD(b, r) se a = bq + r con 0 r < b. Example MCD(134, 36) = MCD(36, 26) = MCD(26, 10) = MCD(10, 6) = MCD(6, 4) = MCD(4, 2) = 2. Lemma Siano a, b 0 numeri interi. Allora esistono interi x e y tali che ax+by = MCD(a, b). Proof. Possiamo supporre a, b > 0. La prova è per induzione completa sul valore di b. Se b = 1, allora MCD(a, 1) = 1 e a0 + 1 = MCD(a, 1). Se b > 1, abbiamo due casi: MCD(a, b) = b. Allora a0 + b = MCD(a, b). 1
2 2 Antonino Salibra Università Ca Foscari Venezia 2 Novembre 2016 MCD(a, b) = MCD(b, r) con a = bq + r e 0 r < b. Siccome r < b, possiamo applicare l ipotesi d induzione per ottenere due valori x, y tali che Ma r = a bq e sostituendo si ha: bx + ry = MCD(b, r) = MCD(a, b). bx + (a bq)y = b(x qy) + a = MCD(a, b). Osservazione: Siano a, b 0 interi. Allora l equazione lineare ax + by = 0 rappresenta la retta dei vettori (x, y) che sono ortogonali al vettore (a, b). Il Lemma afferma che la retta ax + by = MCD(a, b) parallela alla retta ax + by = 0 passa attraverso dei punti che hanno coordinate intere. Theorem (Proprietà di Bézout) Siano a, b, c 0 numeri interi. Allora l equazione lineare ax + by = c ha soluzioni intere sse MCD(a, b) c. Proof. ( ) MCD(a, b) divide ogni combinazione lineare di a e b. In particolare, divide la combinazione lineare ax + by = c. ( ) Sia d = MCD(a, b). Per ipotesi c = dq per un opportuno q. Dal Lemma esistono x e y tali che ax + by = d. Moltiplicando ambo i membri per q si ottiene: a(xq) + b(yq) = dq = c. Example Trovare una soluzione intera dell equazione 240x + 36y = 12. Possiamo dividere tutti i coefficienti per 12 ed ottenere 20x + 3y = 1. Siccome 20 e 3 sono primi tra loro (cioé MCD(20, 3) = 1) allora le soluzioni intere di 20x + 3y = 1 esistono. Si vede facilmente che x = 1 e y = 7 è una soluzione di 20x + 3y = 1. La stessa soluzione risolve 240x + 36y = 12. Example Trovare una soluzione intera dell equazione 120x + 81y = 12. Dividendo per 3 si ottiene 40x+27y = 4. Siccome 40 e 27 sono primi tra loro (cioé MCD(40, 27) = 1) allora le soluzioni intere di 40x + 27y = 1 esistono. Applichiamo l algoritmo di Euclide per il calcolo del massimo comun divisore: 40 = e 27 = Quindi 1 = = 27 (40 27) 2 = = ( 2) Quindi una soluzione intera dell equazione 40x + 27y = 4 è: x = 8, y = 12. Le stesse soluzioni funzionano per l equazione lineare 120x + 81y = 12. Example Non esistono soluzioni intere dell equazione 6x + 2y = 5, perché 2 = MCD(6, 2) non divide L aritmetica dell orologio L aritmetica modulare (o aritmetica dell orologio) è stata introdotta da Gauss ad inizio ottocento. Consideriamo un orologio con n > 0 tacche che corrispondono ad i numeri da 0 a n 1 (Si veda la figura per il caso n = 9). Indichiamo con Z n = {0, 1,..., n 1}. Scorriamo l orologio in senso orario partendo da 0. Una mossa +1 consiste nello
3 Lezioni di Aritmetica Modulare 3 Figure 1. Aritmetica dell orologio spostarsi in senso orario dalla tacca in cui ci troviamo alla tacca successiva. La mossa +1 corrisponde all operazione di aggiungere 1. Quando arriviamo al numero n 1 ed eseguiamo una ulteriore mossa +1, scopriamo che (n 1) + 1 = 0 anziché (n 1) + 1 = n. Quindi, contrariamente ai numeri naturali, il numero 0 è il successore del numero n 1 e la funzione determinata dalle mosse +1 definisce una funzione bigettiva dall insieme Z n nell insieme Z n. Viceversa, scorriamo l orologio in senso antiorario partendo da 0. Una mossa 1 consiste nello spostarsi in senso antiorario dalla tacca in cui ci troviamo alla tacca precedente. La mossa 1 corrisponde a sottrarre 1. Quindi 0 1 = n 1 anziché essere indefinito come avviene nell aritmetica dei numeri naturali. La funzione determinata dalle mosse 1 definisce una funzione bigettiva dall insieme Z n nell insieme Z n. Essa è la funzione inversa della funzione determinata dalle mosse +1. Come possiamo rappresentare un intero a nell orologio? Adottiamo due strategie diverse se a è positivo oppure negativo. Se a è positivo, eseguiamo esattamente un numero di mosse +1 pari ad a volte partendo da 0. La tacca in cui ci troviamo rappresenta il numero intero positivo a nell orologio. Se a è negativo, eseguiamo esattamente un numero di mosse 1 pari a a volte partendo da 0. La tacca in cui ci troviamo rappresenta il numero intero negativo a nell orologio. In entrambi i casi la tacca del numero a rappresenta il numero mod n (a) che è il resto della divisione di a per n. Esso è un numero naturale compreso tra 0 e n 1. Notazione: Talvolta scriviamo a mod n al posto di mod n (a).
