STRUTTURE RETICOLARI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "STRUTTURE RETICOLARI"

Transcript

1 TRUTTURE RETICOARI i considerino un arco a tre cerniere, costituito da due corpi rigidi rappresentabili come travi collegate da cerniere puntuali. upponiamo che in corrispondenza della cerniera interna agisca un carico concentrato, P. P P i può facilmente verificare che il carico agente in sommità viene trasmesso alle due cerniere a terra dalle due aste mediante sole forze di compressione. In altre parole, le due aste sono sollecitate solo da sforzi normali, in questo caso di compressione. Questo elementare modello di struttura a traliccio piana, di frequente impiego nelle prime applicazioni di copertura realizzati in materiale ligneo, è chiaramente ispirata al principio statico della triangolazione. e inseriamo una catena lignea a collegamento dei due appoggi, come illustrato nella figura precedente, otteniamo la cosiddetta capriata semplice a due spioventi. Tuttavia, l impossibilità di coprire, mediante tale schema semplice, luci sempre più grandi ha condotto via via all inserimento di ulteriori elementi strutturali al fine di parzializzarne la luce libera, fino ad ottenere elementi sempre più complessi quali ad esempio la capriata tipo Polonceau illustrata nella seguente figura. Capriata Polonceau Una struttura come quella indicata in figura è denominata anche come struttura reticolare. e strutture reticolari offrono una delle più antiche soluzioni al problema delle coperture: le capriate in legno che coprivano le basiliche romane rappresentano un primo esempio. Ma la forma reticolare da anche soluzione ad un altro problema, la necessità di realizzare strutture di notevoli dimensioni con elementi relativamente piccoli. In particolare, l evoluzione di sistemi costruttivi basati su elementi reticolari ha portato al passaggio dalla trave ad anima piena alla trave reticolare. Il maggior sviluppo si ebbe nell ottocento quando si riuscì a produrre industrialmente i laminati di ferro con caratteristiche meccaniche sufficientemente sicure, diffusamente utilizzati nella realizzazione di ponti ferroviari. Contemporaneamente, il reticolo di travi si viene ad orientare verso schemi caratterizzati ciascuno da un preciso funzionamento statico. Travatura Warren: travatura reticolare senza montanti

2 i fa così gradualmente strada la tendenza a realizzare composizioni del reticolo mediante una successione di elementi triangolari accostati, come per lo schema Warren (indicato nella seguente figura), considerato come soluzione ottimale per opere da ponte. Il vantaggio di questo schema sta nel fatto che permette di concentrare il materiale secondo le linee di massima concentrazione degli sforzi. e però l altezza necessaria per raggiungere determinati livelli di rigidezza è troppo estesa, nella trave Warren si raggiungono eccessive lunghezze degli elementi che possono provocare nelle aste compresse dei fenomeni di instabilità. Per tali motivi, si affermano altri tipi di travature reticolari, quali i tipi Pratt e Howe, illustrati nella seguente figura. Trave Pratt Trave Howe o sviluppo delle strutture reticolari fu man mano sostenuto da un corpo di conoscenze scientifiche in rapida espansione, portando a realizzazioni sempre più articolate in relazione alle luci da coprire. Attualmente le strutture reticolari sono perlopiù realizzate in acciaio, alluminio o legno, raramente in cemento armato. Geometria a struttura reticolare quadrata formata da quattro aste evidentemente non è stabile. i tratta di un meccanismo, e lo stesso vale per ogni struttura poligonale formata da quattro o più aste. Al contrario tre aste che formano un triangolo costituiscono una struttura stabile. Il triangolo è quindi la forma più semplice di struttura reticolare di cui costituisce pertanto anche la cellula base per formare un sistema rigido che non può essere deformato dall applicazione di forze esterne senza la deformazione di uno o più, degli elementi che lo compongono. e strutture reticolari formate per semplice giustapposizione di triangoli sono dette talora triangolazioni semplici. Nello spazio a tre dimensioni la cellula base è il tetraedro e ogni nodo ha bisogno di tre aste per garantire la sua stabilità. Nelle strutture reticolari tutte le travi sono collegate tra loro mediante cerniere che possono essere considerate sferiche. Ogni trave è dunque una biella. e poi i carichi sono concentrati sui nodi (sulle cerniere) le travi portano solo forze assiali. Molto spesso è possibile immaginare i vincoli interni come veri e propri corpi rigidi. In quanto corpo rigido si deve quindi imporre l equilibrio anche del vincolo tramite le equazioni cardinali della statica, in genere trascurando il peso del vincolo stesso. Per azione e reazione ogni corpo rigido esercita sul vincoli forze uguali ed opposte.

3 Poiché per ipotesi si suppone che le dimensioni della cerniera siano trascurabili, tutte le forze sono applicate in essa e quindi la seconda equazione cardinale della statica (M O =0) è soddisfatta. Il metodo appena descritto è il metodo generale per stabilire le relazioni esistenti tra le reazioni vincolari interne. Dato un vincolo se ne impone l equilibrio considerando tutte le forze esercitate sul vincolo, siano esse esterne, reattive interne, o reattive esterne. i definisce struttura reticolare un insieme di aste rettilinee incernierate collegate le une alle altre mediante nodi in modo da formare una struttura portante stabile, piana oppure spaziale. Trave reticolare è un sistema reticolare, formante un unica membratura, nel quale una dimensione (la lunghezza) è largamente preponderante rispetto all altra (o alle altre nel caso tridimensionale). ra le diverse aste che compongono la struttura si distinguono i CORRENTI, costituiti dalle aste essenzialmente orientate nella direzione della dimensione maggiore della trave reticolare, e le DIAGONAI e MONTANTI, costituiti da aste orientate obliquamente o trasversalmente a tale direzione. Diagonale Corrente uperiore Montante Corrente Inferiore truttura reticolare: terminologia e i carichi sono costituiti unicamente da forze concentrate sulle cerniere, ogni asta risulterà soggetta a sola azione assiale, o sforzo normale, essendo quest ultima l unica caratteristica di sollecitazione compatibile con l equilibrio dei singoli elementi costitutivi isolati dal complesso strutturale e con le prestazioni statiche dei vincoli. Quindi, una struttura reticolare per definizione ha il seguente schema statico: i nodi sono cerniere perfette; gli assi delle aste concorrono ai nodi senza eccentricità; i carichi agiscono solo sui nodi, affinché le aste possano trasmettere forze solo alle loro estremità. In virtù di questa ultima ipotesi le aste saranno soggette soltanto a sforzo normale, di trazione o compressione. a generica asta tesa si definisce comunemente come TIRANTE, quella compressa come PUNTONE. Ciò permette un significativo risparmio di materiale rispetto alle travi a parete piena. E molto importante che le travature reticolari siano caricate solamente da forze concentrate applicate nei nodi, affinché, negli elementi, si sviluppino solo sforzi di trazione o di compressione. e i carichi fossero applicati direttamente agli elementi stessi si svilupperebbero anche degli sforzi dovuti alla flessione e al taglio. Questa modellazione fornisce risultati soddisfacenti, nel senso che le aste sono sollecitate solo da sforzo normale, quando: i nodi sono piccoli e le aste sono snelle, gli assi delle aste sono concorrenti, i carichi sono trasmessi ai nodi. e inevitabili imperfezioni (peso proprio delle aste, ecc.) introducono solo effetti secondari, trascurabili in prima approssimazione. Ad esempio il peso proprio delle aste non è evidentemente trascurabile e se ne tiene conto, in pratica, concentrando la metà del peso di ogni asta su ciascuna delle sue estremità. Ciò che invece è trascurabile è l effetto locale del peso proprio su ciascuna asta considerata isolatamente. Una generica struttura tridimensionale o piana, si identifica per sua stessa definizione con un sistema di corpi rigidi vincolati mutuamente e con l esterno. Tuttavia è comodo considerare invertiti i ruoli dei nodi e delle aste: riguardare cioè i primi come corpi puntiformi, ciascuno dotato di (o nello spazio) gradi di libertà, e le seconde come vincoli interni semplici che controllano la distanza relativa tra due nodi.

