Teoremi Thevenin/Norton



Documenti analoghi
Il problema del carico

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Collegamento di resistenze

IL TEOREMA DI THEVENIN

Esercizi svolti Esperimentazioni di Fisica 2 A.A Elena Pettinelli

DAC Digital Analogic Converter

Teoremi delle re* lineari

Teoria dei Circuiti Esercitazione di Laboratorio Due-porte e circuiti equivalenti di Thevenin e Norton

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1. Circuiti in corrente continua

ELETTROTECNICA T A.A. 2014/2015 ESERCITAZIONE 9

RETI LINEARI R 3 I 3 R 2 I 4

Liberamente tratto da Prima Legge di Ohm

Misure di forze elettromotrici

AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE

LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE

Esercizi sui Circuiti RC

T 1? [1 livello 2014]

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis

Metodo classico: i G R G. V AB = V AD R X i X = R 1 i 1. i 1. V BC = V CD R o i o = R 2 i 2. R ε R X = (R 1 /R 2 ) R 0 2

Potenza elettrica circuito elettrico effetto Joule

Circuito equivalente

Correnti e circuiti. E' il rapporto tra la quantità di carica che attraversa una sezione del conduttore e l'intervallo di tempo impiegato. Q t.

D.A.M. Bros Robotics -

Regola del partitore di tensione

Appunti di Elettronica I Lezione 4 Stella e triangolo; generatori controllati; generatore equivalente; principio di sovrapposizione degli effetti

Q t dq dt. 1 Ampere (A) = 1 C/s. Q t. lim. l A. P = L / t = i V = V 2 /R= R i 2

Multimetri Analogico e Digitale misure (in CC) di tensione, corrente, resistenza. Nota: I manuali sono disponibili sulla pagina del corso

MISURA DI RESISTENZE DI VALORE ELEVATO MEDIANTE LA SCARICA DI UN CONDENSATORE

COLLEGAMENTO SERIE E PARALLELO DI BIPOLI (Resistenze)

consegnare mediamente 8 esercizi a settimana per 7 settimane su 10

6. Generatori di corrente controllati

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione)

Esercizi svolti. Elettrotecnica

Esercitazione N. 2 Misurazione di resistenza con ponte di Wheatstone

motivi, quali ad esempio: aumento della potenza richiesta dal carico oltre il valore nominale della potenza

Prova di Elettrotecnica I prova B

Analisi delle reti. Calcolare la tensione ai capi A e B del seguente circuito, applicando il teorema di Millman: R 1

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

(Ing. Giulio Ripaccioli) Tecnologie dei Sistemi di Controllo - A. Bemporad - A.a. 2007/08. Termocoppie

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia


Elettrodinamica. 1. La corrente elettrica continua 2. I circuiti elettrici. Prof Giovanni Ianne

MOSFET o semplicemente MOS

Esame di Teoria dei Circuiti - 6 luglio 2009 (Soluzione)

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti

Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica. Argomento 14 Corrente elettrica e circuiti

7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari

Tensioni e corrente variabili

ALTRI CIRCUITI CON OPERAZIONALI 1 Sommatore invertente 1 Sommatore non invertente 3 Amplificatore differenziale 7 Buffer 11

Figura 1. Indicando con f la forza elettromotrice della batteria e con I la corrente elettrica che circola nel circuito, si ha

Università degli Studi di Bergamo Facoltà di ingegneria. Corso di Elettrotecnica A.A. 1995/1996 Scritto 12 settembre 1996

Collegamento generatori di tensione. Collegamento parallelo. Sia dato il sistema di figura 1: Fig. 1 -

Esame di Teoria dei Circuiti 13 Febbraio 2015 (Soluzione)

Esame di Teoria dei Circuiti 25 Febbraio 2011 (Soluzione)

Esercizio. Risolvere poi lo stesso quesito utilizzando la legge di Kirchhoff alle maglie.

