Teoria dei numeri I. smo osm. Thomas Huber. Indice. Aggiornato: 1 dicembre 2015 vers Divisibilità 2. 2 PGCD e PPCM 4.

Documenti analoghi
Lezione 3 - Teoria dei Numeri

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità

TEORIA DEI NUMERI. 1. Numeri naturali, interi relativi e principi d induzione

Due numeri naturali non nulli a, b tali che MCD(a,b) = 1 si dicono coprimi o relativamente primi.

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica

ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16

1 Relazione di congruenza in Z

Piccolo teorema di Fermat

MATEMATICA DI BASE 1

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE.

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO.

z =[a 4 a 3 a 2 a 1 a 0 ] 10

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo.

Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006

Problemi sui polinomi

2 Algoritmo euclideo di divisione

4 0 = 4 2 = 4 4 = 4 6 = 0.

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011

Massimo comun divisore

Un polinomio è un espressione algebrica data dalla somma di più monomi.

NUMERI PRIMI E TEORMA FONDAMENTALE DELL ARITMETICA Definizione 1. Sia p Z, p ±1. Si dice che p è primo se

Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione. risolvere con il metodo di Cramer

Stage di preparazione olimpica - Lucca

4. Determina le misure dei tre lati x, y, z di un triangolo sapendo che il perimetro è 53cm, inoltre

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore

Teoria dei Numeri. Lezione del 31/01/2011. Stage di Massa Progetto Olimpiadi

Precorso di Matematica

EQUAZIONI MATRICIALI

Induzione completa. smo osm. Aggiornato: 1 dicembre 2015 vers

TEN Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2.

SCHEMI DI MATEMATICA

LE EQUAZIONI DI SECONDO GRADO

II Esonero di Matematica Discreta - a.a. 06/07. Versione B

Soluzione esercizi Gara Matematica 2009

Parte Seconda. Prova di selezione culturale

Metodo dei minimi quadrati e matrice pseudoinversa

Prodotto scalare e ortogonalità

Strutture algebriche. Leggi di composizione. Leggi di composizione. Gruppi Insiemi di numeri Polinomi

1 La funzione logaritmica

Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni

Anno 1. Divisione fra polinomi

2 non è un numero razionale

Dispense del corso di Algebra 1. Soluzioni di alcuni esercizi

Aritmetica modulare, numeri primi e crittografia

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni

Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari)

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0.

Funzioni derivabili (V. Casarino)

Equazioni di Primo grado

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi

Prerequisiti per seguire il corso

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x.

Verifica classe II liceo scientifico: equazioni, disequazioni, problemi di 2 grado 1

Parte III. Incontro del 26 gennaio 2012

Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2011

Geometria BIAR Esercizi 2

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero.

Geometria analitica del piano pag 12 Adolfo Scimone

PROBLEMI DI SECONDO GRADO: ESEMPI

Esercizi sul Principio d Induzione

Allenamenti di matematica: Algebra e Teoria dei Numeri

Esercizi sulle radici

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

1 Ampliamento del piano e coordinate omogenee

Esercizi per il corso Matematica clea

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Quando possiamo dire che un numero a è sottomultiplo del numero b? Al posto dei puntini inserisci è divisibile per oppure è divisore di

Esercitazioni di Geometria A: curve algebriche

DIVISIONE TRA POLINOMI IN UNA VARIABILE

x 1 Fig.1 Il punto P = P =

+ 1)... (e k + 1). Si indica con (n), chiamato numero di Eulero di n, il numero dei numeri naturali minori di n e primi con n.

Potenze - Monomi - Polinomi - Operazioni tra Polinomi - Quadrato e Cubo del Binomio - Quadrato del Trinomio

Introduzione alla TEORIA DEI NUMERI

Esercizi sui sistemi di equazioni lineari.

Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?