4 Esiste una relazione tra il numero di nodi e il numero di aste. e N c è il numero di cerniere (nodi), N a il numero di aste e N e il numero di vincoli semplici esterni, affinché il sistema sia staticamente e cinematicamente determinato, nell ipotesi che i vincoli siano ben disposti (condizione sufficiente), è necessario che il numero di vincoli, N a +Ne, sia pari ai gradi di libertà del sistema, cioè: N a +Ne = N c nel piano (Nc nello spazio) Il problema statico delle strutture reticolari consiste nel calcolo dello sforzo normale in tutte le aste. Tale calcolo è possibile servendosi delle sole equazioni di equilibrio. Tutte le travi sono bielle caricate agli estremi: ogni trave sopporta solo carico assiale costante lungo la trave. i noti che questa semplice osservazione permette di affermare che le equazioni cardinali della statica sono già automaticamente soddisfatte per ogni asta isolata, qualunque sia il valore delle azioni assiali. In realtà ciò che resta da fare è imporre l equilibrio dei perni delle cerniere, cioè dei vincoli interni. Il primo passo nell analisi di una struttura reticolare è isolarne una parte e considerare il sistema di forze agente su di essa. e alcune forze sono note, è possibile calcolare le atre mediante le equazioni cardinali della statica, dato che la porzione in esame dovrà risultare in equilibrio. estensione della porzione di struttura scelta per lo studio dell equilibrio non è vincolata in alcun modo. Potrebbe essere limitata ad un singolo nodo o ad un insieme composto da diversi elementi e nodi. Il sistema di forze considerato consiste non solamente di ciascuna forza esterna applicata alla parte in esame, ma anche delle forze interne alla struttura. Nel seguito vengono illustrati i due principali metodi per la determinazione degli sforzi nelle aste di un sistema reticolare: il metodo dei nodi e il metodo delle sezioni o di Ritter. METODO DEI NODI In diverse geometrie di travature è possibile risolvere lo stato di sollecitazione operando per nodi successivi. Tale procedimento richiede di individuare un nodo semplice o canonico, definito come nodo in cui convergono due aste e di risolverlo mediante le due equazioni di equilibrio del nodo stesso. i procede quindi nell isolare un nodo della struttura reticolare tagliando le aste che vi convergono. i esplicitano quindi gli sforzi normali trasmessi dalle aste al nodo e le eventuali forze esterne. i scrivono infine le equazioni di equilibrio per il nodo in esame. Poiché le forze sono convergenti al nodo, l equazione di equilibrio dei momenti rispetto al nodo stesso è identicamente soddisfatta (ΣM nodo =0). Nel caso piano si hanno pertanto a disposizione per ogni nodo solo le rimanenti due equazioni di equilibrio: Σ,nodo =0 Σ,nodo =0. i procede in sequenza, scrivendo l equilibrio di un primo nodo e poi, servendosi dei risultati ottenuti, di un secondo e così di seguito. Tuttavia poiché si hanno a disposizione solo due equazioni di equilibrio per nodo, è necessario disporre di almeno un nodo a cui sono collegate solo due aste, in modo da avere in partenza due sole incognite. uccessivamente si procederà utilizzando di volta in volta nodi per i quali si abbiano due sole incognite. i illustra il procedimento con un esempio pratico. Consideriamo il seguente sistema reticolare: R R R R R R Il sistema è staticamente determinato in quanto:

5 N a =7 N e = N c = N a +Ne = N c ed i vincoli sono ben disposti. Procediamo innanzitutto al calcolo delle reazioni vincolari esterne: R = R = R = / Per trovare gli sforzi nelle aste si procede considerando l equilibrio dei nodi. Guardando ai soli nodi, si può vedere che come il sistema di forze agente su un nodo sia definito dalle aste collegate da questo e dalle forze esterne applicate al nodo. i consideri quindi ogni nodo sul quale agiscono eventuali forze esterne e le azioni fornite dalle aste che in esso concorrono. Nel caso piano, come questo, affinché sia rispettato l equilibrio nel generico nodo k devono essere rispettate le seguenti condizioni: = 0 α + k = 0 i ki N ki = 0 β + k = 0 i ki N ki dove si è indicato con k il nodo in esame,con i il generico nodo collegato a k mediante un asta, con α ki il coseno dell angolo che la direzione ki (orientata da k verso i) forma con l asse, e con β il coseno dell angolo che la direzione ki forma con l asse. Il sistema di riferimento O è centrato nel nodo k. Consideriamo il nodo (k=) sul quale agiscono le due reazioni vincolari note e gli sforzi trasmessi al nodo dalle due aste concorrenti. i ha quindi: Nodo (k=) N N N R R R k= N α = β =0 α = β = e frecce illustrano graficamente la direzione delle forze su un asta. Il verso corrisponde ad una forza di trazione nell asta, che per il principio di azione e reazione è in verso uscente dal nodo. i scrivono quindi le equazioni di equilibrio per il nodo in esame (nella figura viene anche indicato il poligono di equilibrio per il nodo): = 0 α N + αn R = 0 N + N = 0 N = = 0 β N + β N R 0 N 0 N i procede quindi con gli altri nodi. Nodo (k=) = = = N k= N N N N N

6 α = β =0 α = β = α =0 β = Nodo (k=) = 0 α N + α N = N = N = = 0 β N + βn = 0 N = 0 N = N N N N N k= N α = β =0 α = β = α =0 β = = 0 α N + αn + = 0 N + = 0 = 0 β N + βn = 0 N = 0 N N = = Nodo (k=) N N k= Dalla figura si evince chiaramente che N =0. i può quindi procedere a riassumere gli sforzi nelle aste (le frecce indicano gli sforzi nelle aste): R R R N = N N = N = N = N = = N = 0

7 METODO DEE EZIONI o METODO DI RITTER In diverse situazioni può non essere necessario determinare lo sforzo normale in tutte le aste, ma solo in alcune, ad esempio le più sollecitate. Una travatura reticolare generata a partire da un triangolo iniziale presenta la proprietà di poter essere tagliata da una sezione ideale, che divida la struttura integralmente in due parti sezionando solo tre aste non concorrenti nello stesso punto. i può quindi disegnare lo schema isolato di una delle due porzioni. I limiti della porzione considerata possono essere quindi estesi fino a considerare un sottoinsieme costituito da diversi nodi e diverse aste. e preventivamente sono state calcolate le eventuali reazioni scrivendo l equilibrio di tutto il traliccio, restano come incognite solo gli sforzi normali di tutte le aste tagliate. Poiché l equilibrio di questa porzione consente di scrivere solo tre equazioni, il taglio non dovrà evidenziare più di tre incognite. In generale, è comunque conveniente effettuare un taglio che consenta di calcolare uno sforzo normale incognito quale che sia il numero di aste tagliate. Infine, poiché gli sforzi normali che si agiscono sulle sezioni delle aste tagliate sono gli stessi per le due porzioni, si può scrivere l equilibrio per una sola porzione, quella che porta a calcoli più semplici. Riprendiamo l esempio precedente: ezione di Ritter ezione di Ritter N N R = R =/ N a sezione taglia tre aste non concorrenti nello stesso nodo. o sforzo in una delle tre aste viene calcolato mediante un equazione di equilibrio dei momenti intorno al polo in cui convergono le altre due: M = N + = 0 N = M = N + = 0 N = 0 Per trovare lo sforzo nella terza asta si procede come segue: = N = 0 N = o stesso risultato si ottiene utilizzando la relazione = 0 i può procedere allo stesso modo considerando l altra parte ottenuta mediante la sezione di Ritter. ezione di Ritter N N N M = 0 N = 0 R =/ 7