Trasformatore reale monofase

L amperometro dello strumento universale. Per misurare la corrente si deve interrompere il circuito ed inserirci lo strumento di misura in serie :

Carica batterie NiCd

INTENSITÀ DI CORRENTE E LEGGI DI OHM

IL CIRCUITO ELETTRICO RESISTENZE IN PARALLELO

METODI PER LA MISURA DELLE RESISTENZE. Metodo strumentale.

LABORATORIO DI FISICA II Modulo di Circuiti e Misure elettriche

Elettrotecnica B - SUISS

La corrente elettrica

LA CORRENTE ELETTRICA

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

MISURA DIRETTA DI RESISTENZE CON IL METODO DIRETTO

1.6 Circuiti resistivi

Lezione 39: la legge di Ohm e i circuiti elettrici

CIRCUITI IN REGIME SINUSOIDALE

La Legge di Ohm (scheda per il docente)

CIRCUITI ELETTRICI. Le grandezze fondamentali nei circuiti elettrici sono:

Figura 1 Figura 2. Dati : f = 45 Hz, V c = 350 V, R = 22, L 1 = 16 mh, L 2 = 13 mh.

Esercizi sui circuiti in fase transitoria

Eserciziario di Elettrotecnica

Esercizi e problemi su circuiti elettrici elementari

Tre resistenze in serie

ESERCIZI SUL TRIFASE DAL FORUM

Circuiti elettrici non lineari. Il diodo

Nel circuito di figura con R1=1Ω R2=2Ω ed R3=3Ω calcola la resistenza vista fra i morsetti AB col tasto T nelle tre posizioni 1,2 e 3..

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

Tecniche volt-amperometriche in DC. Tecniche volt-amperometriche in AC. Tecniche di zero: ponte in DC. Tecniche di zero: ponte in AC

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13. Prova Scritta del 16/09/ NOME

V N I N. (figura - 5.1a)

Problema 1. la corrente iniziale nel circuito (cioè non appena il circuito viene chiuso)

CARICA E SCARICA DEL CONDENSATORE Studiare la scarica del condensatore della figura che è connesso

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A

DIODO. La freccia del simbolo indica il verso della corrente.

Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1

GLI AMPLIFICATORI OPERAZIONALI

STRUMENTI ELETTRICI. Il Tester o Strumento Universale

LICEO SCIENTIFICO CAVOUR COMPITO DI FISICA PER LA CLASSE 5D Durata della prova 1 ora

Strumenti a bobina mobile

Il componente interagisce elettricamente con altri componenti solo per mezzo dei morsetti

Legge di Ohm Legge di Ohm. Capitolo 3

Transcript:

Teoremi Thevenin/Norton IASSUNTO Il carico Teorema di Thevenin Come calcolare V Th ed Th conoscendo il circuito Come misurare V Th ed Th Esempi Generatore di tensione ideale e reale Teorema di Norton Generatore di corrente ideale e reale Adattare il carico esterno per massimizzare il trasferimento di potenza 1

Il problema del carico Si consideri un circuito composto (per il momento) da sole resistenze e generatori di tensione. Si immagini di aggiungere tra due punti A e B del circuito una resistenza c che chiameremo carico. Possiamo porci le seguenti domande: Quanto vale la tensione tra i punti A e B dopo avere aggiunto il carico? Quanto vale la corrente che scorre nel carico? Quanto vale la potenza assorbita dal carico? Avendo la risposta alla prima domanda, consentirebbe di rispondere immediatamente alle altre due: infatti si ha: V I = AB c V, W = 2 AB c 2

Quando si presenta? Il problema proposto si presenta quando bisogna collegare assieme due apparecchiature: ad esempio, quando si collega una lampadina ad un generatore, o un altoparlante ad un amplificatore, o un tester a due punti di un circuito... In generale, abbiamo un apparecchio che fornisce energia, corrente, o tensione ad un secondo: il collegamento si effettua ponendo in contatto una coppia di fili che esce dal primo (uscita) con un altra coppia che entra nel secondo (ingresso). In linea di principio, il problema sarebbe estremamente complicato se non ci venisse in soccorso il teorema di Thevenin. 3

