Cap. 2. Le equazioni della fluidodinamica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cap. 2. Le equazioni della fluidodinamica"

Transcript

1 Cap. 2. Le equazioni della fluidodinamica La formula del trasporto di Reynolds consente di portare la derivata temporale sotto il segno d integrale. Consideriamo una generica quantità f(x, t) contenuta in un volume materiale. La formula di Reynolds è: d f dτ = [ ] f + (fv) dτ (2.1) Talvolta essa viene scritta nel seguente modo (si sfrutta il teorema della divergenza): d f f dτ = dτ + fv ndσ Per dimostrare la formula (2.1) calcoliamo il limite del rapporto incrementale V(t+) f(x,t+)dτ f(x,t)dτ = B+C f(x,t+)dτ f(x,t)dτ Dove A è la porzione di volume occupata dal fluido al tempo t ma non al tempo t +, C quella occupata dal fluido al tempo t+ ma non al tempo t, B quella occupata dal fluido sia tempo t che al tempo t+. B v dσ C n A Sout Sin 7

2 8 CAPITOLO 2. LE EQUAZIONI DELLA FLUIDODINAMICA Aggiungiamo e sottraiamo a secondo membro la quantità f(x,t+)dτ il rapporto incrementale può essere scritto come: f(x,t+)dτ A f(x,t)dτ f(x,t+)dτ + Il primo termine nel limite t 0 tende a: f(x,t+)dτ f(x,t)dτ) lim t 0 C = f(x,t+)dτ A f(x,t) dτ Il secondo termine rappresenta il flusso di f attraverso la porzione di superficie di dalla quale il fluido esce: f(x,t+)dτ C lim = f(x,t)v ndσ t 0 S out Infatti il volume C è composto dai volumi infinitesimi dτ = v ndσ dove n è il versore normale all area di contorno infinitesima dσ e orientato verso l esterno. Analogamente il terzo termine rappresenta il flusso di f attraverso la porzione di superficie di dalla quale entra del fluido: f(x,t+)dτ A S = lim f(x,t)v ndσ t 0 S in Per il teorema della divergenza si ha infine f(x,t)v ndσ = (fv)dτ L equazione di evoluzione di una quantità U si dice in forma conservativa se essa assume la forma Q + F = S Q è detta la variabile conservata, F è il flusso e S è il termine sorgente. Q può essere una quantità scalare o vettoriale. Ad esempio nell equazione di continuità si pone Q = ρ (la densità), mentre nell equazione della quantità di moto Q = ρv.

3 2.1. CONSERVAZIONE DELLA MASSA Conservazione della massa Sia M = ρdτ la massa contenuta nel volume V al tempo t; ρ è la funzione densità (non negativa). La conservazione della massa in forma integrale è espressa da Sfruttiamo la formula di Reynolds: d ρdτ = 0 [ ] ρ + (ρv) dτ = 0 Per l arbitrarietà del volume di controllo si ricava la forma differenziale (conservativa) dell equazione di continuità: ρ + (ρv) = 0 (2.2) In un fluido incomprimibile la densità è costante lungo le traiettorie: dρ = ρ +v ρ = 0 Ciò implica che la velocità è a divergenza nulla: v = 0. Questa condizione sostituisce l equazione evolutiva (2.2) per la densità; a causa di ciò gli schemi numerici per i fluidi incomprimibili sono notevolmente diversi da quelli usati per i fluidi comprimibili. Un fluido con densità costante è sicuramente incomprimibile. Non è detto però che un fluido incomprimibile abbia densità costante. 2.2 Equazione della quantità di moto Scriviamo l equazione della quantità di moto in forma integrale: d ρvdτ = variazione della quantità di moto ρf dτ + risultante delle forze specifiche di volume tdσ risultante degli sforzi interni Dove f è la forza specifica esterna e t sono gli sforzi interni. t può essere scritto come t = T n, dove T è il tensore degli sforzi di Cauchy (n è la normale uscente alla superficie del volume ). Nel caso di un fluido non viscoso gli sforzi sono nella direzione della normale; T è un tensore diagonale: T ij = pδ ij, e p viene chiamata pressione. Nel caso viscoso T non è più un diagonale. Se il fluido è non polare esso è un tensore simmetrico. Scriveremo T = p I + τ

4 10 CAPITOLO 2. LE EQUAZIONI DELLA FLUIDODINAMICA τ è il tensore degli sforzi viscosi. Nei fluidi Newtoniani τ è lineare ed isotropo nel tensore velocità di deformazione S. La forma più generale possibile è: τ = 2µ S +(λtr S ) I 1 ( S = v+ T v ), S ij = ( jv i + i v j ) (Notiamo che tr S = v). µ è il coefficiente di viscosità dinamico, λ è il secondo coefficiente di viscosità (spesso λ e µ sono legati tra loro, ad esempio per gas monoatomici o biatomici λ = 2 3 µ). Introduciamo anche il coefficiente di viscosità cinematico ν = µ ρ. Valori tipici di ν sono indicati nella tabella 2.1 fluido ν(m 2 /s) mercurio acqua aria olio d oliva glicerina Tabella 2.1: Valori numerici del coefficiente di viscosità cinematico per alcuni fluidi alla temperatura T = 20 o. Nel caso di un fluido incomprimibile il contributo (λtr S ) I = λ v I ovviamente si annulla. Passando dalla forma integrale a quella differenziale si ottiene: ρv + ( ρv v ) T = ρf e in forma indiciale: ρv i + j (ρv i v j T ij ) = ρf i Notiamo che questa equazione è scritta in forma conservativa. Sfruttando l equazione di continuità essa può essere scritta nella seguente forma non conservativa, talvolta più pratica: ρ v +ρ(v )v = T +ρf In notazione indiciale: ρ v i +ρv j j v i = j T ij +ρf i Le equazioni precedenti sono sufficienti per calcolare il moto di un fluido incomprimibile. Riassumendo possiamo scriverle nelle forme seguenti: Forma conservativa: ρ + (ρv) = 0 ρv + ( ρv v +p I 2µ S v = 0 ) = ρf

5 2.3. CHIUSURA DELLE EQUAZIONI PER I FLUIDI COMPRIMIBILI 11 Forma non conservativa: ρ +v ρ = 0 ρ v +ρ(v )v = p+ (2µ S )+ρf v = 0 Se la densità è uniforme la prima equazione non è più necessaria. Nel caso in cui il coefficiente di viscosità dinamico µ fosse costante la forza viscosa si ridurrebbe a (2µ S ) = µ v (2.3) (qui e nel seguito il simbolo = 2 x y z denota l operatore laplaciano). 2 Se la densità è costante si usa talvolta scrivere l equazione di moto nella seguente forma: ( ) v p = v ω ρ + v2 +f ρ (2µ S ) dove ω = v è la vorticità. Ciò viene dall identità vettoriale applicata a A = B = v: (A B) = A ( B)+B ( A)+(A )B +(B )A (v )v = (v 2 /2) v ω Nel caso in cui anche la viscosità fosse costante, sfruttando la (2.3) si otterrebbe: ( ) v p = v ω ρ + v2 +f +ν v (2.4) Chiusura delle equazioni per i fluidi comprimibili Nel caso di fluidi comprimibili le equazioni precedenti non sono sufficienti a chiudere il sistema. Infatti le incognite sono 5 (ρ, p e le tre componenti di v) mentre le equazioni sono soltanto 4 (l equazione di continuità e le tre componenti di quella della quantità di moto). Nel caso in cui si fornisca un legame diretto tra la pressione e la densità (flussi barotropici) non sono necessarie ulteriori equazioni; ciò vale ad esempio per gas isotermici ( p ρ = costante) o isentropici ( p ρ = costante, con γ = cp γ c V ). Tolti questi casi particolari il sistema viene chiuso fornendo l equazione di conservazione dell energia e l equazione di stato tra le variabili termodinamiche. In forma integrale l equazione dell energia è: d ρedτ + variazione en. tot. q ndσ = flusso di calore t vdσ + pot. sforzi interni ρf vdτ + pot. forze specifiche ρrdτ sorgente di calore dove E è l energia specifica totale: E = e+ 1 2 v2, con e l energia interna; r è un eventuale terminediproduzionedienergia internaperunitàdimassa; q èil flussotermico specifico; sesi

6 12 CAPITOLO 2. LE EQUAZIONI DELLA FLUIDODINAMICA assume valida la legge di Fourier allora q = χ θ, dove θ è la temperatura e χ è il coefficiente di conduttività termica dinamico. Introduciamo anche il coefficiente di conduttività termica cinematico κ = χ ρc P. Il rapporto Pr = ν κ è un numero adimensionale e viene chiamato numero di Pranl. La forma differenziale conservativa si ottiene sfruttando la formula di Reynolds e trasformando gli integrali di superficie in integrali di volume: t vdσ = (v T ) ndσ = (v T )dτ Si ottiene così: ρe Introducendo poi l entalpia specifica totale + (ρev v T χ θ) = ρ(f v +r) (2.5) la (2.5) diventa: h = E + P ρ ρe + (ρhv v τ χ θ) = ρ(f v +r) Per chiudere il sistema di equazioni bisogna fornire una relazione per le variabili termodinamiche: la legge di stato. In un gas ideale ad esempio si ha: P = (γ 1)ρe, θ = e c v, γ = c p c v In un liquido invece si può assumere che la pressione non abbia effetti sulla densità e che quest ultima dipenda poco dalla temperatura, in modo da scrivere la seguente equazione linearizzata ρ = ρ 0 [1 α(θ θ 0 )] dove α è il coefficiente di dilatazione termica. L energia interna è legata alla temperatura dalla relazione e = cθ, c = c v c p Le equazioni precedenti sono sufficienti per calcolare il moto. Riassumendo possiamo scriverle nella seguente forma conservativa: Q = ρ ρv ρe, F = Q + F = G ρv ρv v +p I λ v I 2µ S ρhv λv v 2µ S v χ θ, G = 0 ρf ρ(f v +r) Analizziamo ora il contributo (v τ ) degli sforzi viscosi alla variazione di energia. j (v i τ ij ) = v i j τ ij +τ ij i v j (2.6)

7 2.4. EQUAZIONE DELLA VORTICITÀ 13 Il termine(v i j τ ij ) rappresentalapotenza dellaforza viscosa t visc = τ. Ilsecondo termine può essere scritto come τ ij S ij. Infatti in virtù della simmetria di τ ij : τ ij i v j = 1 2 (τ ij +τ ji ) i v j = 1 2 τ ij( i v j + j v i ) = τ ij S ij I due termini a secondo membro della(2.6) rappresentano due quantità molto diverse: il primo termine t visc v contribuisce alla variazione dell energia meccanica del sistema. Il secondo termine τ ij S ij è la dissipazione di energia; definiamo con ǫ il tasso specifico di dissipazione di energia interna: ǫ = τ ijs ij ρ per un fluido incomprimibile, tenuto conto del fatto che τ ij = 2µS ij, si ha: 2.4 Equazione della vorticità ǫ = 2νS ij S ij Consideriamo il caso di un fluido incomprimibile a densità e viscosità costanti. Applicando il rotore alla (2.4) otteniamo la seguente equazione di evoluzione per la vorticità: Sfruttiamo l identità vettoriale ω = (v ω)+ f +ν ω (2.7) (v ω) = v ω ω v +(ω )v (v )ω e notiamo che v = ω = 0. L equazione (2.7) diventa: dω = (ω )v + f +ν ω (2.8) Nel caso in cui la viscosità sia nulla o trascurabile e in assenza di forzante esterna (f = 0), l equazione precedente si scrive semplicemente dω = (ω )v (2.9) Da questa equazione discende il teorema di Kelvin (1869) che stabilisce che il flusso della vorticità attraverso una superficie materiale che si sposta con il fluido rimane costante nel tempo. Per dimostrare il teorema di Kelvin consideriamo una superficie materiale ; C(t) è la linea di contorno di. Sia inoltre S(t+) la superficie materiale al tempo t+ e S L la superficie laterale che collega a S(t+). Allora Φ(t+) Φ(t) ω(x,t+) ndσ = S(t+) ω(x,t+) ndσ + = S(t+) S(t+) S(t+)

8 14 CAPITOLO 2. LE EQUAZIONI DELLA FLUIDODINAMICA Nel limite 0 i primi due termini tendono a ω ndσ. Per gli altri due termini notiamo che il flusso totale attraverso una superficie chiusa è nullo. Pertanto S(t+) L ultimo integrale può essere scritto come S L = Pertanto C(t) dφ = ω (dl v) = C(t) S = L (v ω) dl = [ ] ω (v ω) ndσ = 0 [ (v ω)] ndσ Dalla conservazione del flusso di vorticità discende una proprietà molto interessante: si può pensare alle linee di vorticità come se fossero congelate dentro il fluido e lo seguissero nei suoi spostamenti. Per convincerci di ciò consideriamo una superficie molto sottile che racchiuda una linea di corrente ad un dato istante t 0 : il flusso attraverso questa superficie è nullo. Ad un istante successivo t esso rimane nullo e si può pensare che la nuova superficie racchiuda la linea di vorticità all istante t. Dunque è come se la linea di vorticità abbia seguito il fluido nel suo movimento. Vediamo un altra proprietà interessante dell equazione (2.9). Mostriamo che l equazione di evoluzione del raggio vettore di due punti infinitesimamente vicini è la stessa della (2.9). Poniamo l = r 2 r 1. dl = r 2(t+) r 1 (t+) r 2 (t)+r 1 (t) = v(r 2,t) v(r 1,t) = [(r 2 r 1 ) ]v 1 = (l )v Supponiamo che a un istante iniziale t 0 i vettori ω(r 0,t 0 ) e l siano allineati: ω(r 0,t 0 ) = λl(t 0 ) Allora agli istanti successivi essi rimarranno allineati con lo stesso coefficiente di proporzionalità: ω(r,t) = λl(t) Infatti pongo w = ω λl: dw = d (ω λl) = [(ω λl) ]v = (w )v w = 0 è soluzione di questa equazione con la condizione iniziale nulla. Nelle regioni dove elementi contigui di fluido paralleli al vettore vorticità si allontanano, r 2 r 1 aumenta e di coneguenza la vorticità aumenta, mentre nelle regioni dove questi si avvicinano la vorticità diminuisce.

Pillole di Fluidodinamica e breve introduzione alla CFD

Pillole di Fluidodinamica e breve introduzione alla CFD Pillole di Fluidodinamica e breve introduzione alla CFD ConoscereLinux - Modena Linux User Group Dr. D. Angeli diego.angeli@unimore.it Sommario 1 Introduzione 2 Equazioni di conservazione 3 CFD e griglie

Dettagli

Funzioni vettoriali di variabile scalare

Funzioni vettoriali di variabile scalare Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.

Dettagli

Derivata materiale (Lagrangiana) e locale (Euleriana)

Derivata materiale (Lagrangiana) e locale (Euleriana) ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli

Introduzione alla Fluidodinamica Computazionale (CFD)

Introduzione alla Fluidodinamica Computazionale (CFD) Introduzione alla Fluidodinamica Computazionale (CFD) Gianni Orsi g.orsi@centropiaggio.unipi.it Fluidodinamica Computazionale (CFD) CFD è l analisi dei sistemi che involvono movimento di fluidi, scambio

Dettagli

Cap 3- Legge di Gauss. 3.1-Concetto di flusso Flusso del campo elettrico. Cap 3- Legge di Gauss

Cap 3- Legge di Gauss. 3.1-Concetto di flusso Flusso del campo elettrico. Cap 3- Legge di Gauss Cap 3- Legge di Gauss Cap 3- Legge di Gauss Una formulazione equivalente alla legge di Coulomb è quella stabilita dal teorema di Gauss, che trae vantaggio dalle situazioni nelle quali vi è una simmetria

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

Meccanica. 3. Elementi di Analisi Vettoriale. Domenico Galli. Dipartimento di Fisica e Astronomia.

Meccanica. 3. Elementi di Analisi Vettoriale.  Domenico Galli. Dipartimento di Fisica e Astronomia. Meccanica 3. Elementi di Analisi Vettoriale http://campus.cib.unibo.it/246981/ Domenico Galli Dipartimento di Fisica e Astronomia 5 maggio 2017 Traccia 1. Vettori Variabili 2. Derivate e Integrali 3. Derivate

Dettagli

Fenomeni di rotazione

Fenomeni di rotazione Fenomeni di rotazione Si e visto che nel caso di un fluido, data la proprietà di deformarsi quando sottoposti a sforzi di taglio, gli angoli di rotazione di un elemento di fluido rispetto ad sistema di

Dettagli

Lezione 5: Richiami di termomeccanica dei mezzi continui

Lezione 5: Richiami di termomeccanica dei mezzi continui Lezione 5: Richiami di termomeccanica dei mezzi continui Dipartimento di Ingegneria Civile e Ambientale Università degli Studi di Perugia Dottorato Internazionale Congiunto Firenze Braunschweig Firenze,

Dettagli

Origine fisica di equazioni alle derivate parziali

Origine fisica di equazioni alle derivate parziali Origine fisica di equazioni alle derivate parziali Equazione del calore Dato un corpo nello spazio, rappresentato con un sottoinsieme A di 3, indichiamo con u(, y, z, t) la temperatura del corpo nel punto(,

Dettagli

Forme differenziali e campi vettoriali: esercizi svolti

Forme differenziali e campi vettoriali: esercizi svolti Forme differenziali e campi vettoriali: esercizi svolti 1 Esercizi sul Teorema di Green......................... 2 2 Esercizi sul Teorema di Stokes......................... 4 3 Esercizi sul Teorema di

Dettagli

Dalla meccanica del continuo alle Equazioni di Lagrange g per i solidi elastici. Dinamica delle Strutture Aerospaziali

Dalla meccanica del continuo alle Equazioni di Lagrange g per i solidi elastici. Dinamica delle Strutture Aerospaziali Dalla meccanica del continuo alle Equazioni di Lagrange g per i solidi elastici Franco Mastroddi http://www.diaa.uniroma1.it/docenti/f.mastroddi dal Dinamica delle Strutture Aerospaziali Anno Accademico

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

29. Mezzi elastici RELAZIONE SFORZO-DEFORMAZIONE

29. Mezzi elastici RELAZIONE SFORZO-DEFORMAZIONE 29. Mezzi elastici I mezzi continui solidi sono caratterizzati da piccole deformazioni, che consentono di stabilire una relazione lineare tra sforzo e deformazione nota come legge di Hook. Linearizzando

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante

Dettagli

RISOLUZIONE DI PROBLEMI DI FISICA

RISOLUZIONE DI PROBLEMI DI FISICA RISOUZIONE DI PROBEMI DI FISICA Problema 1 Una massa puntiforme m = 2 kg è soggetta ad una forza centrale con associata energia potenziale radiale U( r) 6 A =, dove A = 2 J m 6. Il momento angolare della

Dettagli

Laboratorio di Simulazione Atomistica e Fluidodinamica. Equazione di Stokes e soluzione numerica col metodo degli elementi di contorno

Laboratorio di Simulazione Atomistica e Fluidodinamica. Equazione di Stokes e soluzione numerica col metodo degli elementi di contorno Laboratorio di Simulazione Atomistica e Fluidodinamica Equazione di Stokes e soluzione numerica col metodo degli elementi di contorno Equazione di Stokes Struttura della lezione: Equazione di Navier Stokes

Dettagli

IDRAULICA AMBIENTALE PROGRAMMA DEL CORSO

IDRAULICA AMBIENTALE PROGRAMMA DEL CORSO IDRAULICA AMBIENTALE DOCENTE: Prof.ssa CLAUDIA ADDUCE Testi di riferimento: - A. Cenedese, 2006, Meccanica dei fluidi ambientale, Mc Graw-Hill. - B. Cushman-Roisin, 1994, Introduction to Geophysical Fluid

Dettagli

CONDENSATI DI BOSE-EINSTEIN E SUPERFLUIDI

CONDENSATI DI BOSE-EINSTEIN E SUPERFLUIDI CONDENSATI DI BOSE-EINSTEIN E SUPERFLUIDI Consideriamo un fluido in una scatola. Questo è un insieme di tanti piccoli costituenti che supponiamo per semplicità essere identici. Dalla meccanica quantistica

Dettagli

Lezione 8 Dinamica del corpo rigido

Lezione 8 Dinamica del corpo rigido Lezione 8 Dinamica del corpo rigido Argomenti della lezione:! Corpo rigido! Centro di massa del corpo rigido! Punto di applicazione della forza peso! Punto di applicazione della forza peso! Momento della

Dettagli

Teoria dei mezzi continui

Teoria dei mezzi continui Teoria dei mezzi continui Il modello di un sistema continuo è un modello fenomenologico adatto a descrivere sistemi fisici macroscopici nei casi in cui le dimensione dei fenomeni osservati siano sufficientemente

Dettagli

CAMPI VETTORIALI (Note)

CAMPI VETTORIALI (Note) CAMPI VETTORIALI (Note) Sia v(x,y,z) il vettore che definisce la grandezza fisica del campo: il problema che ci si pone è di caratterizzare il campo vettoriale sia in termini locali, cioè validi punto

Dettagli

Corso di Laurea Ingegneria Civile e Ambientale

Corso di Laurea Ingegneria Civile e Ambientale Corso di Laurea Ingegneria Civile e Ambientale UNIVERSITÀ DEGLI STUDI DI ENNA KORE FACOLTÀ DI INGEGNERIA E ARCHITETTURA Complementi di Idraulica Ambientale Prof. Mauro De Marchis 10/03/2014 Programma del

Dettagli

Vd Vd Vd Re = Per definire il REGIME di moto si individua il: Numero indice di Reynolds (adimensionale)

Vd Vd Vd Re = Per definire il REGIME di moto si individua il: Numero indice di Reynolds (adimensionale) CINEMATICA Esperienza di Osborne Reynolds (1842-1912) Per basse velocità: moto per filetti viscoso laminare Al crescere velocità: moto di transizione V d V d Per elevate velocità: moto turbolento V d CINEMATICA

Dettagli

Appunti della lezione sulla Equazione Differenziale delle Onde

Appunti della lezione sulla Equazione Differenziale delle Onde Appunti della lezione sulla Equazione Differenziale delle Onde ultima revisione: 21 giugno 2017 In tutti i casi analizzati precedentemente si osserva che le onde obbediscono alla stessa Equazione Differenziale

Dettagli

Che cos è un fluido?

Che cos è un fluido? Che cos è un fluido? Breve introduzione alla fluidodinamica Alessandro Musesti Università Cattolica del Sacro Cuore Verona, 28 maggio 2008 Alessandro Musesti (Univ. Cattolica) Che cos è un fluido? Verona,

Dettagli

Forza viscosa. Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v

Forza viscosa. Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v Forza viscosa 1 / 44 Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v attrito turbolento (2) Per entrambi i modelli l equazione

Dettagli

Esame scritto Fisica 1 del 13 settembre soluzione

Esame scritto Fisica 1 del 13 settembre soluzione Esame scritto Fisica 1 del 13 settembre 2010 - soluzione Nota: i valori numerici sono diversi nelle varie copie del compito, e quindi qui vengono indicati i ragionamenti e le formule da utilizzare ma non

Dettagli

5,&+,$0, 68*/,23(5$725,9(7725,$/,

5,&+,$0, 68*/,23(5$725,9(7725,$/, 5,&+,$0, 8*/,23(5$725,9(7725,$/, Gradiente E un operatore differenziale del primo ordine che si applica ad una generica grandezza scalare ϕ, e genera un vettore secondo la seguente definizione: ϕ ϕ Q =

Dettagli

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli).

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli). Meccanica dei fluidi! definizioni;! statica dei fluidi (principio di Archimede);! dinamica dei fluidi (teorema di Bernoulli). [importanti applicazioni in biologia / farmacia : ex. circolazione del sangue]

Dettagli

ATTRITO VISCOSO NEI FLUIDI

ATTRITO VISCOSO NEI FLUIDI ATTRITO VISCOSO NEI FLUIDI DOWNLOAD Il pdf di questa lezione (0319a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 19/03/2012 VISCOSITÀ La viscosità è un fenomeno che si manifesta in

Dettagli

Dinamica dei Fluidi. Moto stazionario

Dinamica dei Fluidi. Moto stazionario FLUIDODINAMICA 1 Dinamica dei Fluidi Studia il moto delle particelle di fluido* sotto l azione di tre tipi di forze: Forze di superficie: forze esercitate attraverso una superficie (pressione) Forze di

Dettagli

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco Robotica industriale Richiami di statica del corpo rigido Prof. Paolo Rocco (paolo.rocco@polimi.it) Sistemi di forze P 1 P 2 F 1 F 2 F 3 F n Consideriamo un sistema di forze agenti su un corpo rigido.

Dettagli

Il TEOREMA DI TRASPORTO DI REYNOLDS

Il TEOREMA DI TRASPORTO DI REYNOLDS CAPITOLO 4. Il TEOREMA DI TRASPORTO DI REYNOLDS 4.1 Il Teorema di Trasporto di Reynolds Le leggi di conservazione della Massa, della Quantità di Moto (Momentum) e dell Energia costituiscono le relazioni

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

; r 0 2 m = l 2 (s 2 θ + c 2 θ) = l 2

; r 0 2 m = l 2 (s 2 θ + c 2 θ) = l 2 1 Calcolo del momento d inerzia Esercizio I.1 Pendolo semplice Si faccia riferimento alla Figura 1, dove è rappresentato un pendolo semplice; si utilizzeranno diversi sistemi di riferimento: il primo,

Dettagli

Equazioni della fisica matematica

Equazioni della fisica matematica Equazioni ella fisica matematica Equazione i conservazione ella massa in fluioinamica Questo principio ella fisica si può scrivere come ρ = ρv n, t ove è una generica porzione i spazio occupata al fluio,

Dettagli

Meccanica dei Fluidi

Meccanica dei Fluidi POLITECNICO DI MILANO Meccanica dei Fluidi 4. Dinamica dei Fluidi A cura di: Diego Berzi v1.2 Indice 1 Bilancio di massa 3 1.1 Forma indefinita......................... 3 1.2 Forma globale...........................

Dettagli

CENNI DI FLUIDODINAMICA

CENNI DI FLUIDODINAMICA CENNI DI FLUIDODINAMICA DOWNLOAD Il pdf di questa lezione (0509a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 09/05/2012 MOTO DEI FLUIDI PERFETTI Il comportamento dei fluidi reali

Dettagli

Momento angolare L. P. Maggio Prodotto vettoriale

Momento angolare L. P. Maggio Prodotto vettoriale Momento angolare L. P. Maggio 2007 1. Prodotto vettoriale 1.1. Definizione Il prodotto vettoriale di due vettori tridimensionali a e b è un vettore c così definito: a) Il modulo di c è pari all area del

Dettagli

Funzioni di più variabili a valori vettoriali n t m

Funzioni di più variabili a valori vettoriali n t m Funzioni di più variabili a valori vettoriali n t m Definizione f(x 1, x 2,...x n )=[f 1 (x 1, x 2,...x n ), f 2 (x 1, x 2,...x n ),...f m (x 1, x 2,...x n )] Funzione definita n d m Dove: n = dominio

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico II 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica

Dettagli

Meccanica dei Fluidi: statica e dinamica

Meccanica dei Fluidi: statica e dinamica Meccanica dei Fluidi: statica e dinamica Stati della materia (classificazione assai approssimativa!) Solido: ha una forma propria, poco compressibile, alta densità Liquido: non ha una forma propria, poco

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI:

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI: ESERCIZI SULLA DINAMICA DI CORPI RIGIDI: risoluzione mediante le euazioni cardinali della dinamica Esercizio n.11 Siadatounpianoinclinatofisso e posto in un piano verticale. Su di esso rotola senza strisciare

Dettagli

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro ed energia Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro di una forza Consideriamo una forza F applicata ad un punto materiale P che si sposti

Dettagli

Lezione XIII - 26/03/2003 ora 8:30-10:30 - Sistemi aperti - Originale di Taverna Alessia.

Lezione XIII - 26/03/2003 ora 8:30-10:30 - Sistemi aperti - Originale di Taverna Alessia. Lezione XIII - 6/03/003 ora 8:30-0:30 - Sistemi aperti - Originale di Taverna Alessia I sistemi aperti Finora ci siamo limitati a considerare i cosiddetti sistemi chiusi cioè una regione di spazio delimitata

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 01 1) FLUIDI: Un blocchetto di legno (densità 0,75 g/ cm 3 ) di dimensioni esterne (10x0x5)cm 3 è trattenuto mediante una fune

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Statica ed equilibrio dei corpi

Statica ed equilibrio dei corpi Statica ed equilibrio dei corpi Avendo stabilito le leggi che regolano il moto dei corpi è possibile dedurre le leggi che regolano il loro equilibrio in condizioni statiche, cioè in assenza di movimento.

Dettagli

Corso di Idraulica ed Idrologia Forestale

Corso di Idraulica ed Idrologia Forestale Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe Bombino - Ing. Demetrio Zema Lezione n. 5: Cinematica dei fluidi Anno Accademico 2008-2009

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11 Indice Indice 3 Note di utilizzo 9 Ringraziamenti 10 Introduzione 11 Capitolo 1 Grandezze fisiche e schematizzazione dei sistemi materiali 13 1.1 Grandezze fisiche ed operazione di misura 13 1.2 Riferimento

Dettagli

Alcuni utili principi di conservazione

Alcuni utili principi di conservazione Alcuni utili principi di conservazione Portata massica e volumetrica A ds Portata massica: massa di fluido che attraversa la sezione A di una tubazione nell unità di tempo [kg/s] ρ = densità (massa/volume)

Dettagli

Test Esame di Fisica

Test Esame di Fisica Test Esame di Fisica NOTA: per le domande a risposta multipla ogni risposta corretta viene valutata con un punto mentre una errata con -0.5 punti. 1) Una sola delle seguenti uguaglianze non e corretta?

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 1 Febbraio 2010

Fisica Generale I (primo e secondo modulo) A.A , 1 Febbraio 2010 Fisica Generale I (primo e secondo modulo) A.A. 2009-0, Febbraio 200 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale e 2 per

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Esperienza 1/3: viscosità. della glicerina. Laboratorio di Fisica 1 A. Baraldi, M. Riccò. Università di Parma. a.a. 2012/2013

Esperienza 1/3: viscosità. della glicerina. Laboratorio di Fisica 1 A. Baraldi, M. Riccò. Università di Parma. a.a. 2012/2013 Esperienza 1/3: viscosità Università di Parma della glicerina a.a. 2012/2013 Laboratorio di Fisica 1 A. Baraldi, M. Riccò Coefficiente di viscosità La viscosità è quella grandezza fisica che ci permette

Dettagli

COMPLEMENTI SUI DIFFERENZIALI ESATTI E L INTEGRAZIONE DI FORME DIFFERENZIALI

COMPLEMENTI SUI DIFFERENZIALI ESATTI E L INTEGRAZIONE DI FORME DIFFERENZIALI COMPLEMENTI SUI DIFFERENZIALI ESATTI E L INTEGRAZIONE DI FORME DIFFERENZIALI Sergio Console Derivate parziali (notazione) Data una funzione z = f(x, y), si può pensare di tener fissa la variabile y (considerandola

Dettagli

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi)

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi) In un fluido Fluidi (FMLP: Cap. 11 Meccanica dei fluidi) le molecole non sono vincolate a posizioni fisse a differenza di quello che avviene nei solidi ed in particolare nei cristalli Il numero di molecole

Dettagli

= E qz = 0. 1 d 3 = N

= E qz = 0. 1 d 3 = N Prova scritta d esame di Elettromagnetismo 7 ebbraio 212 Proff.. Lacava,. Ricci, D. Trevese Elettromagnetismo 1 o 12 crediti: esercizi 1, 2, 4 tempo 3 h; Elettromagnetismo 5 crediti: esercizi 3, 4 tempo

Dettagli

ESAME DI AERODINAMICA 12/12/2006

ESAME DI AERODINAMICA 12/12/2006 ESAME DI AERODINAMICA 12/12/2006 La velocità indotta nel piano y-z passante per l origine da un filamento vorticoso rettilineo semi-infinito disposto lungo l asse x e con origine in x=0, rispetto a quella

Dettagli

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una

Dettagli

Corso di MECCANICA DEL VOLO Modulo Prestazioni. Lezione n.2. Prof. D. P. Coiro

Corso di MECCANICA DEL VOLO Modulo Prestazioni. Lezione n.2. Prof. D. P. Coiro Corso di MECCANICA DEL VOLO Modulo Prestazioni Lezione n.2 Prof. D. P. Coiro coiro@unina.it www.dias.unina.it/adag/ Corso di Meccanica del Volo - Mod. Prestazioni - Prof. D. Corio - Intro Il Velivolo 1

Dettagli

Fluidodinamica Applicata. 1.5 Equazioni Costitutive

Fluidodinamica Applicata. 1.5 Equazioni Costitutive Equazioni costitutive Devo fornire e (q) in funzione delle variabili dinamiche del sistema. Iniziamo a considerare il caso in cui il fluido sia in quiete: FIG.6 Idea intuitiva di fluido: ) Se è in quiete

Dettagli

ELETTROSTATICA. ' = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di legame materiale:

ELETTROSTATICA. ' = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di legame materiale: ELETTROSTATICA Si parla di elettrostatica quando, in ogni punto dello spazio ed in ogni istante risultano nulle tutte le derivate temporali che compaiono nelle equazioni generali dell elettromagnetismo,

Dettagli

Introduzione alla Meccanica Teorica ERRATA CORRIGE. Fulvio Bisi, Riccardo Rosso

Introduzione alla Meccanica Teorica ERRATA CORRIGE. Fulvio Bisi, Riccardo Rosso Introduzione alla Meccanica Teorica ERRATA CORRIGE Fulvio Bisi, Riccardo Rosso FINO A MARZO 2017 1 Gli errata vengono evidenziati in rosso con una sottolineatura ondulata, le correzioni corrispondenti

Dettagli

CAPITOLO 9: LA GRAVITAZIONE. 9.1 Introduzione.

CAPITOLO 9: LA GRAVITAZIONE. 9.1 Introduzione. CAPITOLO 9: LA GRAVITAZIONE 9.1 Introduzione. Un altro tipo di forza piuttosto importante è la forza gravitazionale. Innanzitutto, è risaputo che nel nostro sistema di pianeti chiamato sistema solare il

Dettagli

Angolo polare, versori radiale e trasverso

Angolo polare, versori radiale e trasverso Angolo polare, versori radiale e trasverso Desideriamo descrivere il moto di un corpo puntiforme che ruota su una circonferenza attorno ad un asse fisso. Nella figura l asse di rotazione coincide con l

Dettagli

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO A - IDRAULICA IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO' SUBIRE RILEVANTI VARIAZIONI

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

Potenziale elettrostatico

Potenziale elettrostatico Doppio strato piano Potenziale elettrostatico Consideriamo il lavoro compiuto dalla forza elettrica quando una particella di prova di carica q viene spostata in un campo elettrico E. Possiamo definire

Dettagli

Introduzione alla Fluidodinamica Computazionale.

Introduzione alla Fluidodinamica Computazionale. Introduzione alla Fluidodinamica Computazionale carmelo.demaria@centropiaggio.unipi.it Fluidodinamica Computazionale (CFD) CFD è l analisi dei sistemi che involvono movimento di fluidi, scambio di calore

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

Gradiente, Divergenza, Rotore. Plinio Gatto

Gradiente, Divergenza, Rotore. Plinio Gatto Gradiente, Divergenza, Rotore Plinio Gatto 06 maggio 2006 Indice generale Licenza... 3 Introduzione...4 Gradiente... 5 Gradiente di temperatura... 5 Proprietà del campo Coulombiano... 6 Osservazioni sul

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta INTRODUZIONE ALLA TERMODINAMICA Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta in un recipiente, ad esempio 5g di ossigeno. Dato l elevato numero di molecole

Dettagli

DISTRIBUZIONI SINGOLARI E FUNZIONE DENSITÀ

DISTRIBUZIONI SINGOLARI E FUNZIONE DENSITÀ 2/3 DISTRIBUZIONI SINGOLARI E "FUNZIONE" DELTA DI DIRAC 0/ DISTRIBUZIONI SINGOLARI E FUNZIONE DENSITÀ Consideriamo una distribuzione continua di una data quantità Q ad esempio la carica elettrica o la

Dettagli

STATICA DEI FLUIDI. Proprietà dei fluidi

STATICA DEI FLUIDI. Proprietà dei fluidi STATICA DEI FLUIDI La statica dei fluidi è interessata allo studio dei fluidi a riposo, per cui in tale ambito si suppone implicitamente che la condizione di quiete iniziale sia sempre soddisfatta. Proprietà

Dettagli

Fisica Generale 1 per Chimica Formulario di Meccanica

Fisica Generale 1 per Chimica Formulario di Meccanica Fisica Generale 1 per Chimica Formulario di Meccanica Vettori : operazioni elementari: Nota: un vettore verra' qui rappresentato in grassetto es: A = ( A x, A y, A z ) Prodotto scalare A. B = A B cos θ,

Dettagli

Forze di contatto. Forze. Sistemi in moto relativo. Forze apparenti

Forze di contatto. Forze. Sistemi in moto relativo. Forze apparenti di contatto Le forze di contatto o reazioni vincolari sono forze efficaci che descrivono l interazione tra corpi estesi (dotati di una superficie!) con un modello fenomenologico. La validità della descrizione

Dettagli

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 19.9.

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 19.9. Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II Padova, 19.9.2016 Si svolgano i seguenti esercizi facendo attenzione a giustificare

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a I appello, 12 luglio 2016

POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a I appello, 12 luglio 2016 POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a. 015-16 I appello, 1 luglio 016 Giustificare le risposte e scrivere in modo chiaro e leggibile. Scrivere in stampatello nome, cognome, matricola

Dettagli

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 15

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 15 Serway, Jewett Principi di Fisica IV Ed. Capitolo 15 Un fluido è un insieme di molecole tenute insieme da deboli forze di coesione e da forze esercitate dalla parete del contenitore (possono essere sia

Dettagli

Equazione dell'energia. Fenomeni di Trasporto

Equazione dell'energia. Fenomeni di Trasporto Equazione dell'energia Fenomeni di Trasporto 1 Trasporto convettivo di energia La portata volumetrica che attraversa l elemento di superficie ds perpendicolare all asse x è La portata di energia che attraversa

Dettagli

Meccanica dei Fluidi A. A. 2015/ II Semestre

Meccanica dei Fluidi A. A. 2015/ II Semestre 1 Informazioni Meccanica dei Fluidi A. A. 2015/2016 - II Semestre Docente: Dr. Ing. Flavia Tauro Email: flavia.tauro@unitus.it Stanza: ex Facoltà di Agraria - 331 Tel.: 0761-357355 Ricevimento: per appuntamento

Dettagli

1 Sistemi di riferimento

1 Sistemi di riferimento Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate

Dettagli

Forze Conservative. In generale il lavoro fatto da una forza (più precisamente, da un campo di forze):

Forze Conservative. In generale il lavoro fatto da una forza (più precisamente, da un campo di forze): Forze Conservative In generale il lavoro fatto da una forza (più precisamente, da un campo di forze): L = f i F d r, può dipendere dal percorso seguito dalla particella. Se il lavoro fatto da una forza

Dettagli

Test Esame di Fisica

Test Esame di Fisica Test Esame di Fisica NOTA: per le domande a risposta multipla ogni risposta corretta viene valutata con un punto mentre una errata con -0.5 punti. 1) Una sola delle seguenti uguaglianze non e corretta?

Dettagli

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011. Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Baccelli - a.a. 2010/2011. 06 - Derivate, differenziabilità, piano tangente, derivate di ordine superiore. Riferimenti: R.Adams, Calcolo

Dettagli

Equazione di Laplace

Equazione di Laplace Equazione di Laplace. La funzione di Green Sia, indicati con x e y due punti di R 3 E(x, y) = x y Consideriamo la rappresentazione integrale di u(x) C 2 (), anche rinunciando all ipotesi che sia armonica

Dettagli

Alcune nozioni di calcolo differenziale

Alcune nozioni di calcolo differenziale Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio

Dettagli