8 M = N + = 0 N = = N + = 0 N = EEMPIO i affronta il problema di trovare gli sforzi nelle aste della travatura reticolare in figura. / Reazioni vincolari / N a =9 N e = N c = E il sistema è indeformabile. i utilizza il metodo dei nodi. Nodo (k=) N a +Ne = N c N / k= N = 0 α N 0 N 0 = = = 0 β N + R = 0 N + = 0 N = Nodo (k=) k= N = 0 α N + α N = N = N = N N = 0 β N + β N = 0 + N = 0 N = e azioni nelle altre aste si desumono da condizioni di simmetria del sistema. i ha quindi, riepilogando: / / / / / / =0 =0 / / 8

9 E interessante confrontare la soluzione della stessa trave reticolare con quella di una trave piena della stessa luce e soggetta alla stessa condizione di carico. A B / / / + / T M / Per 0 z M z = z Per z M z = z ( z ) = z e azioni assiali nelle aste della travatura reticolare danno luogo, in ogni sezione a distanza z dalla cerniera esterna, a risultanti che configurano le stesse azioni interne della trave a parete piena. A / / / ( int M A forze erne) = z ( int M B forze erne) = ( z) / z B i può notare che le componenti verticali danno luogo all azione tagliante, mentre le componenti orizzontali costituiscono coppie interne. 9

10 Materiale sviluppato in collaborazione con la Prof.ssa ilvia Bruno) PROBEMA Per la trave reticolare rappresentata in igura a si richiede di: verificare che il sistema sia isostatico, calcolare il valore delle reazioni dei vincoli esterni, determinare le sollecitazioni nelle aste. Inoltre si chiede di confrontare lo stato di sollecitazione nella trave reticolare con quello della trave piena di ugual luce e soggetta alla stessa condizione di carico, rappresentata in igura b. 7 8 A ig. a B C D E Dati: = 00 kn = m ig. b OUZIONE Verifica dell isostaticità Gradi di libertà del sistema: (numero di nodi) = Numero di vincoli semplici: (numero di aste) + (numero di vincoli esterni) = + (cerniera nel nodo ) + (appoggio scorrevole nel nodo 8) In totale: vincoli semplici, quindi in numero uguale a quello dei gradi di libertà del sistema. Reazioni vincolari esterne Diagramma di corpo libero: ig. c

11 Materiale sviluppato in collaborazione con la Prof.ssa ilvia Bruno) Azioni assiali Equilibrio del nodo : π R = 0 : N cos + N = 0 π R = 0 : N sin + = 0 N = dalla condizione: R = 0 segue: N = N N Equilibrio del nodo : R = : N N = 0 N = N R 0 = = 0 : N = 0 N N N Equilibrio del nodo : π π R = 0 : N + N cos N cos = 0 π π R = 0 : - N sin - N sin = 0 N = dalla condizione : R = 0 segue : N = N N N N = 0 Equilibrio del nodo : R = : N N = 0 N = N = 0 0 : N + = 0 N = R = N N N e sollecitazioni nelle aste -, -, -7, -7, -8, 7-8 discendono dalla simmetria del sistema. In alternativa all imposizione dell equilibrio dei nodi, è possibile ricavare lo sforzo nelle aste dei correnti superiore e inferiore sezionando la trave reticolare in corrispondenza delle aste in esame e imponendo, per una qualsiasi delle due porzioni risultanti dalla sezione, che sia nullo il momenti risultante delle forze applicate (esterne e interne) rispetto a un polo opportunamente scelto. N Per esempio: N M = : N = 0 N 0 = = 0 : N = 0 N = M + N È senz altro utile raccogliere in una tabella come quella riportata di seguito i valori degli sforzi assiali via via ottenuti per ciascuna asta. Valori positivi corrispondono a sforzi normali di trazione nelle aste e a forze nodali uscenti dal nodo; valori negativi corrispondono invece a sforzi normali di compressione nelle aste e a forze nodali entranti nel nodo:

12 Materiale sviluppato in collaborazione con la Prof.ssa ilvia Bruno) Asta N -, -8 -, 7-8 -,-7 0 -, - - -, - -, Il grafico che segue illustra sinteticamente, assieme alle forze esterne (attive e reattive) agenti sui nodi della travatura, il sistema di forze interne che nodi e aste si scambiano tra loro, con il verso precedentemente dedotto attraverso l imposizione delle condizioni di equilibrio. - Trazione - Compressione 7 8 o stato di sollecitazione nel sistema può essere infine rappresentato come nella figura successiva, nella quale i valori delle azioni assiali sono stati riportati (con segno) accanto a ciascuna asta, eventualmente disegnata con un tratto diverso a seconda che si tratti di un elemento teso, compresso o scarico Tirante - Puntone - Asta scarica Confronto con la trave a parete piena Nella trave a parete piena rappresentata in ig. b, le azioni interne hanno valore: N() = 0 N() = 0 T() = (ig. d) T() = (ig. e) M() = M() = ( + )

13 Materiale sviluppato in collaborazione con la Prof.ssa ilvia Bruno) Tratto AB: Tratto BC: A M T N A B ( + ) M T N ig. d ig. e Nelle corrispondenti sezioni della trave reticolare, effettuate con piani ortogonali alla direzione dei correnti tra i nodi e e i nodi e, rispettivamente, la risultante e il momento risultante degli sforzi nelle aste hanno componenti: R = 0 R = 0 R = - (ig. f) R = - (ig. g) M = M = - ( - ) = ( + ) ig. f ig. g Quindi, le componenti verticali delle azioni assiali in corrispondenza di una sezione ortogonale alla direzione dei correnti equivalgono allo sforzo di taglio nella trave a parete piena di confronto; le componenti orizzontali danno luogo a coppie equivalenti alla sollecitazione di momento flettente nella trave a parete piena.