Il teorema di Thevenin Si consideri un circuito complicato, formato però esclusivamente da resistenze e generatori di tensione. Si scelgano due punti del circuito, A e B: si immagini di chiudere il circuito in una scatola da cui escono solamente due fili, collegati rispettivamente ai punti prescelti. Il teorema di Thevenin dice che in questi casi sussiste l equivalenza: Circuito complicato + A th V th Una rete comunque complessa vista dall esterno, a partire da due suoi punti A e B e equivalente ad un generatore di tensione V Th in serie ad una resistenza Th : V Th è uguale alla differenza di potenziale tra i punti A e B B th si ottiene sostituendo, nello schema del circuito, tutti i generatori di tensione con dei cortocircuiti (e i generatori di corrente con circuiti aperti) e calcolando la resistenza tra i punti A e B nel circuito così ottenuto. 4

I parametri V th e th Ai fini di un utilizzazione al suo esterno il circuito è assolutamente equivalente a (e quindi assolutamente indistinguibile da) un circuito composto da un generatore di tensione ideale V Th e da una resistenza Th in serie ad esso. I parametri dell equivalente di Thevenin di un circuito complesso sono calcolabili se e solo se il circuito è conosciuto in dettaglio. Nella maggior parte dei casi, non è possibile accedere direttamente al circuito. In questi casi è però possibile misurare direttamente i parametri in oggetto. 5

Esempio I Ad esempio si consideri il circuito in figura: 1 A V 0 + 2 La tensione a vuoto tra i punti A e B è data dalla formula del partitore, mentre sostituendo il generatore con un cortocircuito le resistenza 1 ed 2 vengono viste dai punti A e B in parallelo. Il circuito di Thevenin equivalente è allora il seguente: 1 2 /( 1 + 2 ) B A V 0 2 / ( 1 + 2 ) + B 6

Esempio II Consideriamo il circuito a ponte con due suoi punti A e B. A 1 2 Sostituiamo al generatore ε un corto-circuito e troviamo Th = ( 1 // 2 ) + ( 3 // 4 ): Th = 1 2 / ( 1 + 2 ) + 3 4 / ( 3 + 4 ) 3 4 B ε La ddp tra A e B risulta: V A - V B = V A - V C - (V B - V C ) = V Th = ε [ 2 / ( 1 + 2 ) - 4 / ( 3 + 4 ) ] = ε[1 / (1 + 1 / 2 ) - 1 / (1+ 3 / 4 ) ] Mettendo una resistenza come carico, non vi scorre alcuna corrente se V Th e nulla, ovvero 1 3 vale la nota relazione: = 2 4 7

Misura dei parametri Vth ed th Se non si conosce lo schema del circuito, è comunque possibile misurare i valori di V Th ed Th. Per misurare V Th, basta collegare un voltmetro tra i punti A e B. La resistenza del voltmetro deve essere però più grande di Th, per non perturbare la misura. Per misurare Th, basterebbe in teoria collegare un amperometro direttamente ai punti A e B e misurare I AB. La resistenza Th è data da: Th = V Th / I AB La misura di Th in realtà: In pratica, non è consigliabile collegare un amperometro direttamente all uscita di un circuito, per evitare sovraccarichi. Si preferisce allora misurare Th collegando tra i punti A e B una resistenza di valore noto, misurando di quanto diminuisce la tensione tra i punti A e B. V mis = V Th + Th Th VTh V = Vmis mis Si ha la massima sensibilità per = Th. 8

Impedenza di ingresso e di uscita L importanza del teorema di Thevenin sta nel fatto che un circuito (lineare) per quanto complesso si puo sempre schematizzare con un generatore di tensione in serie ad una resistenza, secondo il teorema. iferendosi alla resistenza di Thevenin, si parla allora di resistenza di ingresso di un circuito utilizzato come carico uscita di un circuito utilizzato come alimentaore Il carico di solito quando e staccato non ha una differenza di potenziale propria: gli apparecchi utilizzatori quindi equivalgono ad una sola resistenza, detta appunto resistenza di carico. Spesso, invece della parola resistenza, si adopera il termine impedenza, che è più generale e che definiremo in seguito. 9

Esempio: il generatore di tensione reale Il generatore di tensione ideale è in grado di mantenere costante la d.d.p. tra i suoi estremi indipendentemente dalla corrente fornita. Il generatore reale possiede invece una resistenza interna che fa si che la tensione fornita diminuisca all aumentare della corrente: V = V 0 int I La scarica di una batteria si può allora imputare ad un aumento della resistenza interna in funzione del tempo. 10

Alimentatori Negli alimentatori, come quello adoperato in laboratorio, esiste una corrente massima che il generatore e in grado di fornire. Alcuni sono protetti automaticamente dai cortocircuiti, per cui non possono erogare una corrente maggiore di una data corrente massima ( compliance ) e la tensione in uscita scende rapidamente a zero. Altri, sono protetti tramite un fusibile, un filo di stagno sottilissimo che in caso di corrente elevata fonde interrompendo il circuito. 11

Teorema di Norton Una rete comunque complessa vista dall esterno a partire da due suoi punti A e B, e equivalente ad un generatore di corrente I 0 (corrente che scorre cortocircuitando A e B) in parallelo ad una resistenza 0 tale che la ddp a circuito aperto tra A e B risulta = I 0 0 V Th + _ Th A B I 0 0 A B isulta 0 = Th e I 0 = V Th / Th (quantita equivalenti di Thevenin) Generatore reale di corrente 12

Amperometri Un amperometro ideale (A) ha resistenza nulla per non turbare il circuito. Un amperometro reale avrà invece una sua resistenza interna, che dev essere la più piccola possibile. La resistenza interna decresce al crescere della scala di lettura: se si ha il dubbio che una misura di corrente possa essere turbata da effetti dovuti alla resistenza interna, si può provare a cambiare scala di lettura per vedere cosa succede. In un amperometro analogico la resistenza interna (della bobina) è dell ordine di qualche centinaio di Ω. Per un fondo scala da 500 ma quindi la resistenza e ~1 Ω. (~1 kω per il fondo scala da 500 µa) 13

Voltmetri Un voltmetro ideale ha resistenza interna infinita. In un voltmetro reale, la resistenza deve essere la più grande possibile. Un voltmetro digitale ha una resistenza interna tipica di 10 MΩ. Un voltmetro analogico ha una resistenza interna di qualche decina o centinaia di kω, che varia col fondo scala: un fondo scala alto ha un alta resistenza. Nei tester di laboratorio, la resistenza è di 20(kΩ/V) * V fs : vale quindi 40 kω nel fondo scala di 2 V e 200 kω in quello da 10 V 14

Adattare l impedenza Si supponga di collegare un ingresso con una uscita. + V 0 out in la tensione ai capi dell utilizzatore è la corrente che vi scorre è per massimizzare la tensione, la resistenza di ingresso deve essere molto maggiore della resistenza di uscita per massimizzare la corrente, la resistenza di ingresso deve essere molto minore della resistenza di uscita I in V in in = V + = 0 out out in + in V 0 15

La potenza assorbita dal carico è: in 2 2 2 inv0 V0 Pout = in Iin = = 2 ( in + out ) out (1 + E massima quando in = out e vale: Potenza assorbita out in out ) 2 ¼ P max = V 4 2 0 out Quindi per trasferire al carico la massima potenza, la resistenza di ingresso deve essere uguale a quella di uscita. In queste condizioni sulla resistenza interna viene dissipata una quantità di energia pari a quella erogata: il trasferimento di energia ha una efficienza del 50%. 1 16