misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

Documenti analoghi
x 1 Fig.1 Il punto P = P =

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0.

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

Vettori e geometria analitica in R 3 1 / 25

Argomenti Capitolo 1 Richiami

Prodotto scalare e ortogonalità

Appunti sul corso di Complementi di Matematica (modulo Analisi)

Geometria BATR-BCVR Esercizi 9

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.

Prodotto scalare e norma

Parte 11. Geometria dello spazio II

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

Prodotto interno (prodotto scalare definito positivo)

Funzioni goniometriche

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Esercizi di Geometria Affine

Esercizi Riepilogativi Svolti. = 1 = Or(v, w)

GEOMETRIA ANALITICA. Il Piano cartesiano

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri:

Esercizi svolti. Geometria analitica: rette e piani

Le sezioni piane del cubo

ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta 2008

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

La retta nel piano cartesiano

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

Distanza tra punti e punto medio di un segmento. x1 + x 2

Momento angolare L. P. Maggio Prodotto vettoriale

Geometria analitica del piano pag 32 Adolfo Scimone

Prodotto scalare. Piani e rette nello spazio. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Geometria Analitica Domande e Risposte

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

EQUAZIONE DELLA RETTA

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo

1- Geometria dello spazio. Vettori

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin

( ) e B( x 2. ( ) 2 + ( y 2. ( ), B( x 2

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni

Francesco Zumbo

Problema ( ) = 0,!

Introduzione. Al termine della lezione sarai in grado di:

Note di geometria analitica nel piano

1 Nozioni utili sul piano cartesiano

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Punti nel piano cartesiano

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16

Proprietà fondamentali dei vettori

vettori V Sia inoltre l angolo che il primo vettore deve percorrere per sovrapporsi al secondo. * **

Il valore assoluto (lunghezza, intensita )

Parte 12a. Trasformazioni del piano. Forme quadratiche

Test di Matematica di base

CENNI DI TRIGONOMETRIA

(x B x A, y B y A ) = (4, 2) ha modulo

1. SPAZIO VETTORIALE E SPAZIO EUCLIDEO

I VETTORI DELLO SPAZIO

Circonferenze del piano

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con.

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze

1.1 Coordinate sulla retta e nel piano; rette nel piano

Appunti di Algebra Lineare. Distanze

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

Esercizi di Elementi di Matematica Corso di laurea in Farmacia

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro.

7. Integrazione delle funzioni di più variabili (II)

C6. Quadrilateri - Esercizi

I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Piano cartesiano e Retta

1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche.

LA PERPENDICOLARITA NELLO SPAZIO. Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani.

Le derivate parziali

Esercizi per Geometria II Geometria euclidea e proiettiva

C che hanno rispettivamente raggi di misura b e c e i cui centri sono rispettivamente sugli

Richiami sugli insiemi numerici

Nozioni di calcolo vettoriale Unità Richiami. 1.2 Somma di vettori. Scomposizione.

Principali Definizioni e Teoremi di Geometria

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti.

Considerato un qualunque triangolo ABC, siano D ed E due punti interni al lato BC tali che:

Il Piano Cartesiano Goniometrico

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Funzioni reali di variabile reale

1 Cambiamenti di coordinate nel piano.

PIANI E RETTE NELLO SPAZIO / ESERCIZI SVOLTI

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

ANALISI B alcuni esercizi proposti

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

Trigonometria angoli e misure

4 0 = 4 2 = 4 4 = 4 6 = 0.

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come

La composizione di isometrie

sen ; e sul teorema del coseno. 2

Funzioni implicite - Esercizi svolti

3. Coordinate omogenee e trasformazioni dello spazio

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

Transcript:

4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto un punto, che chiamiamo l origine. Scegliamo poi tre rette perpendicolari che si incontrano in : due rette orizzontali come assi delle e delle, e la terza verticale come asse delle. Fissiamo su di esse un verso edun unità di misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali, che indicano rispettivamente le proiezioni di P sugli assi delle, e. P Fig.. Il punto P = ( nello spazio R 3. Le coordinate, e 3 individuano il punto P in modo unico. Si possono identificare quindi i punti P dello spazio con le terne : P =. Ad esempio, i punti sull asse delle sono quelli che soddisfano = =, i punti sull asse delle quelli che soddisfano = = e i punti sull asse delle quelli che soddisfano = =. L origine è il punto. L insieme delle terne ordinate si chiama spazio cartesiano e si indica con R 3 : R 3 = { :,, R}. Nello spazio R 3, insieme agli assi coordinati, si considerano anche i piani coordinati: sono i tre piani ortogonali che si intersecano nell origine, ognuno dei quali contiene due dei 3 assi coordinati. Essi sono: il piano (, i cui punti soddisfano =, il piano (, i cui punti soddisfano = ed il piano (, i cui punti soddisfano =.

= = = Fig.2. I piani coordinati in R 3 Come nel caso del piano, indicheremo in seguito con estremo il punto. anche il vettore uscente dall origine e di Fig.3. Il vettore = (. Il vettore = di lunghezza zero, si chiama vettore nullo. Per semplicità di notazione, scriveremo spesso sottointendendo = ; similmente scriveremo y per y y 2, etc... y 3 2

Definizione. Siano e y due vettori in R 3. Allora la somma + y di e y è il vettore dato da + y = + y + y 2 + y 3 Il vettore opposto del vettore è il vettore = La differenza y dei vettori e y è il vettore y = y y 2 y 3 Definizione. Sia λ R. Il prodotto di per λ è il vettore dato da λ = λ λ λ Come nel piano, anche nello spazio la somma tra vettori ha un interpretazione geometrica. Osserviamo che due vettori qualunque e y in R 3 sono contenuti in un piano π passante per, e y. Il vettore somma + y si trova applicando la regola del parallelogramma ai vettori e y sul piano π. Per costruzione, + y è contenuto nel piano π. Resta solo da verificare che le coordinate di + y così ottenute sono effettivamente + y + y 2 + y 3 Anche in R 3, il vettore differenza y è paralello alla retta passante per e y; la lunghezza di y è uguale alla distanza fra e y. y +y -y Fig.4. La somma + y, la differenza y. Osservazione. La costruzione appena discussa è utile perché riconduce la somma di vettori nello spazio ad una somma di vettori sul piano. Ci permette inoltre di definire l angolo ϑ fra due vettori e y dello spazio, 3

come l angolo da essi formato nel piano π che li contiene. Nel caso in cui e y sono uno multiplo dell altro, il piano π non è unico ed i vettori, y, + y, y stanno tutti sulla stessa retta. In questo caso, l angolo fra e y è ϑ =. y θ Fig.5 L angolo ϑ fra e y. La somma fra vettori gode delle seguenti proprietà: Proposizione 4.. (i (Proprietà associativa della somma Per ogni, y, z R 3 ( + y + z = + (y + z; (ii (Proprietà commutativa Per ogni, y R 3 + y = y + ; (iii (Proprietà associativa del prodotto Per ogni R 3 e λ, µ R λ(µ = (λµ; (iv (Proprietà distributiva Per ogni, y R 3 e λ, µ R λ( + y = λ + λy, (λ + µ = λ + µ. Dimostrazione. Anche in questo caso, le proprietà (i, (ii, (iii e (iv sono semplici conseguenze delle analoghe proprietà dei numeri reali. Definizione. (Prodotto scalare. Dati due vettori e y in R 3 il prodotto scalare y è il numero reale dato da y = y + y 2 + y 3. Il prodotto scalare gode delle seguenti proprietà 4

Proposizione 4.2. (i (Proprietà commutativa Per ogni, y R 3 y = y ; (ii (Proprietà distributiva Per ogni, y, z R 3 (y + z = y + z; (iii (Omogeneità Per ogni, y R 3 ed ogni λ R λ( y = (λ y = (λy; (iv (Positività Per ogni R 3, = se e soltanto se =. Dimostrazione. La dimostrazione è molto simile a quella della Prop..2 ed è lasciata al lettore. Definizione. La norma di un vettore R 3 è definita da = = + 2 2 + 2 3. Per il Teorema di Pitagora, la norma del vettore è uguale alla lunghezza del segmento congiungente e. Equivalentemente, la norma di è la distanza del punto dall origine. + 2 + 2 + 2 Fig.6. Il Teorema di Pitagora in R 3. Analogamente, dalla Fig.4 vediamo che y è la distanza fra i punti e y y 2. Usando la norma, y 3 diamo un interpretazione geometrica del prodotto scalare. Proposizione 4.3. Siano e y due vettori in R 3. (i Allora y = y cos ϕ dove ϕ è l angolo fra i vettori e y. (ii I vettori e y sono perpendicolari se e soltanto se y =. 5

Dimostrazione. Sia π un piano che passa per, e y. Consideriamo in π il triangolo di vertici i punti, e y. Dalla Fig.4, vediamo che i lati del triangolo hanno lunghezze, y e y. Applicando la regola del coseno troviamo y 2 = 2 + y 2 2 y cos ϕ. Dalla definizione stessa della norma abbiamo e quindi ( y 2 + ( y 2 2 + ( y 3 2 = + 2 + 3 + y 2 + y 2 2 + y 2 3 2 y cos ϕ 2 y 2 y 2 2 y 3 = 2 y cos ϕ come richiesto. Per la parte (ii, osserviamo che cos ϕ = se e soltanto se ϕ = ±π/2, cioè se e soltanto se ϕ è un angolo retto. Corollario 4.4. (Disuguaglianza di Cauchy-Schwarz. Siano e y vettori in R 3. Allora y y. Dimostrazione. Questo segue dal fatto che cos ϕ. (Vedi l Eserc..B. Proposizione 4.5. Siano e y vettori in R 3. Allora (i (Disugualianza triangolare + y + y ; (ii Per ogni λ R λ = λ. Dimostrazione. (i Sia π un piano che passa per, e y. In π c è il triangolo di vertici, e + y. Poiché i lati hanno lunghezze, y e + y, la disuguaglianza triangolare in R 3 segue dalla disuguaglianza triangolare nel piano. Una seconda dimostrazione dello stesso fatto si può ottenere anche usando la disuguaglianza di Cauchy-Schwarz del Cor.4.4: + y 2 = ( + y 2 + ( + y 2 2 + ( + y 3 2 = + 2 + 3 + y 2 + y 2 2 + y 2 3 + 2( y + y 2 + y 3 = 2 + y 2 + 2 y, 2 + y 2 + 2 y = ( + y 2. Poiché + y e + y sono numeri non negativi, possiamo estrarne le radici quadrate ottenendo la disuguaglianza cercata. (ii Direttamente dalla definizione della norma troviamo λ 2 = (λ 2 + (λ 2 + (λ 2 = λ 2 ( + 2 + 3 = λ 2 2. Estraendo le radici quadrate, otteniamo come richiesto. λ = λ Come applicazione del prodotto scalare, calcoliamo le proiezioni ortogonali di un vettore R 3 su una retta l o su un piano β, passanti per l origine. Proposizione 4.6. Sia un vettore in R 3. (i La proiezione ortogonale π( di sulla retta l passante per l origine e parallela al vettore y è data da π( = cy, ove c = y y 2 ; 6

(ii La proiezione ortogonale π( di sul piano β passante per l origine di equazione n = è data da π( = λn, ove λ = n n n. Dimostrazione. (i La dimostrazione è del tutto simile a quella della Proposizione.6 ed è lasciata al lettore. (ii Sia π( la proiezione ortogonale di sul piano β. Allora π( è un vettore perpendicolare a β e dunque soddisfa π( = λn per un opportuno scalare λ. Poiché π( appartiene a β vale n π( =, da cui si ricava λn n = n e quindi λ = n n n come richiesto. π β ( β Fig.7. La proiezione ortogonale del vettore sul piano β. Introduciamo adesso il prodotto vettoriale in R 3 : si noti che il prodotto vettoriale non è definito nel piano R 2, né in R n per n > 3. È una nozione che esiste solo in R3. Il prodotto vettoriale è un applicazione che ad una coppia di vettori, y R 3 associa un terzo vettore y R 3. Definizione. Siano, y R 3. Il prodotto vettoriale y di e y è il vettore di R 3 definito da y = 2y 3 y 2 y y 3 y 2 y Proposizione 4.7. Siano, y R 3. Il prodotto vettoriale y gode delle seguenti proprietà: (i y = y; (ii Il vettore y è perpendicolare sia ad che a y: ( y =, y ( y = ; (iii La norma di y soddisfa dove ϕ è l angolo fra e y. y = y sen ϕ, 7

Dimostrazione. (i Direttamente dalla definizione, abbiamo Per dimostrare (ii, calcoliamo y = y 2 y 3 y 3 y = y. y y 2 ( y = 2y 3 y 2 y y 3 y 2 y Similmente troviamo y ( y =. Per la parte (iii abbiamo 2 y 2 sen 2 ϕ = 2 y 2 ( cos 2 ϕ = ( y 3 y 2 + ( y y 3 + ( y 2 y =. = 2 y 2 ( y 2 = ( + 2 + 3(y 2 + y 2 2 + y 2 3 ( y + y 2 + y 3 2 = y 2 2 + y 2 3 + 2y 2 + 2y 2 3 + 3y 2 + 3y 2 2 2 y y 2 2 y y 3 2 y 2 y 3 = ( y 2 y 2 + ( y 3 y 2 + ( y 3 y 2 2 = y 2. Estraendo le radici quadrate, troviamo l uguaglianza cercata. Questo conclude la dimostrazione della proposizione. Proposizione 4.8. Il parallelepipedo di spigoli i vettori, y e z ha volume V dato da V = y 2 z 3 + y z 2 + z y 3 z 2 y 3 y z 3 z y 2 = det y z y 2 z 2 y 3 z 3. Dimostrazione. Il volume V del parallelepipedo di spigoli, y e z è uguale all area del parallelogramma di vertici,, y e + y moltiplicata per l altezza. L altezza è uguale alla lunghezza della proiezione del vettore z sulla retta che passa per e y. y θ z y ϕ Fig.8. Il parallelepipedo di spigoli, y e z. 8

Per la Prop..7, l area del parallelogramma è uguale a y sen ϕ, ove ϕ è l angolo fra i vettori e y, e la lunghezza della proiezione di z sulla retta per e y è uguale a z cos ϑ, ove ϑ è l angolo fra i vettori z e y. Il volume V è quindi dato da V = y sen ϕ z cos ϑ = y z cos ϑ = z ( y = z ( y 3 y 2 + z 2 ( y y 3 + z 3 ( y 2 y. Osserviamo infine che l espressione z ( y 3 y 2 +z 2 ( y y 3 +z 3 ( y 2 y coincide col determinante della matrice y z y 2 z 2, y 3 z 3 e ciò completa la dimostrazione della Proposizione. Definizione. L orientazione Or(, y, z di tre vettori, y, z R 3 è il segno del determinante det y z y 2 z 2 y 3 z 3 Si dice che, y, z sono orientati positivamente se Or(, y, z >. Per esempio, i vettori e, e 2 e e 3 sono orientati positivamente perchè det = + + =. Scambiare due vettori cambia il segno dell orientazione: Or(y,, z = Or(, y, z. Geometricamente, tre vettori, y e z sono orientati positivamente se possono essere identificati rispettivamente con il medio, il pollice e l indice della mano destra. Altrimenti sono orientati negativamente e possono essere identificati rispettivamente con il medio, il pollice e l indice della mano sinistra. z indice z indice y pollice medio medio y pollice Mano sinistra Mano destra Fig.9. L orientazione. 9

Osservazione. I vettori {, y e y} formano una terna di vettori orientata positivamente. Esercizi. (4.A Siano = ( 2 3 e y = ( 2 3 due vettori in R 3. (i Calcolare y, + 3y e 2 + y. (ii Calcolare le lunghezze di questi vettori. (4.B Siano e y i vettori dell Eserc.4.A. (i Calcolare i prodotti scalari y, e anche (5 + 7y. (ii Calcolare il coseno dell angolo fra e y. (iii Calcolare il coseno dell angolo fra e + y. (4.C Sia il vettore dell Eserc.4.A. (i Trovare un vettore v tale che v =. (ii Trovare un vettore w tale che { w =, v w =. (4.D Sia v R 3 un vettore non nullo. Sia λ = v. (i Calcolare la lunghezza di λ v. (ii Trovare un vettore parallelo a v che abbia lunghezza /λ. (4.E Siano e y due vettori in R 3. Sia v = (i Calcolare le distanze y, v e y v. (ii Far vedere che v è il punto medio fra e y. (4.F Siano e y i due vettori dell Eserc.4.A. (i Calcolare y. (ii Calcolare ( y. (iii Calcolare l area del triangolo di vertici, e y. ( ( + y /2 ( + y 2/2. ( + y 3/2 ( ( (4.G Siano = e y = 2. (i Trovare un vettore v perpendicolare sia a che a y. (ii Trovare un vettore come nella parte (i, di lunghezza. (4.H Siano, y e z i vettori (, 2 ( 2, 2 ( 3. (i Calcolare il volume del parallelepipedo che ha come spigoli i vettori, y e z. (ii Calcolare il volume del parallelepipedo che ha come spigoli i vettori 2, y e z. (iii Calcolare il volume del parallelepipedo che ha come spigoli i vettori + y, y e z. (iv Calcolare il volume del parallelepipedo che ha come spigoli i vettori + 5y + 7z, y e z. (4.I Siano, y e z i vettori in R 3 dati da ( 6 2, 3 ( 2 3, 6 ( 3 6 2 (i Calcolare le lunghezze di, y e z e i coseni degli angoli fra, y e z. (ii Calcolare il volume del parallelepipedo che ha come spigoli i vettori + 5y + 7z, y e z. ( ( ( (4.J Siano = e y = e z =. 2 3.

(i Calcolare i vettori ( y z ed (y z. (ii Calcolare ( y z ed (y z. (4.K Siano, y e z i vettori dell Eserc.4.H. (i Calcolare l orientazione Or(, y, z. (ii Calcolare l orientazione Or(y, z,. (iii Calcolare l orientazione Or(, y, + y. (4.L Siano,,..., 8 R 3 gli otto punti in R 3 dati da ( ( =, =, = 5 = ( 5, 6 = ( 5, 7 = ( 2 ( 2 5 (, 4 = (, 8 =. 5 (i Far vedere che,, e 4 sono i vertici di un parallelogramma. (ii Far vedere che i + 5 = i+4 per ogni i, i 4. (iii Far vedere che,..., 8 formano i vertici di un parallelepipedo. Calcolarne il volume. (4.M Siano, y, z R 3 e supponiamo che Or(, y, z = +. (i Far vedere che i vettori, y e z si possono mettere in ordine in sei modi diversi:, z, y oppure z,, y ecc. (ii Per tutti i sei modi calcolare l orientazione: Or(, z, y, Or(z,, y... ecc. (4.N Siano α, β, γ R numeri non nulli che soddisfano α + β + γ =. Consideriamo i seguenti vettori in R 3 : p = ( αβ βγ, q = γα ( βγ γα, r = αβ ( γα αβ. βγ (i Calcolare gli angoli fra i vettori p, q e r. (ii Calcolare il volume del parallelepipedo che ha come spigoli i vettori p, q e r.