14 Materiale sviluppato in collaborazione con la Prof.ssa ilvia Bruno) PROBEMA Per la trave reticolare rappresentata in igura a si richiede di: calcolare il valore delle reazioni dei vincoli esterni, determinare le sollecitazioni nelle aste. Inoltresi chiede di confrontare lo stato di sollecitazione nella trave reticolare con quello della trave piena di ugual luce e soggetta alla stessa condizione di carico, rappresentata in igura b. C Dati: = 0 kn = m B A OUZIONE ig. a ig. b Verifica dell isostaticità Gradi di libertà del sistema: (numero di nodi) = Numero di vincoli semplici: (numero di aste) + (numero di vincoli esterni) = 9 + (cerniera nel nodo ) + (appoggio scorrevole nel nodo ) In totale: vincoli semplici, quindi in numero uguale a quello dei gradi di libertà del sistema. Reazioni vincolari esterne Diagramma di corpo libero: ig. c + Azioni assiali Equilibrio del nodo : = 0 : N = 0 R R = 0 : N = 0 N N Equilibrio del nodo : = 0 : N = 0 R R = : N + = 0 N = 0 N N

15 Materiale sviluppato in collaborazione con la Prof.ssa ilvia Bruno) Equilibrio del nodo : π R = 0 : N cos + = 0 N = π R = 0 : N sin + N = + N = 0 N = N N = 0 N Equilibrio del nodo : π R = 0 : N cos = 0 N = π R = 0 : N + N sin = 0 N = N N N = 0 In alternativa all imposizione dell equilibrio dei nodi, è possibile ricavare lo sforzo nelle aste dei correnti di sinistra e di destra sezionando la trave reticolare in corrispondenza delle aste in esame e imponendo, per una qualsiasi delle due porzioni risultanti dalla sezione, che sia nullo il momenti risultante delle forze applicate N (esterne e interne) rispetto a un polo opportunamente scelto. N N Per esempio: M = : N + = 0 N = 0 = 0 : N = 0 N = M In sintesi: + Asta N Tirante - Puntone - Asta scarica Confronto con la trave a parete piena Nella trave a parete piena rappresentata in ig. b, le azioni interne hanno valore: N() = 0 T() = (ig. d) M() =

16 Materiale sviluppato in collaborazione con la Prof.ssa ilvia Bruno) Trave a parete piena: Trave reticolare: M() A T() M N T + ig. d ig. e Nella corrispondenti sezione della trave reticolare, effettuata con un piano ortogonale alla direzione dei correnti tra i nodi e, la risultante e il momento risultante degli sforzi nelle aste hanno componenti: R = 0 R = (ig. e) M = - ( ) = - + Quindi, le componenti orizzontali delle azioni assiali in corrispondenza di una sezione ortogonale alla direzione dei correnti equivalgono allo sforzo di taglio nella trave a parete piena di confronto; le componenti verticali danno luogo a coppie equivalenti alla sollecitazione di momento flettente nella trave a parete piena. Considerazioni analoghe valgono per il confronto relativo al tratto BC della trave a parete piena e alle aste appartenenti alla maglia compresa tra i nodi e della trave reticolare. i osservi infine che la risultante e il momento risultante delle azioni esterne nei nodi e sono equivalenti alle reazioni dell incastro in A. 7

7 Applicazioni ulteriori

7 Applicazioni ulteriori 7 Applicazioni ulteriori 7 Applicazioni ulteriori 7.1 Strutture con maglie chiuse 7.1.1 Analisi cinematica Si consideri la struttura in figura 7.1: i gradi di libertà sono pari a l =3n c v =3 0 3 = 0,

Dettagli

Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì TRAVI RETICOLARI AGGIORNAMENTO DEL 7/11/2011

Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì TRAVI RETICOLARI AGGIORNAMENTO DEL 7/11/2011 Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ing. Francesco Zanghì TRAVI RETICOLARI AGGIORNAMENTO DEL 7/11/2011 Le travi reticolari sono strutture formate da aste rettilinee, mutuamente collegate

Dettagli

Le coperture in legno

Le coperture in legno CORSO DI RECUPERO E CONSERVAZIONE DEGLI EDIFICI A.A. 2010-2011 Le coperture in legno LA CAPRIATA Tra scienza ed arte del costruire «Il forte intreccio di storia, tecnologia, architettura e cultura materiale,

Dettagli

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A.

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A. Travature reticolari piane : esercizi svolti e omenico., Fuschi., isano., Sofi. SRZO n. ata la travatura reticolare piana triangolata semplice illustrata in Figura, determinare gli sforzi normali nelle

Dettagli

IL TRACCIAMENTO QUALITATIVO DEL MOMENTO FLETTENTE NEI PORTALI

IL TRACCIAMENTO QUALITATIVO DEL MOMENTO FLETTENTE NEI PORTALI IL TRACCIAMENTO QUALITATIVO DEL MOMENTO FLETTENTE NEI PORTALI Alcune proprietà della deformata dei portali Si esaminano nel seguito alcune proprietà della deformata dei portali. Queste proprietà permettono

Dettagli

1) IL MOMENTO DI UNA FORZA

1) IL MOMENTO DI UNA FORZA 1) IL MOMENTO DI UNA FORZA Nell ambito dello studio dei sistemi di forze, diamo una definizione di momento: il momento è un ente statico che provoca la rotazione dei corpi. Le forze producono momenti se

Dettagli

McGraw-Hill. Tutti i diritti riservati

McGraw-Hill. Tutti i diritti riservati Copyright 004 The Companies srl e Corbusier - Progetto per il palazzo dei Soviet a Mosca 1931 Problema 1. Arco Trave di copertura Tirante bielle Membrana di copertura Fig. P1.1 Analizzare il sistema in

Dettagli

Capriate in legno I edizione aprile 2011. Indice Introduzione

Capriate in legno I edizione aprile 2011. Indice Introduzione Capriate in legno I edizione aprile 2011 Indice Introduzione 1. Il legno e sue applicazioni 1.1. Il legno come materiale da costruzione 1.2. diffusione del legno 1.3. Standardizzazione della produzione

Dettagli

11 Teorema dei lavori virtuali

11 Teorema dei lavori virtuali Teorema dei lavori virtuali Teorema dei lavori virtuali Si consideri una trave ad asse rettilineo figura.). Per essa si definisce sistema carichi sollecitazioni CS) l insieme di tutte le grandezze di tipo

Dettagli

Dispense del Corso di SCIENZA DELLE COSTRUZIONI. Sistemi di travi. Prof. Daniele Zaccaria

Dispense del Corso di SCIENZA DELLE COSTRUZIONI. Sistemi di travi. Prof. Daniele Zaccaria Dispense del Corso di SCIENZA DELLE COSTRUZIONI Prof. Daniele Zaccaria Dipartimento di Ingegneria Civile e Ambientale Università di Trieste Piazzale Europa 1, Trieste Sistemi di travi Corsi di Laurea in

Dettagli

Prova d esame del 30 giugno 2010 Soluzione

Prova d esame del 30 giugno 2010 Soluzione UNIVERSITÀ I PIS Facoltà di Ingegneria Meccanica nalitica e dei Continui (CS Ing. Nucleare e della Sicurezza Industriale) Scienza delle Costruzioni (C Ing. Nucleare e della Sicurezza e Protezione) Scienza

Dettagli

30/05/2012. PDF Lezioni sul sito: www2.unibas.it/ponzo. Mettere figura. Prof. Ing. Felice Carlo Ponzo. Prof. Ing. Felice Carlo Ponzo

30/05/2012. PDF Lezioni sul sito: www2.unibas.it/ponzo. Mettere figura. Prof. Ing. Felice Carlo Ponzo. Prof. Ing. Felice Carlo Ponzo PDF Lezioni sul sito: www2.unibas.it/ponzo Mettere figura 1 Cinematica delle strutture Produzione di profilati e lamiere in acciaieria Trasformazione in elementi strutturali e preassemblaggi Trasporto

Dettagli

Tecnica delle Costruzioni Esercitazione 02

Tecnica delle Costruzioni Esercitazione 02 TECNICA DELLE COSTRUZIONI ESERCITAZIONI 1 Strutture reticolari METODO DEI NODI Si procede nell isolare un nodo della struttura reticolare tagliando le aste che vi convergono. Si esplicitano quindi gli

Dettagli

2 Tetti e strutture di copertura

2 Tetti e strutture di copertura 1.8 Combinazioni di diversi sistemi costruttivi di legno In edilizia, i sistemi costruttivi di legno precedentemente descritti possono essere anche combinati l uno con l altro. Una combinazione utilizzata

Dettagli

Collegamenti nelle strutture

Collegamenti nelle strutture 1 Collegamenti nelle strutture Le tipologie delle unioni bullonate o saldate sono molteplici e dipendono essenzialmente da: caratteristiche dell unione: nell ambito di quelle bullonate si possono avere

Dettagli

3.3 STRUTTURE DI COPERTURA INCLINATE IN LEGNO

3.3 STRUTTURE DI COPERTURA INCLINATE IN LEGNO COPERTURE COPERTURE INCLINATE derivanti dall impiego e/o dall assemblaggio a secco o a umido di componenti prefabbricati (spesso travi a sezione variabile, reticolari e non), in genere precompressi (perché

Dettagli

2. TEORIA DEI CARICHI ECCEZIONALI

2. TEORIA DEI CARICHI ECCEZIONALI . TEORIA DEI CARICHI ECCEZIONAI Si vuole costruire un modello di ponte di riferimento e un modello di carico eccezionale che consenta una verifica automatica della possibilità di passaggio del carico su

Dettagli

24 - Strutture simmetriche ed antisimmetriche

24 - Strutture simmetriche ed antisimmetriche 24 - Strutture simmetriche ed antisimmetriche ü [.a. 2011-2012 : ultima revisione 1 maggio 2012] In questo capitolo si studiano strutture piane che presentano proprieta' di simmetria ed antisimmetria sia

Dettagli

6 Statica delle travi

6 Statica delle travi 6 Statica delle travi 6 Statica delle travi 6.1 Forze esterne Si consideri un generico corpo tridimensionale. possono agire i seguenti tipi di forze esterne: forze di volume b = b(x): [b] =[FL 3 ]; Si

Dettagli

Meccanismi di collasso per effetto di solai di copertura spingenti V. Bacco

Meccanismi di collasso per effetto di solai di copertura spingenti V. Bacco Meccanismi di collasso per effetto di solai di copertura spingenti V. Bacco L evento sismico che ha colpito la città de L Aquila ha messo in evidenza le debolezze dei diversi sistemi costruttivi, soprattutto

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012

Dettagli

Le forme e le soluzioni per le strutture orizzontali...

Le forme e le soluzioni per le strutture orizzontali... LabCos! 4LabCos! Le forme e le soluzioni per le strutture orizzontali... LabCos! LabCos! il problema della spinta, oltre a quello dei carichi verticali! Strutture inflesse! Strutture spingenti! Un arco

Dettagli

Strutture per coperture inclinate

Strutture per coperture inclinate Le strutture per coperture inclinate sono costituite da elementi o parti strutturali disposti secondo piani differenti da quello orizzontale (definiti falde), destinati a svolgere la funzione di copertura

Dettagli

Università degli studi di Cagliari. Corso di aggiornamento. Unità 4 PIASTRE IN C.A. E INSTABILITÀ

Università degli studi di Cagliari. Corso di aggiornamento. Unità 4 PIASTRE IN C.A. E INSTABILITÀ Università degli studi di Cagliari Dipartimento di Ingegneria Strutturale Corso di aggiornamento Unità 4 PIASTRE IN C.A. E INSTABILITÀ RELATORE: Ing. Igino MURA imura@unica.it 25-26 Giugno 2010 - Instabilità:

Dettagli

Definizione Statico-Cinematica dei vincoli interni

Definizione Statico-Cinematica dei vincoli interni Definizione Statico-Cinematica dei vincoi interni Esempi deo schema strutturae di una struttura in cemento armato e di due strutture in acciaio in cui sono presenti dei vincoi interni cerniera. Vincoo

Dettagli

RESISTENZA DEI MATERIALI

RESISTENZA DEI MATERIALI I.U.A.V. Clasa Laboratorio Integrato di progettazione 2 LA STRUTTURA Progettazione delle strutture Prof.Bruno Zan EQUILIBRIO STABILE DEFORMABILITA COMPATIBILE RESISTENZA DEI MATERIALI EQUILIBRATA Teoria

Dettagli

NORMATIVA DI RIFERIMENTO La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

NORMATIVA DI RIFERIMENTO La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente: Sono illustrati con la presente i risultati dei calcoli che riguardano il progetto della scala in c.a da realizzarsi nel rifugio Cima Bossola in località Marciana NORMATIVA DI RIFERIMENTO La normativa

Dettagli

Strutture in Acciaio:

Strutture in Acciaio: Strutture in Acciaio: i Verifica degli elementi strutturali STATI LIMITE DI ESERCIZIO STATI LIMITE ULTIMI DELLE SEZIONI (RESISTENZA DELLE SEZIONI) Si possono considerare due stati limite: 1. Stato

Dettagli

(7) Nel calcolo della resistenza di un collegamento ad attrito il coefficiente di attrito µ dipende: (punti 3)

(7) Nel calcolo della resistenza di un collegamento ad attrito il coefficiente di attrito µ dipende: (punti 3) Domande su: taglio, flessione composta e collegamenti. Indica se ciascuna delle seguenti affermazioni è vera o falsa (per ciascuna domanda punti 2) (1) L adozione di un gioco foro-bullone elevato semplifica

Dettagli

STRUTTURE ISOSTATICHE REAZIONI VINCOLARI ED AZIONI INTERNE

STRUTTURE ISOSTATICHE REAZIONI VINCOLARI ED AZIONI INTERNE ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE ISOSTATICHE REAZIONI VINCOLARI ED AZIONI INTERNE v 1.0 1 I PROVA DI VALUTAZIONE 15 Novembre 2006 - Esercizio 2 Data la struttura di figura, ricavare

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012

Dettagli

Relazione di fine tirocinio. Andrea Santucci

Relazione di fine tirocinio. Andrea Santucci Relazione di fine tirocinio Andrea Santucci 10/04/2015 Indice Introduzione ii 1 Analisi numerica con COMSOL R 1 1.1 Il Software.................................... 1 1.1.1 Geometria................................

Dettagli

Horae. Horae Software per la Progettazione Architettonica e Strutturale

Horae. Horae Software per la Progettazione Architettonica e Strutturale 1 IL MATERIALE X-LAM Nel programma CDSWin il materiale X-LAM pu ò essere utilizzato solo come elemento parete verticale. Quindi, dal punto di vista strutturale, il suo comportamento è prevalentemente a

Dettagli

1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale... 1 1.2 Un esempio... 2

1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale... 1 1.2 Un esempio... 2 Indice 1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale..................... 1 1.2 Un esempio................................. 2 2 Spazi Vettoriali, Spazio e Tempo 7 2.1 Cos

Dettagli

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano PPUNTI DI SCIENZ DEE COSTRUZIONI Giulio lfano nno ccademico 004-005 ii Indice 1 TRVTURE PINE 1 1.1 Geometria, equilibrio e vincoli...................... 1 1.1.1 Piani di simmetria........................

Dettagli

3 - Analisi statica delle strutture

3 - Analisi statica delle strutture 3 - nalisi statica delle strutture Metodo analitico ü [.a. 11-1 : ultima revisione 3 settembre 11] Si consideri una struttura piana S, costituita da t tratti rigidi, e si immagini di rimuovere tutti i

Dettagli

TRAVE SU SUOLO ELASTICO

TRAVE SU SUOLO ELASTICO Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine

Dettagli

Esercizi di Statica. Giacinto A. PORCO Giovanni FORMICA. Corso dell A.A. 2003/2004 titolare prof. G. A. Porco. acuradi

Esercizi di Statica. Giacinto A. PORCO Giovanni FORMICA. Corso dell A.A. 2003/2004 titolare prof. G. A. Porco. acuradi Esercizi di Statica Corso dell A.A. 2003/2004 titolare prof. G. A. Porco acuradi Giacinto A. PORCO Giovanni FORMICA Esercizi di Statica A. G. Porco, G. Formica 1 Indice 1 Calcolo delle reazioni vincolari

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA Facoltà di Ingegneria Corso di Laurea in Ingegneria Civile Solaio Dott. Ing. Simone Beccarini Email: sbeccarini@hotmail.it INDICE: Il solaio: generalità Tipologie di solai Il solaio latero-cementizio:

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014 Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014 Progetto strutturale di una trave rovescia Alle travi di fondazioni

Dettagli

Analisi limite di un telaio

Analisi limite di un telaio Analisi limite di un telaio Si consideri il portale sotto, tre volte iperstatico, dotato di un momento limite superiore ed inferiore costante e pari a M0 Si assuma inoltre che lo sforzo normale (ed il

Dettagli

17 - I corollari di Mohr per il calcolo degli spostamenti

17 - I corollari di Mohr per il calcolo degli spostamenti 17 - I corollari di ohr per il calcolo degli spostamenti ü [.a. 011-01 : ultima revisione settembre 01] Relazioni fondamentali : l' analogia In questo capitolo si utilizza la teoria dell'analogia di ohr

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012

Dettagli

Per calcolare agevolmente strutture con travi reticolari miste, tipo NPS SYSTEM di Tecnostrutture, è stato necessario introdurre in MasterSap molti

Per calcolare agevolmente strutture con travi reticolari miste, tipo NPS SYSTEM di Tecnostrutture, è stato necessario introdurre in MasterSap molti Per calcolare agevolmente strutture con travi reticolari miste, tipo NPS SYSTEM di Tecnostrutture, è stato necessario introdurre in MasterSap molti accorgimenti indispensabili per una rapida ed efficiente

Dettagli

RELAZIONE STRUTTURALE

RELAZIONE STRUTTURALE RELAZIONE STRUTTURALE DESCRIZIONE DELL OPERA. Si prevede di realizzare una passerella pedonale in acciaio per l accesso secondario alla grotta. La struttura è costituita da due travi parallele in acciaio

Dettagli

Introduzione. Questi due tipi di struttura hanno caratteristiche fondamentali simili tra loro per ciò che riguarda il loro comportamento di base.

Introduzione. Questi due tipi di struttura hanno caratteristiche fondamentali simili tra loro per ciò che riguarda il loro comportamento di base. Introduzione Le funi sospese e gli archi rappresentano tipologie strutturali impiegate fin dai tempi più remoti dall uomo, e da sempre attraggono l immaginazione dei costruttori. Questi due tipi di struttura

Dettagli

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMO RESISTENTE A PETTINE Un elemento di calcestruzzo tra due fessure consecutive si può schematizzare come una mensola incastrata nel corrente

Dettagli

Prof.ssa Maria Angela Michelini ITP : Salvatore Giorgio

Prof.ssa Maria Angela Michelini ITP : Salvatore Giorgio PIANO DI LAVORO DEL DOCENTE anno scolastico 2015/2016 Prof.ssa Maria Angela Michelini ITP : Salvatore Giorgio MATERIA Progettazione, Costruzioni e Impianti classe e indirizzo 3A CTT n. ore settimanali:

Dettagli

Dimensionamento delle strutture

Dimensionamento delle strutture Dimensionamento delle strutture Prof. Fabio Fossati Department of Mechanics Politecnico di Milano Lo stato di tensione o di sforzo Allo scopo di caratterizzare in maniera puntuale la distribuzione delle

Dettagli

Elaborato di Meccanica delle Strutture

Elaborato di Meccanica delle Strutture Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Dipartimento di Meccanica ed Aeronautica Corso di Laurea Triennale in Ingegneria Meccanica Elaborato di Meccanica delle Strutture Docente

Dettagli

Pali di fondazione. modulo B Le fondazioni. La portata dei pali

Pali di fondazione. modulo B Le fondazioni. La portata dei pali 1 Pali di fondazione La portata dei pali Nel caso dei pali di punta soggetti a sforzi assiali, cioè realizzati in terreni incoerenti e infissi in terreno profondo compatto, il carico ammissibile P su ogni

Dettagli

Combinazione dei carichi

Combinazione dei carichi Combinazione dei carichi Un passo fondamentale del progetto di un opera civile è sicuramente l analisi delle forze agenti su essa che sono necessarie per l individuazione delle corrette sollecitazioni

Dettagli

Per prima cosa si determinano le caratteristiche geometriche e meccaniche della sezione del profilo, nel nostro caso sono le seguenti;

Per prima cosa si determinano le caratteristiche geometriche e meccaniche della sezione del profilo, nel nostro caso sono le seguenti; !""##"!$%&'((""!" )**&)+,)-./0)*$1110,)-./0)*!""##"!$%&'((""!" *&)23+-0-$4--56%--0.),0-,-%323 -&3%/ La presente relazione ha lo scopo di illustrare il meccanismo di calcolo che sta alla base del dimensionamento

Dettagli

CALCOLO DEL NUOVO PONTE

CALCOLO DEL NUOVO PONTE CALCOLO DEL NUOVO PONTE CARATTERISTICHE DEI MATERIALI I materiali utilizzati sono: - Calcestruzzo Rck450 = 2500 Kg/m 3 Resistenza di esercizio a flessione: f cd = 0,44*45 = 19,8 N/mm 2 = 198 Kg/cm 2 -

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-3-2012

Dettagli

Istituto Tecnico per Geometri Corso di Costruzioni Edili

Istituto Tecnico per Geometri Corso di Costruzioni Edili Istituto Tecnico per Geometri Corso di Costruzioni Edili Prof. Giacomo Sacco LEZIONI SUL CEMENTO ARMATO Sforzo normale, Flessione e taglio CONCETTI FONDAMENTALI Il calcestruzzo ha una bassa resistenza

Dettagli

Edifici antisismici in calcestruzzo armato. Aurelio Ghersi

Edifici antisismici in calcestruzzo armato. Aurelio Ghersi Incontro di aggiornamento Edifici antisismici in calcestruzzo armato Aspetti strutturali e geotecnici secondo le NTC08 1 Esame visivo della struttura Orizzonte Hotel, Acireale 16-17 dicembre 2010 Aurelio

Dettagli

o p e n p r o j e c t. w o r k s h o p LA STRUTTURA DEL CENTRO DI POMPIDOU di Igor Malgrati

o p e n p r o j e c t. w o r k s h o p LA STRUTTURA DEL CENTRO DI POMPIDOU di Igor Malgrati LA STRUTTURA DEL CENTRO DI POMPIDOU di Igor Malgrati Nel 1970 si bandì un concorso internazionale per la costruzione di un centro per la cultura nel cuore di Parigi, con l intento di proporre la cultura

Dettagli

SAN DANIELE DEL FRIULI

SAN DANIELE DEL FRIULI Istituto Statale d Istruzione Superiore Vincenzo Manzini di San Daniele del Friuli ------------------------------------------- Piazza IV Novembre 33038 SAN DANIELE DEL FRIULI (prov. di Udine) Telefono

Dettagli

2 R = mgr + 1 2 mv2 0 = E f

2 R = mgr + 1 2 mv2 0 = E f Esercizio 1 Un corpo puntiforme di massa m scivola lungo la pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. Calcolare: a) Il valore

Dettagli

MODULO GRAT PROCEDURA TRASFXY TEST CASES

MODULO GRAT PROCEDURA TRASFXY TEST CASES TC GRAT/TrasfXY 1 MODULO GRAT PROCEDURA TRASFXY TEST CASES 1 TC TRASFXY 1 - Graticcio a 17 aste carico nel perimetro aste ripartizione in direz. Y Trave 1 Trave 2 Trave 3 Traverso 1 Traverso 2 Traverso

Dettagli

FACOLTA DI INGEGNERIA PROGETTO DI STRUTTURE A/A 2008-2009 SCALE IN CEMENTO

FACOLTA DI INGEGNERIA PROGETTO DI STRUTTURE A/A 2008-2009 SCALE IN CEMENTO A/A 2008-2009 PROGETTO DI SCALE IN CEMENTO ARMATO A/A 2008-2009 CONTENUTO LEZIONE Generalità sulle scale e tipologie Scala con trave a ginocchio modellazione e calcolo sollecitazioni Progetto dei gradini

Dettagli

Documento #: Doc_a8_(9_b).doc

Documento #: Doc_a8_(9_b).doc 10.10.8 Esempi di progetti e verifiche di generiche sezioni inflesse o presso-tensoinflesse in conglomerato armato (rettangolari piene, circolari piene e circolari cave) Si riportano, di seguito, alcuni

Dettagli

Da Galiani V. (a cura di), Dizionario degli elementi costruttivi, UTET 2001

Da Galiani V. (a cura di), Dizionario degli elementi costruttivi, UTET 2001 Le scale Da Galiani V. (a cura di), Dizionario degli elementi costruttivi, UTET 2001 L'insieme di tutte le strutture portanti che individuano lo spazio della scala si chiama gabbia. L'insieme delle strutture

Dettagli

I SOLAI NEGLI EDIFICI A STRUTTURA MURARIA (2) ing. Francesco Monni

I SOLAI NEGLI EDIFICI A STRUTTURA MURARIA (2) ing. Francesco Monni I SOLAI NEGLI EDIFICI A STRUTTURA MURARIA (2) ing. Francesco Monni 3. LE COPERTURE Il solaio di copertura, comunemente indicato anche con il termine TETTO, assolve principalmente alle seguenti FUNZIONI:

Dettagli

DESCRIZIONE TECNICA DEL PROGETTO:

DESCRIZIONE TECNICA DEL PROGETTO: DESCRIZIONE TECNICA DEL PROGETTO: Il lavoro consiste nella realizzazione di due cupole geodetiche. Ogni cupola presenta 5 assi principali che la delimitano in altrettanti settori uguali. Le travi principali

Dettagli

CALCOLO DI STRUTTURA PER PALCO ARENA-CLASSIC 2,00 X 2,00 ml.

CALCOLO DI STRUTTURA PER PALCO ARENA-CLASSIC 2,00 X 2,00 ml. CALCOLO DI STRUTTURA PER PALCO ARENA-CLASSIC,00 X,00 ml. SIXTEMA S.r.l. Loc. Mezzano Passone, 11 6846 Corno Giovine (LO) Italy tel-fax +39 0377 69370 r.a. info@sixtema-line.com sixtema-line.com 1) PREMESSE:

Dettagli

Rinforzo di Strutture Murarie

Rinforzo di Strutture Murarie Rinorzo di Strutture Murarie Veriiche di elementi strutturali ricorrenti: Ribaltamento di pannelli murari Flessione di pannelli uori del piano Flessione e taglio di pannelli nel piano Architravi e asce

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

La misura di forza avviene mediante celle di carico (dette anche Bilance o Dinamometri).

La misura di forza avviene mediante celle di carico (dette anche Bilance o Dinamometri). Misure di forza 1 Misure di forza La misura di forza avviene mediante celle di carico (dette anche Bilance o Dinamometri). Le celle di carico possono essere suddivise in due categorie che, in funzione

Dettagli

Via Emilia Ovest, 21/A 42048 Rubiera (R.E.) Tel. 0522/629909; fax. 626229 e.mail: pfollo@tin.it - P.IVA 01207970359 C.F.

Via Emilia Ovest, 21/A 42048 Rubiera (R.E.) Tel. 0522/629909; fax. 626229 e.mail: pfollo@tin.it - P.IVA 01207970359 C.F. Via Emilia Ovest, 1/A 4048 Rubiera (R.E.) Tel. 05/69909; fax. 669 e.mail: pfollo@tin.it - P.IVA 0107970359 C.F. FLLPLA48L06I496U MONTANTE PER ANCORAGGIO DISPOSITIVI INDIVIDUALI CONTRO LA CADUTA DAI TETTI,

Dettagli

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA 1. La Legge di Coulomb Esercizio 1. Durante la scarica a terra di un fulmine scorre una corrente di.5 10 4 A per

Dettagli

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione

Dettagli

INDICE. 1. Premesse pag. 2. 2. Regime normativo pag. 3

INDICE. 1. Premesse pag. 2. 2. Regime normativo pag. 3 INDICE 1. Premesse pag. 2 2. Regime normativo pag. 3 3. Plinto di fondazione torre faro pag. 4 3.1 Sollecitazione massime di calcolo pag. 4 3.2 Determinazione massimi sforzi sui pali pag. 4 3.3 Dimensionamento

Dettagli

TRAVI SU SUOLO ALLA WINKLER, INTERAZIONE TERRENO-FONDAZIONE

TRAVI SU SUOLO ALLA WINKLER, INTERAZIONE TERRENO-FONDAZIONE Università degli Studi di Palermo Facoltà di Ingegneria Dipartimento di Ingegneria Strutturale e Geotecnica TRAVI SU SUOO AA WINKER, INTERAZIONE TERRENO-FONDAZIONE Prof.. Cavaleri Ing. F. Di Trapani TRAVI

Dettagli

EDIFICI IN C.A. SOLAI sbalzi

EDIFICI IN C.A. SOLAI sbalzi EDIFICI IN C.A. SOLAI sbalzi Sbalzi Sbalzi Sbalzi Sbalzi Sbalzi Sbalzi Sbalzi Sbalzi EDIFICIO IN ACCIAIO Sbalzi EDIFICIO IN ACCIAIO E LEGNO Sbalzi EDIFICIO IN ACCIAIO Sbalzi PONTI under construction Sbalzi

Dettagli

Progetto delle armature longitudinali del solaio

Progetto delle armature longitudinali del solaio prof. Renato Giannini Progetto delle armature longitudinali del solaio (arch. Lorena Sguerri) orrezioni del diagramma di momento flettente Prescrizioni di normativa specifiche per il solaio Progetto delle

Dettagli

TECNICA DELLE COSTRUZIONI E LABORATORIO ALLIEVI EDILI. Fausto Minelli

TECNICA DELLE COSTRUZIONI E LABORATORIO ALLIEVI EDILI. Fausto Minelli TECNICA DELLE COSTRUZIONI E LABORATORIO ALLIEVI EDILI Fausto Minelli http://dicata.ing.unibs.it/minelli DICATAM - Dipartimento di Ingegneria Civile, Architettura Territorio, Ambiente e di Matematica Università

Dettagli

CRITERI PROGETTUALI PER IL CONSOLIDAMENTO -Le strutture in legno-

CRITERI PROGETTUALI PER IL CONSOLIDAMENTO -Le strutture in legno- CORSO DI RECUPERO E CONSERVAZIONE DEGLI EDIFICI A.A. 2010-2011 CRITERI PROGETTUALI PER IL CONSOLIDAMENTO -Le strutture in legno- CONSOLIDAMENTO DEL LEGNO BIODEGRADATO Prima che il legno affetto da degrado

Dettagli

Lezione. Progetto di Strutture

Lezione. Progetto di Strutture Lezione Progetto di Strutture Impostazione della carpenteria Impostazione della carpenteria Definizione dell orditura dei solai e della posizione di travi e pilastri ( La struttura deve essere in grado

Dettagli

ELEMENTI IN ACCIAIO MONO-SIMMETRICI CON ANIMA IRRIGIDITA. Domenico Leone

ELEMENTI IN ACCIAIO MONO-SIMMETRICI CON ANIMA IRRIGIDITA. Domenico Leone ELEMENTI IN ACCIAIO MONO-SIMMETRICI CON ANIMA IRRIGIDITA Domenico Leone ELEMENTI IN ACCIAIO MONO-SIMMETRICI CON ANIMA IRRIGIDITA Domenico Leone Il prof. Domenico Leone vanta un esperienza più che trentennale

Dettagli

SETTI O PARETI IN C.A.

SETTI O PARETI IN C.A. SETTI O PARETI IN C.A. Parete Pareti accoppiate SETTI O PARETI IN C.A. Na 20% Fh i i h i Na/M tot >=0.2 SETTI O PARETI IN C.A. IL FATTORE DI STRUTTURA VERIFICHE SETTI O PARETI IN C.A. SOLLECITAZIONI -FLESSIONE

Dettagli

MATERIA Meccanica, Macchine ed Energia. DIPARTIMENTO DI Meccanica

MATERIA Meccanica, Macchine ed Energia. DIPARTIMENTO DI Meccanica Anno scolastico: 2014-2015 Classe: 4^BMM MATERIA Meccanica, Macchine ed Energia Insegnante: Gaspare Di Como Insegnante Compresente: Francesco Porco DIPARTIMENTO DI Meccanica PROGRAMMAZIONE SVOLTA MODULO

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

Generalità e note di teoria

Generalità e note di teoria Capitolo 1 Generalità e note di teoria In questo capitolo sono riportate alcune note delle teorie utilizzate, riguardanti: Verifiche di resistenza. Dati del problema e convenzioni. Ipotesi fondamentali.

Dettagli

Statica FRILO. Programmi per il legno ed i tetti

Statica FRILO. Programmi per il legno ed i tetti Statica FRILO Programmi per il legno ed i tetti Friedrich + Lochner GmbH Software per calcolo della statica e progettazione della struttura portante un azienda del gruppo Nemetschek La società Friedrich

Dettagli

Capitolo 4 CALCOLO DELLE SEZIONI

Capitolo 4 CALCOLO DELLE SEZIONI Capitolo 4B - Stati limite ultimi 51 Capitolo 4 CALCOLO DELLE SEZIONI 4.1 Trazione Il comportamento sotto carico crescente di un pezzo di acciaio è ricavabile dalla prova a trazione effettuata con apposite

Dettagli

PROVE SUL NODO CON PROTOTIPI DI TRAVE MISTA PAN. PRODOTTI DALLA DITTA TECNOPAN ENGINEERING S.r.l.

PROVE SUL NODO CON PROTOTIPI DI TRAVE MISTA PAN. PRODOTTI DALLA DITTA TECNOPAN ENGINEERING S.r.l. Università degli Studi di Catania LABORATORIO UFFICIALE PROVE MATERIALI PROVE SUL NODO CON PROTOTIPI DI TRAVE MISTA PAN PRODOTTI DALLA DITTA TECNOPAN ENGINEERING S.r.l. RELAZIONE DELLO STUDIO TECNICO DELLA

Dettagli

Strutture in Acciaio: Giunti

Strutture in Acciaio: Giunti Strutture in Acciaio: Giunti Un collegamento può essere classificato: in base allarigidezza: id in base alla resistenza: In base alla rigidezza: -È considerato collegamento a cerniera quello che trasmette

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

BOZZA. a min [mm] A min =P/σ adm [mm 2 ]

BOZZA. a min [mm] A min =P/σ adm [mm 2 ] ezione n. 6 e strutture in acciaio Verifica di elementi strutturali in acciaio Il problema della stabilità dell equilibrio Uno degli aspetti principali da tenere ben presente nella progettazione delle

Dettagli

Dal punto di vista strutturale i manufatti oggetto di calcolo, ai sensi del D.M. 14/01/2008 e della Circ. Min. 617/2009, sono i seguenti :

Dal punto di vista strutturale i manufatti oggetto di calcolo, ai sensi del D.M. 14/01/2008 e della Circ. Min. 617/2009, sono i seguenti : PREMESSA La presente relazione riguarda il calcolo analitico ed il dimensionamento strutturale relativi alla realizzazione di strutture in c.a. ed in acciaio costituenti tre scale ed una tettoia da realizzare

Dettagli

PROGRAMMA DETTAGLIATO CORSO INTEGRATO DI TECNICA DELLE COSTRUZIONI: COSTRUZIONI IN CEMENTO ARMATO E ACCIAIO

PROGRAMMA DETTAGLIATO CORSO INTEGRATO DI TECNICA DELLE COSTRUZIONI: COSTRUZIONI IN CEMENTO ARMATO E ACCIAIO PROGRAMMA DETTAGLIATO CORSO INTEGRATO DI TECNICA DELLE COSTRUZIONI: COSTRUZIONI IN CEMENTO ARMATO E ACCIAIO 1 LEZIONE COSTRUZIONI IN CEMENTO ARMATO ARGOMENTI 1. Introduzione Presentazione del corso 2.

Dettagli

Progetto agli stati limite di un edificio con struttura mista, muratura e c.a.

Progetto agli stati limite di un edificio con struttura mista, muratura e c.a. Progetto agli stati limite di un edificio con struttura mista, muratura e c.a. 1 Caso studio Si vogliono eseguire degli interventi di ristrutturazione di un edificio esistente adibito a civile abitazione

Dettagli

3.5.20 Strutture orizzontali

3.5.20 Strutture orizzontali 3.5.20 Strutture orizzontali Le strutture orizzontali, destinate alla divisione dei piani possono essere piane o ad arco: costituite cioè da solai o da volte. Fra tutte le strutture esse sono le più delicate

Dettagli

Relazione ed elaborati di progetto per il solaio

Relazione ed elaborati di progetto per il solaio LABORATORIO DI COSTRUZIONE DELL ARCHITETTURA 2A prof. Renato Giannini Relazione ed elaborati di progetto per il solaio (arch. Lorena Sguerri) Relazione di calcolo Predimensionamento e analisi dei carichi

Dettagli

La Struttura. Schema di scarico di un viadotto con travate semplicemente appoggiate. