MISURA DELLE FREQUENZE DI RISONANZA DI UN TUBO SONORO

Documenti analoghi
Onde sonore stazionarie in un tubo risonante

Introduzione all esperienza sul Tubo di Kundt

ONDE. Propagazione di energia senza propagazione di materia. Una perturbazione viene trasmessa ma l acqua non si sposta

USO DELL OSCILLOSCOPIO PER LA MISURA DELLA VELOCITA' DEL SUONO NELL ARIA

Le onde. Definizione e classificazione

Circuito RC con d.d.p. sinusoidale

Onde Stazionarie

Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI

ANALISI SPERIMENTALE PARAMETRICA SULL ASSORBIMENTO ACUSTICO DI RISONATORI ACUSTICI A CAVITÀ

LABORATORIO DI FISICA Lunedì 15 marzo Misura della costante di tempo di un circuito RC

MISURE DI VISCOSITA CON IL METODO DI STOKES

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1

Corso di Laurea in Ingegneria Civile e Ambientale

nelcasodigasoliquidi,chenonpossiedonoresistenzaelasticaagli dell onda che si propaga, per cui si parla di onde longitudinali;

Misure su linee di trasmissione

La sonda compensata. La sonda compensata

suoni udibili Frequenze fra 20 Hz e Hz

Il suono è dovuto alla vibrazione di un corpo elastico Le vibrazioni sono rapidi movimenti di oscillazione del corpo intorno ad una posizione di

SCHEDA N 8 DEL LABORATORIO DI FISICA

Uso dell oscilloscopio 1

Classificazione delle onde

Unità Didattica n 1: Onde, oscillazioni e suono. Prerequisiti. Forze e moto. Moto circolare uniforme.

Esercizi su distribuzioni doppie, dipendenza, correlazione e regressione (Statistica I, IV Canale)

MISURA DELLA VELOCITA DELLA LUCE

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein)

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE)

PER ESERCITARSI Parte 2. Esercizi su Corpo rigido, variabili angolari, momenti, fluidi, termodinamica

secondi secondi= secondi secondi secondi= secondi

ACUSTICA. Studia il suono considerando le cause che lo hanno generato, il suo comportamento e la sua propagazione attraverso un mezzo materiale.

Linee di trasmissione

1.3d: La Codifica Digitale dei Suoni

Inquinamento acustico

Tensioni e corrente variabili

Onde. Perturbazioni dello stato di un corpo o di un campo che si propagano nello spazio con trasporto di energia ma senza trasporto di materia.

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sulle onde meccaniche

Lezione 25: Un approccio macroscopico all equazione dei gas

ESPERIENZA 6 La legge della riflessione

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio

Occorrente per attività. Protocollo di laboratorio. Osservazione L A B O R A T O R I O D I G E O M E T R I A

Esercitazione 8 : LINEE DI TRASMISSIONE

Dispense del corso di Fonia e Tecnico del Suono. anno accademico 2013/2014. Quarta lezione. Acustica di base

Misurare l impedenza di un altoparlante

Lezione 12 Tensione superficiale. Deformabilità.

LABORATORIO DI FISICA Studio della lunghezza di corde perpendicolari

II.3.1 Inverter a componenti discreti

Percorso ottico attraverso un corpo semicircolare: osservazione. Studio del cammino dei raggi di luce attraverso un corpo semicircolare

Studi di Pisa, ha tenuto una lezione sul suono presso il Liceo Classico Andrea da Pontedera.

3.1 Verifica qualitativa del funzionamento di un FET

Misure di velocità con la guidovia a cuscino d aria (1)

I seguenti grafici rappresentano istantanee dell onda di equazione:

Studente... Matricola...

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)

LE ONDE. vibrano, mettendo in vibrazione anche

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

1.3c: La Codifica Digitale dei Suoni

OSCILLAZIONI SMORZATE E FORZATE

L Oscillatore Armonico

MISURA DELLA DISTANZA FOCALE DI UNA LENTE CONVERGENTE

CON L EUROPA INVESTIAMO NEL VOSTRO FUTURO Fondi Strutturali Europei Programmazione FSE PON "Competenze per lo sviluppo" Bando 2373

Dott. Gianni Gobbi S.C. di Fisica Sanitaria Azienda Ospedaliera di Perugia

ONDE ELETTROMAGNETICHE

Il suono: periodo e frequenza

Esercitazione Oscilloscopio

Metodo classico: i G R G. V AB = V AD R X i X = R 1 i 1. i 1. V BC = V CD R o i o = R 2 i 2. R ε R X = (R 1 /R 2 ) R 0 2

18/06/2009. F =σ S F 1 F 2. Unità di misura della tensione: [N/mm 2 ] 1 [N/mm 2 ] = 1 [MPa]

ESERCIZIO PRELIMINARE

MISURE DI CALORIMETRIA

Capitolo 12. Moto oscillatorio

La corrente alternata

CALCOLO DELLA RESISTENZA DI UN PROFILO

Reti di Calcolatori a.a

Relazione dell'esperienza fatta nel laboratorio di fisica: Carica e scarica di un condensatore

10 ottobre Marina Bertolini Dipartimento di Matematica F.Enriques Università degli Studi di Milano

GLI SPECCHI SPECCHI SFERICI (CONCAVI E CONVESSI) E PIANI

E-II. Diffrazione prodotta dalle onde di tensione superficiale sull acqua

IIS Moro Dipartimento di matematica e fisica

CORSO%DI%% A.A.% % Sezione%03c% SPETTRO ACUSTICO FISICA%TECNICA%AMBIENTALE%

Con l Europa, investiamo nel vostro futuro LICEO CLASSICO R. BONGHI (SEZIONE SCIENTIFICA ANNESSA)

Richiami sulle oscillazioni smorzate

Piano Lauree Scientifiche. Esperimento di Hebb

Moto vario nelle correnti a superficie libera Nozione elementare di onda In termini generali un'onda consiste nella propagazione di un segnale

Signal Processing. Studenti presso Liceo Scientifico Galeazzo Alessi: De Paola Vairo Gallea Danilo Postini Dennis Ragni Federico

Teoria dei Circuiti Esercitazione di Laboratorio Due-porte e circuiti equivalenti di Thevenin e Norton

Moto Monodimensionale in Condotti. Esercizi

SEGNALI STAZIONARI: ANALISI SPETTRALE

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni

Studio di circuiti contenenti diodi Uso di modelli semplificati

IL PROGETTO «TELECOMANDO» (sensore ad infrarossi)

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

La misura della distanza

Classe III specializzazione elettronica. Sistemi automatici

Le modulazioni impulsive

Variazioni di Pressione: 'Sonic Boom'

Esercizio svolto n.1. Coefficiente di assorbimento medio: Area equivalente di assorbimento acustico: Livello suono riverberante:

Esperienza 4. Misura dell Indice di rifrazione. Cenni teorici

Dinamica delle Strutture

POLITECNICO DI TORINO TERZA ESERCITAZIONE ATTENZIONE

Descrizione sintetica dell attività

Amplificatori in classe A con accoppiamento capacitivo

Transcript:

MISURA DELLE FREQUENZE DI RISONANZA DI UN TUBO SONORO Scopo dell esperienza è lo studio della propagazione delle onde sonore all interno di un tubo, aperto o chiuso, contenete aria o altri gas. Si verificherà sperimentalmente l instaurarsi di onde stazionarie che avviene solo per particolari valori della frequenza delle onde e si studierà la dipendenza di tale frequenza dalla lunghezza del tubo. Si misurerà infine la velocità di propagazione dell onda sonora nei diversi gas. INTRODUZIONE Si veda la scheda relativa alla corda vibrante per una introduzione generale sulla propagazione delle onde elastiche nei mezzi materiali e sulle leggi riguardanti le onde stazionarie. Un onda acustica prodotta dalle vibrazioni di una piccola membrana è un onda elastica, longitudinale, sferica. Se consideriamo la sua propagazione all interno di un tubo di sezione molto inferiore alla sua lunghezza possiamo considerare i fronti d onda approssimativamente piani e trattare il problema come monodimensionale rispetto l asse del tubo. La perturbazione del mezzo (aria o altro gas) può essere rappresentata come una variazione di pressione locale del gas. Nel caso di un onda periodica di tipo armonico, progressiva, essa può essere descritta dalla funzione monodimensionale p(x,t) dello spazio x e del tempo t come: p(x,t) = A sen (2 x 2 t/t con A ampiezza massima dell onda, lunghezza d onda e T periodo. La propagazione dell onda in un tubo di lunghezza L aperto ad entrambe le estremità è paragonabile a quella su una corda tesa fissata ad entrambi gli estremi. Infatti ai due estremi del tubo si hanno due nodi: la variazione di pressione prodotta dall onda è minima, essendo l aria in equilibrio con l ambiente. Pertanto nel tubo si stabiliscono onde stazionarie del tipo: p(x,t)= A sen (2 x ) cos 2 t quando è verificata la condizione: L = n n / 2 n=1,2,3.. (1) Laboratorio I, Corso di Laurea in Fisica 2010-M.Calvi 1

La frequenza corrispondente è n = v / n e quindi: n = n (v /2 L) n=1,2,3.. (2) essendo v la velocità di propagazione delle onde acustiche nell aria. La frequenza corrispondete ad n=1, è detta frequenza fondamentale, quelle per n>1 sono le armoniche successive. Se una delle estremità del tubo è chiusa, in questo punto la variazione di pressione è massima e si avrà quindi un ventre; perciò la condizione per l instaurarsi di onde stazionarie in un tubo chiuso ad una delle estremità sarà diversa dalla precedente e data da: L = (2n-1) /4 n =1,2,3.. (3) In figura è rappresentata la funzione p(x,t) ad un istante t 0 per cui cos t 0 e ad un istante t 1 per cui cos t 1 per le prime tre armoniche, nei casi di tubo aperto o chiuso, rispettivamente. Tubo aperto L = n /2 Tubo chiuso L = (2n-1) /4 Se invece il tubo è chiuso ad entrambe le estremità, ad entrambe le estremità si avrà un ventre; perciò la condizione per l instaurarsi di onde stazionarie sarà la stessa di quella indicata nella (1). Tuttavia le posizioni di nodi e ventri sono ora scambiate tra loro. Laboratorio I, Corso di Laurea in Fisica 2010-M.Calvi 2

SVOLGIMENTO DELL ESPERIENZA La misura si effettuano con una strumentazione costituita da: 1) un generatore di funzioni periodiche sinusoidali, di ampiezza e frequenza variabili 2) un altoparlante (speaker) con funzioni di trasduttore 3) un microfono, inserito all interno del tubo, con amplificatore 4) un oscilloscopio per visualizzare il segnale rivelato dal microfono e quello inviato all altoparlante. Variando la frequenza del generatore delle onde è possibile determinare le condizioni di risonanza e verificare la validità delle due relazioni indicate sopra. La lunghezza efficace del tubo chiuso si può modificare muovendo un pistone in materiale plastico che lo chiude ad un estremo. Il microfono funge da sensore delle variazioni di pressione. Spostando il microfono all interno del tubo è possibile determinare la posizione dei nodi e dei ventri di pressione ricavando una misura della lunghezze d onda. Misure per un tubo aperto. Disporre il tubo sugli appositi supporti, lasciando qualche centimetro di spazio fra il tubo e l altoparlante all estremità sinistra e aperta l estremità destra. Collegare il generatore all altoparlante e all oscilloscopio per poter visualizzare il segnale inviato. Posizionare il microfono al centro del tubo e collegarlo ad un altro canale dell oscilloscopio. Impostare sul generatore una frequenza intorno ai 100 Hz e un ampiezza iniziale zero. Aumentare gradualmente l'ampiezza sino a percepire un suono dall'altoparlante (tutto ciò al fini di non danneggiarlo inviandogli una potenza eccessiva). Accendere l'oscilloscopio e l amplificatore del microfono. Variare lentamente le frequenze del generatore e utilizzando l'oscilloscopio individuare le frequenze per le quali il segnale è massimo. Avendo determinato una delle frequenze di risonanza, variare la frequenza in modo da determinare quelle successive (inferiori e superiori). Ci si aspetta di trovare valori che stanno loro come multipli interi. Laboratorio I, Corso di Laurea in Fisica 2010-M.Calvi 3

Costruire un grafico che rappresenti la frequenza delle onde stazionarie in funzione del numero n e verificare la validità della (1). Interpolare i dati e ricavare i parametri della retta. Misurato il valore di L (e applicata la correzione indicata nella Nota) ricavare il valore della velocità di propagazione delle onde sonore. La precisione con cui si può determinare la frequenza corrispondente ad un massimo (o un minimo) non dipende dalla precisione del generatore che produce la funzione, ma dalla determinazione della condizione di massimo ( o minimo) fatta sull oscilloscopio. Valutare sperimentalmente qual è la minima variazione della frequenza corrispondente ad una variazione di ampiezza apprezzabile sull oscilloscopio ed utilizzarla per calcolare l incertezza sulle misure fatte. Scelta una frequenza di risonanza con n>1 spostare lentamente il microfono dentro il tubo e individuare le posizioni dei nodi e dei ventri e verificare che corrispondano a quanto previsto dalla (1). Confrontare i valori della velocità determinati precedentemente con quanto previsto dalla relazione: RT v = (4) M dove = Cp/Cv, R è la costante dei gas, M la massa molare e T la temperatura in gradi Kelvin. Misure per un tubo chiuso Le misure precedenti possono essere ripetute dopo aver chiuso l estremità destra del tubo. In questo caso vale l equazione (3). Verificare la legge e misurare la velocità di propagazione delle onde. Confrontarla col valore determinato per il tubo aperto. Verificare nell equazione (3) la dipendenza dalla lunghezza del tubo, ripetendo le misure per diversi valori di lunghezza, essa può essere variata a piacere movendo il pistone. Misura della velocità delle onde sonore in gas diversi. Con un tubo chiuso da entrambi i lati è possibile utilizzare un gas diverso dall aria. Stabilire la condizione di risonanza, misurare la velocità delle onde dalla relazione tra frequenza e numero di armonica e verificare la relazione (4) per il gas in uso. Misura della velocità delle onde sonore dalla riflessione di un onda quadra. La velocità del suono può anche essere ricavata misurando il tempo di un impulso sonoro che si propaga lungo il tubo e si riflette ad una estremità. Laboratorio I, Corso di Laurea in Fisica 2010-M.Calvi 4

Posizionare il microfono all inizio del tubo, poco distante dall altoparlante e il pistone che chiude l altra estremità alla fine del tubo. Selezionare sul generatore un onda quadra di frequenza vicino a 10 Hz. Regolare l ampiezza del suono in modo tale da udire un crepitio, non eccessivamente alto. Visualizzare sull oscilloscopio i segnali dovuti all impulso sonoro al suo passaggio iniziale e dopo la riflessione all estremità del tubo. Misurare la distanza temporale tra i due impulsi t e lo spazio percorso nel tubo x. Ricavare una prima della velocità dal rapporto x/ t. Ripetere la misura avvicinando il pistone ad intervalli regolari di alcuni cm e costruire un grafico che rappresenti il tempo t in funzione dello spazio x. Ricavare la velocità dall interpolazione dei dati e confrontarla con i risultati precedenti. La misura della velocità con un onda quadra può essere ripetuta anche con il tubo chiuso a due estremità, contenente aria e con gas diversi. NOTA Nel caso di un tubo reale le formule indicate per le risonanze sono approssimate in quanto la posizione esatta dei nodi ed antinodi (specialmente agli estremi aperti del tubo) dipende anche dal diametro D del tubo. Empiricamente è stata determinata una correzione da apportare alla lunghezza L del tubo pari a 0.4 D, per ogni estremità aperta del tubo. Le formule diventano quindi: tubo aperto L +0.8 D = n /2 con n =1,2,3.. tubo chiuso L +0.4 D = (2n-1) /4 con n =1,2,3.. Laboratorio I, Corso di Laurea in Fisica 2010-M.Calvi 5