CORSO ZERO DI MATEMATICA

Esempio B2.1: dire il grado del monomio seguente rispetto ad ogni lettera e il suo grado complessivo:

1 (A,+) sia un gruppo abeliano, cioè soddisfi gli assiomi: x (y + z) = x y + x z (y + z) x = y x + z x

Come risolvere i quesiti dell INVALSI - primo

Note per il corso di Geometria e algebra lineare Corso di laurea in Ing. Elettronica e delle Telecomunicazioni

Moltiplicazione. Divisione. Multipli e divisori

Seconda gara matematica ( ) Soluzioni

ESERCITAZIONE N.8. Il calcolatore ad orologio di Gauss. L aritmetica dell orologio di Gauss. Operazioni e calcoli in Z n

0.1 Numeri complessi C

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =

Come risolvere i quesiti dell INVALSI - terzo

Note di Aritmetica. Mauro Saita Versione provvisoria. Settembre Numeri naturali. 1

BOZZA :26

1.5 DIVISIONE TRA DUE POLINOMI

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Università del Piemonte Orientale

Le frazioni algebriche

Transcript:

Olimpiadi Svizzere della Matematica smo osm Teoria dei numeri I Thomas Huber Aggiornato: 1 dicembre 2015 vers. 1.0.0 Indice 1 Divisibilità 2 2 PGCD e PPCM 4 3 Stime 8

1 Divisibilità In ciò che segue, a e b sono degli interi. Se esiste un k Z con a = kb, si dice che a è divisibile per b o che b è un divisore di a. In simboli: b a. Ogni intero n è divisibile per ±1 e ±n e ogni intero è un divisore di 0. Se si considerano i divisori di a > 0, si intendono di solito solo i divisori positivi. p N è primo o un numero primo se p e 1 sono i soli divisori di p. Qualche proprietà semplice ma importante: a b, b c = a c a b 1,..., a b n, allora per degli interi arbitrari c 1,..., c n abbiamo a n b i c i. i=1 a b et c d = ac bd p primo, p ab = p a o p b a N, b Z et a b = b = 0 o a b Esempio 1. Trovare tutti i numeri naturali x, y con x 2 y! = 2001. Soluzione. 2001 è divisibile per 3 ma non per 9. Se y 3, allora y! è divisibile per 3, dunque anche x. Allora x 2 è divisibile per 9. Per y 6, y! è anche divisibile per 9, dunque 2001 dovrebbe avere la stessa proprietà, ma qui non è il caso. Restano le possiblilià y = 1, 2, 3, 4, 5. Testando tutti i casi, troviamo che la sola soluzione è (x, y) = (45, 4). Se abbiamo due interi, possiamo sempre fare una divisione con resto. Più precisamente: Teorema 1.1 (Divisione con resto). Siano a, b degli interi con b > 0. Allora esistono q e r determinati in un unico modo con 0 r < b, tali che a = qb + r, (1) r si chiama il resto della divisione e abbiamo che r = 0 se e solo se b a. 2

Uno dei punti più importanti di tutta la teoria dei numeri è che ogni numero naturale possiede una decomposizione in fattori primi unica: Teorema 1.2 (Teorema fondamentale dell'aritmetica). Sia a N. Allora esistono dei numeri primi distinti p 1, p 2,..., p r e dei naturali n 1, n 2,..., n r tali che a = p n 1 1 p n 2 2 p nr r. I p i e gli n i sono determinati in un unico modo da a. Possiamo dimostrare questo teorema per induzione grazie alla divisione con resto ma qui non entreremo nei dettagli. Si vede facilmente che a è un quadrato (più in generale una m-esima potenza) se e solo se tutti gli esponenti n k del teorema 1.2 sono pari (divisibili per m). L'applicazione seguente è un risultato classico d'euclide: Teorema 1.3 (Euclide). Esiste un numero innito di numeri primi. Dimostrazione. Supponiamo che esiste un numero nito di primi p 1, p 2,..., p n. Consideriamo il numero N = p 1 p 2 p n + 1. N > 1, dunque secondo il teorema 1.2 esiste un divisore primo q di N. Ora, nessuno dei primi p k divide N, poiché sennò avremmo che p k 1, che è assurdo. Dunque q è diverso da p 1, p 2,..., p n. Contraddizione. Esercizi: 1. Dimostrare che se a c ab + cd, allora a c ad + bc. 2. Trovare tutti i numeri naturali n con n + 1 n 2 + 1. 3. Determinare tutti i naturali d che dividono n 2 + 1 e (n + 1) 2 + 1 per un intero dato n. 4. Dimostrare che il numero n = p n 1 1 p n 2 2 p nr r possiede esattamente (n 1 + 1)(n 2 + 1) (n r + 1) divisori positivi distinti. 5. Per ogni n, esistono n numeri naturali consecutivi dei quali nessuno è primo. 6. (CH 04) Trovare tutti i naturali a, b e n, tali che l'equazione seguente è soddisfatta: a! + b! = 2 n 7. Per quali interi n abbiamo (n 2 2n) n2 +47 = (n 2 2n) 16n 16? 8. Siano a, b, c dei naturali con a b 3, b c 3, c a 3. Dimostrare che abc a 13 + b 13 + c 13. 3

9. (CH 04) Trovare tutti i naturali n aventi esattamente 100 divisori positivi distinti, tali che almeno 10 di questi divisori sono dei numeri consecutivi. 10. Se a, b > 0 e se a b 2, b 2 a 3, a 3 b 4, b 4 a 5..., allora a = b. 11. (CH 99) Siano m e n due interi positivi tali che m 2 + n 2 m è divisibile per 2mn. Dimostrare che m è un quadrato. 12. (IMO 70) Trovare tutti i naturali n tali che l'insieme {n, n+1, n+2, n+3, n+4, n+5} può essere diviso in due sotto-insiemi tali che il prodotto dei numeri di ciascuno dei sotto-insiemi è lo stesso. 13. (IMO 89) Per ogni n, esistono n numeri consecutivi dei quali nessuno è una potenza di un numero primo. 14. (Shortlist 94) Sia M un sotto-insieme di {1, 2,..., 15} tale che il prodotto di tre elementi distinti di M non è mai un quadrato. Quanti elementi al massimo può avere M? 2 PGCD e PPCM Per due interi naturali a, b, il mcd(a, b) è il più grande comune divisore positivo di a e b, in altre parole il più grande intero positivo che è un divisore di a e un divisore di b. Il ppcm(a, b) è il più piccolo comune multiplo, dunque il più piccolo numero che possiede a e b come divisori. Allo stesso modo è denito il pgcd e il ppcm di più di due numeri. Spesso si utilizzano le abbreviazioni (a 1, a 2,..., a n ) e [a 1, a 2,..., a n ] per il pgcd resp. il ppcm. Possiamo caratterizzare il pgcd con le seguenti equivalenze: 1) c = mcd(a, b) 2) c a, c b e per ogni numero positivo x x a, x b = x c. Allo stesso modo per il ppcm, se mcd(a, b) = 1, allora a e b sono primi fra di loro. Abbiamo le proprietà seguenti: mcd(a, b) = mcd(b, a) mcd(a, b, c) = mcd(mcd(a, b), c) c ab e mcd(a, c) = 1 = c b a c, b c e mcd(a, b) = 1 = ab c Se d = mcd(a, b), allora possiamo scrivere a = xd e b = yd con degli interi x e y primi fra di loro. Esempio 2. (Russia 95) Siano m e n due naturali con mcd(m, n) + mcm(m, n) = m + n. 4

Dimostrare che uno dei due numeri divide l'altro. Soluzione. Sia d il più grande comune divisore di m e n. Scriviamo m = ad, n = bd, allora abbiamo mcm(m, n) = abd e l'equazione si trasforma in d + abd = ad + bd o d(ab a b + 1) = 0. Fattorizziamo il lato sinistro e troviamo d(a 1)(b 1) = 0, allora abbiamo a = 1 o b = 1. Nel primo caso, abbiamo come conseguenza che m = d, dunque m n, nel secondo caso troviamo allo stesso modo n m. Utilizzando la decomposizione in fattori primi, si possono dare esplicitamente i PGCD e PPCM: Teorema 2.1. Siano a = p α 1 1 p α 2 2 p αr r e b = p β 1 1 p β 2 2 p βr r primi di a e b con dei p k distinti e con degli esponenti α k, β k 0. Allora abbiamo mcd(a, b) = p min{α 1,β 1 } 1 p min{α 2,β 2 } 2 p min{αr,βr} r mcm(a, b) = p max{α 1,β 1 } 1 p max{α 2,β 2 } 2 p max{αr,βr} r le decomposizioni in fattori In più, conoscendo la formula min{x, y} + max{x, y} = x + y possiamo concludere subito che mcd(a, b) mcm(a, b) = ab. In principio, possiamo calcolare sempre il pgcd con le formule del teorema 1.4. Sfortunatamente non è sempre facile fattorizzare dei numeri enormi. Tuttavia, esiste un algoritmo molto semplice ed ecace per calcolere il pgcd, l'algoritmo d' Euclide. Si basa sul fatto che per ogni n Z, abbiamo: (a, b) = (a, b + na). Dimostrazione. Basta dimostrare l'asserzione per il caso n = ±1, il caso generale si prova se si applica più volte il caso facile. Se c è un divisore comune di a e b, allora c divide anche b ± a, dunque (a, b) (a, b ± a) Reciprocamente, sia c un divisore comune di a e b + a risp. b a. Allora c divide anche (b + a) a = b risp. (b a) + a = b. Dunque (a, b ± a) (a, b). Per dare un esempio, calcoliamo (2541,1092) applicando l'equazione no a che il risultato sia evidente (2541, 1092) = (2541 2 1092, 1092) = (357, 1092) = (1092 3 357, 357) = (21, 357) = (357 17 21, 21) = (0, 21) = 21. Evidentemente l'idea è di continuare i calcoli con il resto della divisione del più grande numero per il più piccolo. Tutto questo è descritto in modo formale nell'algoritmo d'euclide: Algoritmo 2.2 (Euclide). Calcolare (a, b). 5

1. Sia a 1 = max{a, b} e a 2 = min{a, b} et n = 2. 2. Siano a n 1 = q n a n + a n+1 con 0 a n+1 < a n (divisione con resto). 3. Se a n+1 = 0, allora otteniamo (a, b) = a n, sennò aumentare n di 1 e ritornare alla tappa 2. L'esattezza di questo algoritmo deriva direttamente dalla formula precedente. nostro esempio, dobbiamo fare i calcoli seguenti: Per il 2541 = 2 1092 + 357 1092 = 3 357 + 21 357 = 17 21 + 0. Poiché il resto nell'ultima linea è 0, abbiamo (2541, 1092) = 21. Teorema 2.3 (Bezout). Se a, b non hanno divisori in comune, allora esistono x, y Z con xa + yb = 1. Più in generale: Se d = mcd(a, b), allora esistono degli interi x, y con xa + yb = d. Dimostrazione. Questo deriva direttamente dall'algoritmo d'euclide, poiché nella penultima linea troviamo il PGCD. Se si rimpiazzano le a k che appaiono successivamente nelle linee precedenti, troviamo un' equazione della forma: mcd(a, b) = xa + yb. Nel nostro esempio, otteniamo successivamente: 21 = 1 1092 3 357 = 1 1092 3(2541 2 1092) = ( 3) 2541 + 7 1092. Per continuare con le applicazioni, studieremo ancora l'equazione lineare di Diofante a due variabili. Teorema 2.4. Siano a, b, c degli interi. L'equazione ax + by = c possiede una soluzione (x, y) con x, y Z se e solo se d = mcd(a, b) c. Se così è e se (x 0, y 0 ) è una soluzione, allora l'insieme delle soluzioni è dato da (x, y) = (x 0 + k b d, y 0 k a d ). 6

Dimostrazione. Supponiamo che (x, y) è una soluzione. Allora d divide il membro di sinistra, e dunque c. Se invece d c, l'esistenza di una soluzione (x 0, y 0 ) deriva direttamente dal teorema di Bezout. Sia (x, y) un'altra soluzione. Allora abbiamo a(x x 0 )+b(y y 0 ) = c c = 0, dunque a d (x x 0) = b d (y y 0). Ora, a/d et b/d non hanno divisori in comune, dunque (x x 0 ) è divisibile per b/d e (y y 0 ) per a/d. Segue che tutte le soluzioni sono della forma data. Sostituendo nella formula, si mostra che sono eettivamente delle soluzioni. Esercizi 1. (IMO 59) Dimostrare che per ogni naturale n, la frazione seguente è irreduttibile: 21n + 4 14n + 3. 2. (USA 72) Come al solito (...) e [...] designano qui il pgcd e il ppcm dei numeri fra parentesi. Dimostrare che per tutti i naturali a, b, c abbiamo: [a, b, c] 2 [a, b][b, c][c, a] = (a, b, c) 2 (a, b)(b, c)(c, a) 3. Ogni numero naturale > 6 è la somma di due naturali senza divisori comuni > 1. 4. (Spagna 96) Siano a, b due naturali tali che a + 1 b + b + 1 a è un intero. Dimostrare che il più grande divisore comune di a e b non è più grande di a + b. 5. (Svizzera 01) Trovare i due più piccoli naturali n tali che le frazioni siano tutte irreduttibili. 68 n + 70, 69 n + 71, 70 n + 72,..., 133 n + 135 6. Siano a, b, c, d dei naturali con ab = cd. Dimostrare che il numero a 2 + b 2 + c 2 + d 2 è un numero composto. 7. (Russia 95) Siano dei numeri naturali a 1, a 2, a 3,... con mcd(a i, a j ) = mcd(i, j) per ogni i j. Dimostrare che per ogni i, abbiamo a i = i. 8. (Germania 96) Un gettone parte da (1, 1) e si muove nel piano euclidiano secondo le regole seguenti: 7

(a) Da ogni posizione (a, b), il gettone può andare a (2a, b) o (a, 2b). (b) Da ogni posizione (a, b), il gettone può andare a (a b, b), se a > b, o a (a, b a), se b > a. Trovare tutte le posizioni (x, y) possibili del gettone. 9. (Canada 97) Trovare tutte le coppie (x, y) di naturali con x y che soddisfano l'equazione seguente: mcd(x, y) = 5! e mcm(x, y) = 50! 10. (IMO 81) Trovare tutti gli n > 2 per i quali esiste un insieme di n naturali consecutivi tale che il più grande di questi numeri è un divisore del ppcm dei n 1 numeri restanti. Per quali n un tale insieme è unico? 11. (Giappone 96) Siano m, n dei naturali con mcd(m, n) = 1. Calcolare mcd(5 m + 7 m, 5 n + 7 n ). 3 Stime Un elemento molto importante per risolvere dei problemi sulla teoria dei numeri è la stima di certe grandezze. Spesso, possiamo ridurre il problema a qualche caso particolare facile da risolvere. Si tratta di comparare la crescita delle grandezze in un'equazione. Per esempio, se un'equazione è simmetrica, possiamo ordinare le variabili secondo la loro grandezza senza perdita di generalità. Ecco qui qualche esempio: Esempio 3. Trovare tutti i numeri naturali n con n 2 + 11 n 3 + 13. Dov'è il rapporto con le stime? Guardiamo tutto ciò da più vicino: Soluzione. n 2 + 11 divide n 3 + 13, dunque n 2 + 11 divide anche n(n 2 + 11) (n 3 + 13) = 11n 13. Evidentemente, n = 1 non è una soluzione, per n 2 abbiamo 11n 13 0 e poiché questo numero deve essere divisibile per n 2 + 11, dobbiamo avere n 2 + 11 11n 13. Ecco qui allora la nostra stima. Siccome il membro di sinistra possiede n al quadrato e il membro di destra è lineare, questa disequazione non può che essere soddisfatta per dei piccoli valori di n. Questa è equivalente a n 2 11n + 24 = n(n 11) + 24 0. Ma per n 12, abbiamo sempre n(n 11) + 24 12 1 + 24 > 0, dunque n 11. Testiamo tutti questi casi e troviamo le soluzioni n = 3 e n = 8. 8

Questa maniera di procedere è molto importante e permette di risolvere un terzo degli esercizi sulla teoria dei numeri all'oim. Ricordatevela! Esempio 4. (Inghilterra 95) Trovare tutte le soluzioni intere positive dell'equazione ( 1 + 1 ) ( 1 + 1 ) ( 1 + 1 ) = 2. a b c In questo caso il membro di destra è costante, il membro di sinistra diminuisce se a, b e c diventano grandi. Se tutt'e tre le variabili sono molto grandi, ognuno dei tre fattori vale circa 1 e l'equazione non può essere soddisfatta. Ora preciseremo tutto ciò. Soluzione. L'equazione è simmetrica in a, b e c, dunque si può supporre senza perdita di generalità che a b c. Troviamo 2 (1 + 1/c) 3 e dunque c 3. Si distinguono tre casi: c = 1: a causa di (1 + 1/a) > 1 e (1 + 1/c) = 2, questa soluzione non è possibile. c = 2: Abbiamo dunque (1 + 1/a)(1 + 1/b) = 4/3 e così 4/3 (1 + 1/b) 2, dunque b 6. Visto che (1+1/a) > 1 abbiamo b 4. Rimpiazziamo i 3 valori possibili e troviamo le soluzioni (7, 6, 2), (9, 5, 2) e (15, 4, 2). c = 3: Abbiamo adesso (1 + 1/a)(1 + 1/b) = 3/2 e un processo simile ci dà b 4 e b c = 3. Sostituiamo e troviamo le soluzioni (8, 3, 3) e (5, 4, 3). Le soluzioni sono dunque tutte degli scambi ciclici di (7, 6, 2), (9, 5, 2), (15, 4, 2), (8, 3, 3), (5, 4, 3). Facendo più stime, abbiamo trovato le limitazioni superiori per c e b e ci restava solo qualche caso da testare. Probabilmente non avremmo potuto risolvere questo problema unicamente con degli argomenti di divisibilità. Esempio 5. Trovare tutte le soluzioni dell'equazione con a, b e c dei numeri interi. abc = ab + bc + ca + 12 Soluzione. In questo caso il membro di sinistra cresce più veloce di quello di destra se a, b e c aumentano. Il lato sinistro è di terzo grado, quello di destra è solo di secondo grado + costante. Come possiamo quanticare ciò? Senza perdita di generalità, sia a b c. Come abbiamo già visto, c deve essere piccolo. Infatti, per c 4 otteniamo direttamente abc 4ab ab + bc + ca + 4 2 > ab + bc + ca + 12, contraddizione. Così c 3. 9

c = 3: 3ab = ab + 3a + 3b +12 ab +(a 3)(b 3) = 21. Poiché a b 3, abbiamo ab 21. Per (a, b) solo le coppie (7, 3), (6, 3), (5, 3), (4, 3), (3, 3), (5, 4), (4, 4) potrebbero essere delle soluzioni e la prima ne è eettivamente una. c = 2: 2ab = ab + 2a + 2b + 12 (a 2)(b 2) = 16. Visto che a b 2, otteniamo le soluzioni (a, b) = (18, 3), (10, 4), (6, 6). c = 1: ab = ab + a + b + 12 non ha soluzioni positive. Per concludere, le soluzioni (a, b, c) sono tutte degli scambi simmetrici di (18, 3, 2), (10, 4, 2), (6, 6, 2), (7, 3, 3). Esempio 6. Trovare tutte le soluzioni intere di x 3 y 3 = xy + 61. Soluzione. In questo caso il lato sinistro è di terzo grado, il lato destro di secondo grado, tuttavia il lato sinistro può restare piccolo anche per degli x e y molto grandi. L'argomento che avevamo usato per l'esercizio precedente non può essere applicato qui. Ciò che importa è la dierenza fra i due numeri. È grazie ad essa che il lato sinistro cresce più veloce del lato destro. Poniamo x = y + d, dove d > 0. Sostituiamo e troviamo (y + d) 3 y 3 = (y + d)y + 61 (3d 1)y 2 + (3d 2 d)y + d 3 = 61, in particolare d 3 61, dunque d 3. Per d = 1, otteniamo l'equazione y 2 + y 30 = 0 con l'unica soluzione positiva y = 5 x = 6. Per d = 2, 3 le equazioni corrispondenti non hanno soluzioni intere. La sola soluzione è dunque (x, y) = (6, 5). Un altro fatto importante è che tra due quadrati consecutivi (n-esime potenze, potenze di due ecc.), non ce n'è nessun altro. Ciò può essere utile se abbiamo delle grandezze che sono vicine a un quadrato e delle quali sappiamo che sono dei quadrati. Esempio 7. (Germania 95) Trovare tutte le coppie d'interi non-negativi (x, y) tali che: x 3 + 8x 2 6x + 8 = y 3. Soluzione. Qui non possiamo trovare veramente una buona stima sulla crescita. L'idea è la seguente: il lato sinistro deve essere una terza potenza (cioè y 3 ), ma allo stesso tempo è abbastanza vicino a x 3. Per quanticare ciò, cerchiamo nei dintorni di x (x + 2) 3 = x 3 + 6x 2 + 12x + 8, (x + 3) 3 = x 3 + 9x 2 + 27x + 27. Se guardiamo i coecienti di x 2, vediamo che il primo termine sembra essere più piccolo e il secondo più grande del lato sinistro della nostra equazione. Calcoliamo: (x + 2) 3 < x 3 + 8x 2 6x + 8 2x 2 18x > 0 x > 9, (x + 3) 3 > x 3 + 8x 2 6x + 8 x 2 + 33x + 15 > 0 valevole per tutte le x 0. 10

Se x > 9, è fra due terze potenze e ne è una lei stessa. Contraddizione. Dunque x 9. Testiamo tutti i casi e troviamo le soluzioni (0, 2) e (9, 11). Esercizi 1. Trovare tutte le triplette (x, y, z) di numeri naturali con 1 x + 2 y 3 z = 1. 2. Dimostrare che l'equazione non ha soluzioni positive e intere. y 2 = x(x + 1)(x + 2)(x + 3) 3. (OMI 76) Trovare il più grande numero che può scriversi come prodotto di numeri naturali dei quali la somma è di 1976. 4. Dimostrare che l'equazione non possiede soluzioni intere. x y + y z + z x = 2 5. Sia n un numero naturale e siano 1 = d 1 < d 2 <... < d k = n, k 15 i divisori positivi di n. In più, sia n = d 13 + d 14 + d 15. Trovare tutti i valori di n che soddisfano queste condizioni. 6. (OMI 98) Trovare tutte le coppie di naturali (a, b), tali che a 2 b + a + b è divisibile per ab 2 + b + 7. 7. (OMI 92) Trovare tutti gli interi a, b, c con 1 < a < b < c, tali che è un intero. abc 1 (a 1)(b 1)(c 1) 8. Trovare tutte le soluzioni intere dell'equazione y 2 + y = x 4 + x 3 + x 2 + x. 9. (OMI 94) Trovare tutte le coppie ordinate di numeri naturali (m, n), tali che la frazione n 3 + 1 mn 1 sia un numero intero. 11