4 4 Antonino Salibra Università Ca Foscari Venezia 2 Novembre 2016 Definiamo la somma + n (modulo n) ed il prodotto n (modulo n) sui numeri interi come segue: a + n b = mod n (a + b); a n b = mod n (ab). Il risultato della somma e del prodotto è sempre un valore compreso tra 0 e n 1, quindi rappresentabile nell orologio. Lemma L insieme Z n = {0, 1,..., n 1} è chiuso rispetto alle operazioni di somma + n e prodotto n. Per semplificare i conti, utilizziamo la seguente proposizione Proposition Valgono le seguenti uguaglianze (a, b Z): 1. mod n (a + b) = mod n (mod n (a) + mod n (b)); 2. mod n (ab) = mod n (mod n (a) mod n (b)). Example Sia n = 9. Allora mod 9 (95 37) = mod 9 (mod 9 (95) + mod 9 (37)) = mod 9 (5 2) = mod 9 (10) = 1. Se non avessimo utilizzato la proposizione avremmo dovuto calcolare mod 9 (3515), che è più difficile specialmente se n è grande. Se ci restringiamo ad i numeri compresi tra 0 e n 1, possiamo anche definire la somma + n come segue (0 a, b < n): a se b = 0 a + n b = a + 1 se b = 1 (a + n (b 1)) + 1 se b 0, 1. Example = (7+ 9 2)+1 = ((7+ 9 1)+1)+1 = ((7+1)+1)+1 = (8+1)+1 = = 1. Possiamo definire il prodotto n sui numeri tra 0 e n 1 utilizzando la somma modulare + n : 0 se b = 0 a n b = a se b = 1 (a n (b 1)) + n a se b 0, 1. Example = (7 9 2) = ((7 9 1) + 9 7) = ( ) = = 3. Nella parte finale abbiamo applicato la definizione della somma + 9 per arrivare al risultato finale 3. L aritmetica dell orologio è correlata alla teoria delle congruenze che introduciamo nella prossima sezione.
5 Lezioni di Aritmetica Modulare Congruenze Le tacche numerate dell orologio della sezione precedente sono i rappresentanti delle n classi di equivalenza di una relazione di equivalenza n definita sugli interi. Nella prossima definizione definiamo la relazione n. Definition Sia n > 0. Diciamo che a, b Z sono congruenti modulo n, e scriviamo a b (mod n) oppure a n b, se mod n (a) = mod n (b). Quindi abbiamo a n b se il resto della divisione di a per n è uguale al resto della divisione di b per n. Lemma Sia n > 0 e siano a e b numeri interi. Allora, a n b sse n divide b a. Proof. Supponiamo che a n b. Allora, dividendo a e b per n, si ha: a = q 1 n + r e b = q 2 n + r con 0 r < n. Ne segue che b a è divisibile per n: b a = n(q 2 q 1 ). Per la direzione opposta, supponiamo che b a = nt per un opportuno t Z. Dividiamo sia a che b per n: a = q 1 n + r 1 e b = q 2 n + r 2 con 0 r 1, r 2 < n. Allora, b a = n(q 2 q 1 ) + (r 2 r 1 ) = nt, da cui segue r 2 r 1 = n(t + q 1 q 2 ). Ma r 2 r 1 < n. Quindi l unica possibilità è che r 1 = r 2. Lemma La relazione n è una relazione di equivalenza su Z che è compatibile rispetto alle operazioni di addizione, moltiplicazione e esponenziazione di interi: (i) a n b c n d a + c n b + d. (ii) a n b c n d ac n bd. (iii) a n b a k n b k. Proof. Sia mod n (a) = mod n (b) e mod n (c) = mod n (d). (i) Sia Dalla Proposizione 0.2.1(1) e dall ipotesi si ha: mod n (a + c) = mod n (mod n (a) + mod n (c)) = mod n (mod n (b) + mod n (d)) = mod n (b + d). (ii) La prova è simile a quella del punto (i). (iii) La prova è per induzione su k utilizzando (ii). La relazione n partiziona Z in n classi di equivalenza. Se a è un intero scriveremo [a] n per la classe di equivalenza di a modulo l equivalenza n. Ecco la partizione determinata da n : [0] n = {kn : k Z}; [1] n = {1 + kn : k Z};... [n 1] n = {(n 1) + kn : k Z}. Scegliamo come rappresentanti delle classi di equivalenza i numeri 0, 1, 2,..., n 1. Questi numeri corrispondono alle tacche di un orologio che segna le ore da 0 sino ad n 1 (si veda la figura con n = 4). Le operazioni di somma + n e prodotto n, definite nella sezione precedente, agiscono sulle classi di equivalenza modulo n tramite i loro rappresentanti.
6 6 Antonino Salibra Università Ca Foscari Venezia 2 Novembre 2016 Figure 2. Aritmetica dell orologio modulo 4 Proposition L insieme Z n = {0, 1, 2,..., n 1} con le operazioni di somma + n e prodotto n modulo n (come definite nella sezione precedente nel caso n = 9) costituisce un anello commutativo con unità. (Z n, + n, 0) è un gruppo commutativo rispetto alla somma: Proprietà associativa: (x + n y) + n z = x + n (y + n z); Proprietà commutativa: x + n y = y + n x; Elemento neutro: x + n 0 = x = 0 + n x; Opposto: x + n ( x) = 0 = ( x) + n x. (Z n, n, 1) è un monoide commutativo rispetto al prodotto: Proprietà associativa: (x n y) n z = x n (y n z); Proprietà commutativa: x n y = y n x; Elemento neutro: x n 1 = x = 1 n x; Il prodotto distribuisce rispetto alla somma: x n (y + n z) = (x n y) + n (x n z). Nei prossimi due lemmi studiamo proprietà di cancellazione e periodicità delle potenze. Lemma Proprietà di cancellazione: ac n bc MCD(c, n) = 1 a n b.
7 Lezioni di Aritmetica Modulare 7 Proof. Dal Lemma e dall ipotesi MCD(c, n) = 1 esistono interi x e y tali che cx+ny = 1. Siccome cx = n( y) + 1, allora cx n 1. Dal Lemma 0.3.2(ii) si ricava acx n a e bcx n b. Dall ipotesi ac n bc segue che acx n bcx. Quindi a n b. Lemma Sia n > 0 ed a un intero. La sequenze di potenze modulo n a 0 a 1 a 2 a 3 a 4 a 5 a mod n (a 1 ) mod n (a 2 ) mod n (a 3 ) mod n (a 4 ) mod n (a 5 ) mod n (a 6 )... è periodica a partire da un certo punto in poi: esistono k e p n tali che a k n a k+rp per ogni r 0. Example Calcoliamo le potenze del 3 modulo 7: Il periodo è 6. Per esempio Infatti 3 8 = Example Calcoliamo le potenze del 2 modulo 8: Il periodo è 1 a partire da Concludiamo la sezione con una serie di esempi che provano l utilità della Proposizione e dell aritmetica modulare. Example Vogliamo calcolare qual è il resto della divisione di per 5. Siccome 10 è divisibile per 5, si ha che = Example Vogliamo calcolare qual è il resto della divisione di per 7. Siccome 10 è 3 modulo 7, si ha che = = 5 Example Vogliamo determinare mod 5 ( ). Piuttosto che eseguire prima la moltiplicazione e poi il calcolo del resto della divisione per 5, calcoliamo direttamente il resto della divisione di per 5 ed il resto della divisione di per 5. Si ha: mod 5 (95758) = 3 e mod 5 (37988) = 3. Quindi mod 5 ( ) = 4. Example Calcoliamo modulo 7. Siccome 3 3 = , allora = = (3 3 ) ( 1) 42 2 = 2.
8 8 Antonino Salibra Università Ca Foscari Venezia 2 Novembre Teoremi di Fermat e di Wilson Pierre de Fermat, uno dei matematici più importanti dell ultimo millennio, è nato il 17 agosto 1601 a Beaumont-de-Lomagne (Francia) ed è morto il 12 gennaio 1665 a Castres. Era magistrato di professione e si occupava di matematica nel tempo libero. Presentiamo qui di seguito uno dei suoi risultati più importanti. Theorem (Piccolo Teorema di Fermat) Se p è un numero primo e p non divide a, allora a p 1 p 1. Proof. Consideriamo i seguenti multipli positivi di a: a, 2a, 3a,..., (p 1)a. Nessuno di questi numeri è congruente ad un altro modulo p: se na p ma allora dal Lemma potremmo cancellare a ed ottenere m p n, che è impossibile in quanto 1 n, m p 1. Quindi i numeri a, 2a, 3a,..., (p 1)a modulo p corrispondono in un qualche ordine ai numeri 1, 2, 3,..., p 1. Si ha quindi: da cui a 2a 3a (p 1)a p (p 1) a p 1 (p 1)! p (p 1)! Cancellando (p 1)!, che non è divisibile per p, da entrambi i membri otteniamo la conclusione 1. Corollary Se p è primo, allora a p p a. Example Vogliamo calcolare modulo 13. Applicando il Piccolo Teorema di Fermat sappiamo che Quindi = = (5 12 ) = 5 8 = (5 2 ) 4 13 ( 1) 4 = 1 Theorem Se p e q sono primi distinti tali che a p q a e a q p a, allora a pq pq a. Proof. Dal Corollario si ha (a p ) q q a p e (a q ) p p a q. Per ipotesi a p q a e a q p a, quindi a pq q a e a pq p a. In conclusione p a pq a e q a pq a e quindi pq a pq a. 1 Un altra prova del Piccolo Teorema di Fermat si ottiene per induzione su a come segue. La base dell induzione a = 1 è ovvia. Supponiamo vero il teorema per a e dimostriamolo per a + 1: Siccome (a + 1) p = p! i!(p i)! p 0 per ogni 1 i p 1 si ha: perché per ipotesi di induzione a p p a. p p! ( i!(p i)! )ai i=0 (a + 1) p p a p + 1 p a + 1.
9 Lezioni di Aritmetica Modulare 9 Example Consideriamo p = 11 e q = 31 numeri primi. Allora 2 11 = = = 2. Per il Piccolo Teorema di Fermat si ha anche: 2 31 = 2(2 10 ) = 2. Applicando il teorema precedente si ha che si può anche scrivere Theorem Se p è un numero primo, allora (Z p, + p, 0, p, 1) è un campo numerico. Proof. Dalla Proposizione dobbiamo soltanto provare che ogni elemento a Z p ha un inverso. La conclusione segue dal Piccolo Teorema di Fermat perché Quindi a p 2 è l inverso di a. aa p 2 p 1. Theorem (Teorema di Wilson) Se p è primo, allora (p 1)! p 1. Proof. Supponiamo p > 3 primo. Sia 1 a p 1. Consideriamo la congruenza lineare ax p = 1. Siccome a e p sono primi tra loro, questa congruenza ammette un unica soluzione modulo p. Quindi esiste un unico a con 1 a p 1 tale che aa p 1. Dal fatto che p è primo segue che a = a soltanto per a = 1 e a = p 1. In fatti la congruenza quadratica a 2 p 1 si scrive a 2 1 = (a 1)(a + 1) p 0. Si ricava a = 1 oppure p a + 1 da cui a = p 1. Da tutto questo segue che 2 3 (p 2) p 1 che si scrive anche Quindi (p 2)! p 1. (p 1)! = (p 1) (p 2)! p p 1 p 1.
10 10 Antonino Salibra Università Ca Foscari Venezia 2 Novembre Teorema di Eulero Leonhard Euler, noto in Italia come Eulero, è stato il più importante matematico del diciottesimo secolo. Eulero è nato il 15 aprile 1707 a Basilea in Svizzera ed è morto il 18 settembre 1783 a San Pietroburgo in Russia. Si definisca la seguente funzione di Eulero: φ(n) = numero di interi positivi n che sono relativamente primi con n. Example Se n è primo, φ(n) = n 1. Ecco altri esempi: φ(8) = 4 e φ(14) = 6. Lemma n è primo sse φ(n) = n 1. Proof. Se φ(n) = n 1 allora tutti i numeri da 1 a n 1 sono primi con n. Quindi, n è primo. Lemma Se p è primo, allora φ(p k ) = p k p k 1 = p k (1 1 p ). Proof. Si ha: MCD(a, p k ) = 1 sse p a. Vi sono p k 1 interi tra 1 e p k che sono divisibili per p: p, 2p, 3p,..., (p k 1 )p. Quindi l insieme {1, 2,..., p k } contiene p k p k 1 interi relativamente primi con p. Per esempio, φ(9) = φ(3 2 ) = = 6. Lemma Se a e b sono relativamente primi tra loro, allora φ(ab) = φ(a)φ(b). Proposition Sia n > 0. L insieme degli interi relativamente primi con n è chiuso rispetto all operazione di moltiplicazione (modulo n) e costituisce un gruppo moltiplicativo. Proof. Sia MCD(a, n) = 1 e MCD(b, n) = 1. Allora si vede facilmente che MCD(ab, n) = 1. Dal Lemma esistono interi x, y tali che ax + ny = 1. Ne segue che ax n 1 ed x è l inverso di a. Theorem (Teorema di Eulero) Se n è un intero positivo e MCD(a, n) = 1, allora a φ(n) n 1. Proof. Siano b 1, b 2,..., b φ(n) i numeri minori di n che sono relativamente primi con n. Allora ab 1, ab 2,..., ab φ(n) sono congruenti a b 1, b 2,..., b φ(n) in qualche ordine. Ne segue che (ab 1 ) (ab 2 ) (ab φ(n) ) = a φ(n) (b 1 b 2 b φ(n) ) n b 1 b 2 b φ(n) Siccome ogni b i è primo con n possiamo dividere per b 1 b 2 b φ(n) ed ottenere la conclusione. Example φ(100) = φ( ) = φ(2 2 )φ(5 2 ) = 100(1 1)(1 1 ) = 40. Dal teorema 2 5 di Eulero si ricava Quindi, per esempio, = = (3 40 ) Infine, 3 16 = (81) ( 19) 4 = (361)
11 Lezioni di Aritmetica Modulare Equazioni modulari Theorem La congruenza lineare ax n b ha una soluzione sse MCD(a, n) b. Proof. ax n b sse n (ax b) sse q(ax b = nq) sse q(ax nq = b). Dal Teorema di Bézout otteniamo che ax n b sse MCD(a, n) b. Theorem (Teorema cinese del resto) Siano n 1,..., n k interi positivi a due a due primi fra loro (i.e., MCD(n i, n j ) = 1 per i j). Allora il sistema di congruenze lineari x a 1 (mod n 1 ) x a 2 (mod n 2 ) x a k (mod n k ) ha una soluzione simultanea che è unica modulo n 1... n k. Proof. Per ogni 1 i k si definisca b i = n 1... n i 1 n i+1... n k. Si ha MCD(b i, n i ) = 1. Allora la congruenza lineare b i x i ni b i nj 0 per j i. Allora il numero 1 ha soluzione. Si noti che x = a 1 b 1 x 1 + a 2 b 2 x a k b k x k risolve il sistema di congruenze lineari. Per esempio, x n1 a 1 b 1 x 1 perché b 2, b 3,..., b k n1 0. Inoltre, da b 1 x 1 n1 1 si ottiene la conclusione x n1 a 1. Lo stesso discorso vale per gli altri n i. Supponiamo che oltre ad x vi sia un altra soluzione y. Allora si ricava facilmente che x ni y per ogni 1 i k. Quindi, n 1... n k divide x y (si ricordi che MCD(n i, n j ) = 1 per i j). Si conclude x y mod n 1... n k. Diamo un altra prova del Teorema Cinese del resto utilizzando il Teorema di Eulero. Siano n 1,..., n k interi positivi a due a due primi fra loro (i.e., MCD(n i, n j ) = 1 per i j). Allora il sistema di congruenze lineari x a 1 (mod n 1 ) x a 2 (mod n 2 ) x a k (mod n k ) ha una soluzione simultanea che è unica modulo n 1... n k. Si consideri b i = (n 1...n k ) n i. Allora risolve il problema. x = a 1 (b 1 ) φ(n 1) + a 2 (b 2 ) φ(n 2) + + a k (b k ) φ(n k)
12 12 Antonino Salibra Università Ca Foscari Venezia 2 Novembre Applicazione alla Crittografia Questa sezione è essenzialmente la Sezione 4.6 del libro Bellissima-Montagna, Matematica per l Informatica, Carrocci Editore. Vogliamo inviare un messaggio privato ad un nostro interlocutore. Come prima cosa codifichiamo il messaggio con un numero M tramite una codifica elementare. Supponiamo di avere un alfabeto di n caratteri α 1, α 2,..., α n. Associamo a ciascun carattere un numero in progressione evitando i numeri che nella rappresentazione in base 10 contengono degli zeri. Per ogni i, sia c i il numero che codifica il carattere α i. Allora una stringa α i1... α ik si codifica con il numero (in base 10) c i c ik. La cifra 0 è un separatore. Un messaggio scritto con la codifica elementare può essere facilmente decodificato purché il nostro interlocutore conosca l associazione carattere-numero. Questa associazione deve essere inviata al nostro interlocutore per mail e può quindi finire nelle mani di un intruso. Per evitare il problema, criptiamo il messaggio. Concordiamo con ciascuno dei nostri interlocutori una n-upla di numeri a 1,..., a n a due a due primi fra loro. Tali numeri sono conosciuti soltanto allo scrivente ed agli interlocutori. Metodo 1 : Sia A = a 1... a n. Possiamo supporre che la codifica elementare M del nostro messaggio sia < A, altrimenti spezziamo il messaggio in più parti. Inviamo al nostro interlocutore non il numero M, ma i numeri b 1 a1 M, b 2 a2 M,..., b n an M. Chi riceve i numeri b 1,..., b n può ricostruire M dal teorema Cinese del resto perché conosce a 1,..., a n. Un eventuale intruso (che non conosce a 1,..., a n ) non potrebbe. Il metodo ha il problema di comunicare i numeri segreti a 1,..., a n ai nostri interlocutori. Metodo 2 : Questo metodo è stato inventato nel 1977 da Ron Rivest, Adi Shamir e Leon Adleman ed è indicato con la sigla RSA. Ogni utente dispone di una chiave pubblica nota a tutti e una chiave privata. L utente U si procura quattro numeri distinti p, q, n, e molto grandi tali che p, q, e sono numeri primi, n = p q ed inoltre e è relativamente primo con p 1 e q 1. I numeri p e q costituiscono la chiave privata nota solo all utente U, mentre i numeri n ed e costituiscono la chiave pubblica, utilizzata per inviare messaggi ad U. In linea di principio, chi riuscisse a scomporre in fattori primi n potrebbe decodificare il messaggio, ma non esistono algoritmi efficienti per la scomposizione in fattori primi. Il signor X vuole inviare un messaggio in codice ad U senza che nessuno lo possa decodificare. Il signor X considera la codifica elementare M del messaggio. Si può supporre che M < n, altrimenti si spezza il messaggio in tante parti e si spediscono separatamente. Possiamo supporre che M sia primo con n. Se no, si può renderlo primo con n aggiungendo un simbolo speciale in fondo. Il signor X cerca nella pagina web di U la chiave pubblica di U, ossia n ed e. Il signor X calcola M e modulo n. Per calcolare questo numero si applicano le tecniche che abbiamo imparato nelle sezioni precedenti! Il numero N n M e costituisce il messaggio criptato che il signor X invia per al signor U. SOLO U può decodificare N per ottenere M, quindi non è importante se qualcuno intercetta N.
13 Lezioni di Aritmetica Modulare 13 Come U decodifica N: U calcola la funzione di Eulero φ(n) = φ(pq) = (p 1)(q 1). Poi l utente U risolve la congruenza modulare ex φ(n) 1. Tale congruenza modulare ammette soluzione perché e è relativamente primo con φ(n) = (p 1)(q 1). Sia x 0 una soluzione di tale equazione modulare. Dopo U calcola N x 0 modulo n. Tale numero è la codifica elementare M del messaggio criptato. Infatti N x 0 n (M e ) x 0 n M ex 0. Ora essendo ex 0 φ(n) 1, esiste un numero k tale che ex 0 = 1 + kφ(n). Allora N x 0 n (M e ) x 0 n M ex 0 n M 1+kφ(n) = M(M kφ(n) ) = M(M φ(n) ) k n M per il Teorema di Eulero. Un eventuale intruso per trovare M dovrebbe conoscere φ(n) = (p 1)(q 1), che è impossibile da calcolare se non si conosce la scomposizione in fattori primi di n. Difficilissima da calcolare.
Piccolo teorema di Fermat
Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod p). Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod
4 0 = 4 2 = 4 4 = 4 6 = 0.
Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono
m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica
G. Pareschi COMPLEMENTI ED ESEMPI SUI NUMERI INTERI. 1. Divisione con resto di numeri interi 1.1. Divisione con resto. Per evitare fraintendimenti nel caso in cui il numero a del Teorema 0.4 sia negativo,
TEORIA DEI NUMERI. 1. Numeri naturali, interi relativi e principi d induzione
TEORIA DEI NUMERI. Numeri naturali, interi relativi e principi d induzione Le proprietà dell insieme N = {0,, 2, } dei numeri naturali possono essere dedotte dai seguenti assiomi di Peano:. C è un applicazione
1 Relazione di congruenza in Z
1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo
Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.
Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo
7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.
NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene
Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore
MCD in N e Polinomi Giovanna Carnovale October 18, 2011 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore
ESERCITAZIONE N.8. Il calcolatore ad orologio di Gauss. L aritmetica dell orologio di Gauss. Operazioni e calcoli in Z n
Il calcolatore ad orologio di Gauss ESERCITAZIONE N.8 18 novembre L aritmetica dell orologio di Gauss Operazioni e calcoli in Z n 1, 1, -11, sono tra loro equivalenti ( modulo 12 ) Rosalba Barattero Sono
II Esonero di Matematica Discreta - a.a. 06/07. Versione B
II Esonero di Matematica Discreta - a.a. 06/07 1. Nell anello dei numeri interi Z: Versione B a. Determinare la scrittura posizionale in base 9 del numero che in base 10 si scrive) 5293 e la scrittura
LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero
LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.
MATEMATICA DI BASE 1
MATEMATICA DI BASE 1 Francesco Oliveri Dipartimento di Matematica, Università di Messina 30 Agosto 2010 MATEMATICA DI BASE MODULO 1 Insiemi Logica Numeri Insiemi Intuitivamente, con il termine insieme
= < < < < < Matematica 1
NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato
Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006
Congruenze Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 1 Il resto nella divisione tra interi Consideriamo i numeri naturali 0, 1, 2, 3,... ed effettuiamone la divisione per 3, indicando il resto:
Primo modulo: Aritmetica
Primo modulo: Aritmetica Obiettivi 1. ordinamento e confronto di numeri;. riconoscere la rappresentazione di un numero in base diversa dalla base 10; 3. conoscere differenza tra numeri razionali e irrazionali;
Moltiplicazione. Divisione. Multipli e divisori
Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini
ESERCIZI IN PIÙ I NUMERI COMPLESSI
ESERCIZI IN PIÙ I NUMERI COMPLESSI L equazione x x 0 non ha soluzioni nell insieme dei numeri reali; infatti, applicando la formula ridotta, si ottiene x, 3. Interpretando come numero immaginario, cioè
3. Classi resto modulo un intero
3 Classi resto modulo un intero In questo paragrafo studieremo la struttura algebrica dell insieme quoziente Z /, dove n è n la relazione di congruenza modulo n, introdotta nella Def 4 del Cap 3 Ma prima
POLINOMI. (p+q)(x) = p(x)+q(x) (p q)(x) = p(x) q(x) x K
POLINOMI 1. Funzioni polinomiali e polinomi Sono noti campi infiniti (es. il campo dei complessi C, quello dei reali R, quello dei razionali Q) e campi finiti (es. Z p la classe dei resti modp con p numero
Un po di teoria dei numeri
Un po di teoria dei numeri Applicazione alla crittografia RSA Christian Ferrari Liceo di Locarno Matematica Sommario 1 L aritmetica modulare di Z n Le congruenze L anello Z n Le potenze in Z n e algoritmo
Lezione 3 - Teoria dei Numeri
Lezione 3 - Teoria dei Numeri Problema 1 Trovare il più piccolo multiplo di 15 formato dalle sole cifre 0 e 8 (in base 10). Il numero cercato dev'essere divisibile per 3 e per 5 quindi l'ultima cifra deve
LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h.
LEZIONE 15 15.1. Polinomi a coefficienti complessi e loro e loro radici. In questo paragrafo descriveremo alcune proprietà dei polinomi a coefficienti complessi e delle loro radici. Già nel precedente
Programma di Algebra 1
Programma di Algebra 1 A. A. 2015/2016 Docenti: Alberto Canonaco e Gian Pietro Pirola Richiami su relazioni di equivalenza: definizione, classe di equivalenza di un elemento, insieme quoziente e proiezione
Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di
DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza
Anno 1. Divisione fra polinomi
Anno 1 Divisione fra polinomi 1 Introduzione In questa lezione impareremo a eseguire la divisione fra polinomi. In questo modo completiamo il quadro delle 4 operazioni con i polinomi. Al termine di questa
Strutture algebriche. Leggi di composizione. Leggi di composizione. Gruppi Insiemi di numeri Polinomi
Introduzione S S S S Le strutture algebriche sono date da insiemi con leggi di composizione binarie (operazioni) ed assiomi (proprietà) Una legge di composizione binaria è una funzione : I J K, una legge
CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità
CONGRUENZE I) Definizione: due numeri naturali a e b si dicono congrui modulo un numero naturale p se hanno lo stesso resto nella divisione intera per p. Si scrive a b mod p oppure a b (p) proprietà delle
ESERCIZIARIO DI MATEMATICA
Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi
x 1 Fig.1 Il punto P = P =
Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi
APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1)
LGEBR \ CLCOLO LETTERLE \ MONOMI (1) Un monomio è un prodotto di numeri e lettere; gli (eventuali) esponenti delle lettere sono numeri naturali (0 incluso). Ogni numero (reale) può essere considerato come
Corso PAS Anno 2014. ESEMPIO. Per n = 3, Z 3 contiene 3 elementi:
Corso PAS Anno 2014 Matematica e didattica 3 Correzione esercizi 1. Definizione. Sia n un fissato intero maggiore di 1. Dati due interi a, b si dice che a è congruo a b modulo n, e si scrive a b (mod n),
ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.
. Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione
4 + 7 = 11. Possiamo quindi dire che:
Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +
35 è congruo a 11 modulo 12
ARITMETICA MODULARE Scegliamo un numero m che chiameremo MODULO Identifichiamo ogni altro numero con il suo resto nella divisione per m Tutti i numeri col medesimo resto si trovano insieme nella classe
Geometria BIAR Esercizi 2
Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si
Precorso di Matematica
UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni
Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice
Pordenone Corso di Matematica e Statistica 3 Algebra delle UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica Università di Udine
Richiami sugli insiemi numerici
Richiami sugli insiemi numerici denota l insieme vuoto cioè l insieme privo di elementi. N = {1, 2, 3,...} denota l insieme dei numeri naturali. Z = {..., 2, 1, 0, 1, 2,...} denota l insieme dei numeri
Introduzione alla TEORIA DEI NUMERI
Renato Migliorato Introduzione alla teoria dei numeri Introduzione alla TEORIA DEI NUMERI Avvertenza: questo è l inizio di un testo pensato come supporto al corso di Matematiche Complementari I ed ancora
Polinomi. Corso di accompagnamento in matematica. Lezione 1
Polinomi Corso di accompagnamento in matematica Lezione 1 Sommario 1 Insiemi numerici 2 Definizione di polinomio 3 Operazioni tra polinomi 4 Fattorizzazione Corso di accompagnamento Polinomi Lezione 1
UNITÀ DIDATTICA 6 LE PROPORZIONI NUMERICHE
UNITÀ DIDATTICA 6 LE PROPORZIONI NUMERICHE 6.1 Le proporzioni. Problemi del tre semplice e del tre composto Se consideriamo 4 numeri a, b, c, d; con b e d diversi da zero, essi formano una proporzione
I.4 Rappresentazione dell informazione
I.4 Rappresentazione dell informazione Università di Ferrara Dipartimento di Economia e Management Insegnamento di Informatica Ottobre 13, 2015 Argomenti Introduzione 1 Introduzione 2 3 L elaboratore Introduzione
Appunti di Matematica Discreta (19 novembre 2009)
Appunti di Matematica Discreta (19 novembre 2009) 1 1 I numeri interi Indichiamo con Z l insieme dei numeri interi, cioè Z = {..., 3, 2, 1, 0, 1, 2, 3,...}. Se parliamo di interi positivi indichiamo l
Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)
Precorsi di matematica
Precorsi di matematica Francesco Dinuzzo 12 settembre 2005 1 Insiemi Il concetto di base nella matematica moderna è l insieme. Un insieme è una collezione di elementi. Gli elementi di un insieme vengono
Richiami di aritmetica (1)
Richiami di aritmetica (1) Operazioni fondamentali e loro proprietà Elevamento a potenza e proprietà potenze Espressioni aritmetiche Scomposizione: M.C.D. e m.c.m Materia: Matematica Autore: Mario De Leo
Prontuario degli argomenti di Algebra
Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.
1 Multipli e sottomultipli. Divisibilità
Multipli e sottomultipli. Divisibilità LA TEORIA Se la divisione fra due numeri naturali è propria (cioè il resto è uguale a 0) i due numeri si dicono divisibili. Per esempio, nella divisione 8 : diciamo
Il Sistema di numerazione decimale
Il Sistema di numerazione decimale Il NUMERO è un oggetto astratto, rappresentato da un simbolo (o cifra) ed è usato per contare e misurare. I numeri usati per contare, 0,1,2,3,4,5,. sono detti NUMERI
Metodi per la risoluzione di sistemi lineari
Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante
La codifica digitale
La codifica digitale Codifica digitale Il computer e il sistema binario Il computer elabora esclusivamente numeri. Ogni immagine, ogni suono, ogni informazione per essere compresa e rielaborata dal calcolatore
1.5 DIVISIONE TRA DUE POLINOMI
Matematica C Algebra. Le basi del calcolo letterale.5 Divisione tra due polinomi..5 DIVISIONE TRA DUE POLINOMI Introduzione Ricordiamo la divisione tra due numeri, per esempio 47:4. Si tratta di trovare
Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dei numeri relativi
Codice BCD Prima di passare alla rappresentazione dei numeri relativi in binario vediamo un tipo di codifica che ha una certa rilevanza in alcune applicazioni: il codice BCD (Binary Coded Decimal). È un
CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica
CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica [email protected] MONOMI In una formula si dicono variabili le lettere alle quali può essere
ESERCIZI SVOLTI SUL CALCOLO INTEGRALE
ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia
04 - Numeri Complessi
Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,
Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16
Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana - 015/16 Esercizio 1 Per quali valori n Z \ {0} l espressione è un numero intero positivo? (n + 5)(n + 6) 6n Soluzione. Il problema
OPERAZIONI IN Q = + = = = =
OPERAZIONI IN Q A proposito delle operazioni tra numeri razionali, affinché il passaggio da N a vero e proprio ampliamento è necessario che avvengano tre cose: Q risulti un ) le proprietà di ciascuna operazione
Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione.
Monomi e Polinomi Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. ) Sono monomi: 5 a 3 b 2 z; 2 3 a2 c 9 ; +7; 8a b 3 a 2. Non sono monomi: a + 2; xyz
DIARIO DEL CORSO DI ALGEBRA A.A. 2010/11 DOCENTE: ANDREA CARANTI
DIARIO DEL CORSO DI ALGEBRA A.A. 2010/11 DOCENTE: ANDREA CARANTI Lezione 1. mercoledí 15 settembre 2010 (2 ore) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero
Esercizi sul Principio d Induzione
AM110 - ESERCITAZIONI I - II - 4 OTTOBRE 01 Esercizi sul Principio d Induzione Esercizio svolto 1. Dimostrare che per ogni n 1, il numero α(n) := n 3 + 5n è divisibile per 6. Soluzione. Dimostriamolo usando
MONOMI. Donatella Candelo 13/11/2004 1
Donatella Candelo 1/11/00 1 MONOMI Un monomio è una qualunque espressione algebrica intera data dal prodotto di fattori qualsiasi, numerici o letterali. Praticamente in ogni monomio si può distinguere
Rappresentazioni numeriche
Rappresentazioni numeriche Un numero è dotato di un valore una rappresentazione La rappresentazione di un numero è il sistema che utilizziamo per indicarne il valore. Normalmente è una sequenza (stringa)
1.1 Coordinate sulla retta e nel piano; rette nel piano
1 Sistemi lineari 11 Coordinate sulla retta e nel piano; rette nel piano Coordinate sulla retta Scelti su una retta un primo punto O (origine) ed un diverso secondo punto U (unita ), l identificazione
CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione
CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce
A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm
A. Calcolo in Q Questo capitolo tratta argomenti che solitamente sono già stati svolti alle scuole medie ed elementari. Tali argomenti sono necessari per affrontare il programma delle scuole superiori.
1 Fattorizzazione di polinomi
1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente
Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni
Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni ARITMETICA 1. Scomporre in fattori primi 2500 e 5600. Soluzione: Osserviamo che entrambi i numeri sono multipli di 100 = 2 2 5
LEZIONE 10. S(C,ρ) Figura 10.1
LEZIONE 10 10.1. Sfere nello spazio. In questa lezione studieremo alcuni oggetti geometrici non lineari, circonferenze e sfere nello spazio A 3. Poiché le proprietà delle circonferenze nel piano sono del
Programma di matematica classe I sez. E a.s
Programma di matematica classe I sez. E a.s. 2015-2016 Testi in adozione: Leonardo Sasso vol.1- Ed. Petrini La matematica a colori Edizione blu per il primo biennio MODULO A: I numeri naturali e i numeri
1 Definizione di sistema lineare omogeneo.
Geometria Lingotto. LeLing1: Sistemi lineari omogenei. Ārgomenti svolti: Definizione di sistema lineare omogeneo. La matrice associata. Concetto di soluzione. Sistemi equivalenti. Operazioni elementari
Università degli studi di Verona Corso di laurea in Informatica Prova scritta di Algebra 3 settembre 2002
Prova scritta di Algebra settembre 2002 1) Si consideri il sottoinsieme del gruppo Q \{0} dei numeri razionali non nulli rispetto alla moltiplicazione: { m X = n } m 0, n Si dimostri che X è un sottosemigruppo;
SCOMPOSIZIONE IN FATTORI PRIMI:
SCOMPOSIZIONE IN FATTORI PRIMI: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229
1.2 MONOMI E OPERAZIONI CON I MONOMI
Matematica C Algebra. Le basi del calcolo letterale. Monomi e operazioni con i monomi. MONOMI E OPERAZIONI CON I MONOMI... L insieme dei monomi D ora in poi quando scriveremo un espressione letterale in
MATEMATICA LA CIRCONFERENZA GSCATULLO
MATEMATICA LA CIRCONFERENZA GSCATULLO La Circonferenza La circonferenza e la sua equazione Introduzione e definizione La circonferenza è una conica, ovvero quella figura ottenuta tagliando un cono con
1 Multipli di un numero
Multipli di un numero DEFINIZIONE. I multipli di un numero sono costituiti dall insieme dei prodotti ottenuti moltiplicando quel numero per la successione dei numeri naturali. I multipli del numero 4 costituiscono
ELEMENTI di TEORIA degli INSIEMI
ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)
ISTITUTO D ISTRUZIONE SUPERIORE POLO - LICEO ARTISTICO - VENEZIA PROGRAMMA SVOLTO
ISTITUTO D ISTRUZIONE SUPERIORE POLO - LICEO ARTISTICO - VENEZIA A.S.: 0/05 Classe Sezione Indirizzo: IV B Classico Disciplina: MATEMATICA E INFORMATICA ( h) Docente: Fabiola Frezza PROGRAMMA SVOLTO MODULO/UNITÀ
Le quattro operazioni fondamentali
Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:
CORSO DI AZZERAMENTO DI MATEMATICA
CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA
Soluzioni dei quesiti della maturità scientifica A.S. 2007/2008
Soluzioni dei quesiti della maturità scientifica A.S. 007/008 Nicola Gigli Sun-Ra Mosconi 19 giugno 008 1. La proposizione è falsa. Per trovare un controesempio ad essa, si consideri un qualunque piano
DAI NUMERI NATURALI AI NUMERI RAZIONALI
DAI NUMERI NATURALI AI NUMERI RAZIONALI 1. L insieme dei numeri naturali Nel sistema assiomatico ZF, l Assioma dell infinito stabilisce che: Esiste un insieme A, i cui elementi sono insiemi e tale che
Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni
Argomenti della lezione Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni Quale cifra deve assumere la lettera c affinché i numeri 821c e 82c1 siano divisibili per 2? Un numero
04 - Logica delle dimostrazioni
Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,
Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2011
Gara Matematica Dipartimento di Matematica Ulisse Dini Viale Morgagni 67/a - 50134 Firenze Soluzioni edizione 011 Esercizio 1. Determinare tutti gli interi positivi non nulli n che sono uguali alla somma
IL CALCOLO LETTERALE. La «traduzione» del linguaggio comune in linguaggio matematico
IL CALCOLO LETTERALE La «traduzione» del linguaggio comune in linguaggio matematico BREVE STORIA DELL ALGEBRA Dall algebra sincopata all algebra simbolica L algebra è una disciplina antichissima ma il
I RADICALI QUADRATICI
I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,
Funzioni elementari: funzioni potenza
Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,
Francesco Zumbo
La retta - Teorema di Talete - Equazione della retta: passante per due punti, implicita, esplicita - Parallele e Perpendicolari - Fascio Propio e improprio - Intersezione tra rette Francesco Zumbo www.francescozumbo.it
Scheda per il recupero 1
A Ripasso Le operazioni in N e le loro proprietà OPERAZIONE PROPRIETÀ ESEMPI Addizione Interna a N (ovvero la somma di due numeri naturali è sempre un numero naturale) Commutativa a þ b ¼ b þ a Associativa
Appunti di informatica. Lezione 7 anno accademico Mario Verdicchio
Appunti di informatica Lezione 7 anno accademico 2016-2017 Mario Verdicchio L algoritmo di Euclide per l MCD Dati due numeri A e B, per trovare il loro MCD procedere nel seguente modo: 1. dividere il maggiore
Allenamenti di matematica: Algebra e Teoria dei Numeri
Brescia, 18 novembre 2011 Allenamenti di matematica: Algebra e Teoria dei Numeri 1. (a) Risolvi l equazione x 3 12x 2 + 29x 18 = 0. (b) Risolvi l equazione precedente utilizzando il seguente metodo. Effettua
Massimo comun divisore
Massimo comun divisore Da Wikipedia, l'enciclopedia libera. In matematica, il massimo comun divisore (M.C.D.) di due numeri interi, che non siano entrambi uguali a zero, è il numero naturale più grande
DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI
FACOLTA' DI ECONOMIA UNIVERSITA DELLA CALABRIA Corso di Modelli Matematici per l Azienda a.a. 2011-2012 DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI Prof. Fabio Lamantia INSIEMI INSIEME= gruppo di oggetti
Sviluppi e derivate delle funzioni elementari
Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim
Capitolo IV SPAZI VETTORIALI EUCLIDEI
Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.
Numeri decimali, rapporti e proporzioni
Numeri decimali, rapporti e proporzioni E. Modica [email protected] Liceo Scientifico Statale S. Cannizzaro Corso P.O.N. Modelli matematici e realtà A.S. 2010/2011 Da una forma all altra... Dalla frazione
Sin dalla più remota antichità il concetto di numero primo affascina e confonde gli esseri umani.
I NUMERI PRIMI 1 Sin dalla più remota antichità il concetto di numero primo affascina e confonde gli esseri umani. [ ] I numeri primi sono gli elementi essenziali della teoria dei numeri. Tratto da L enigma
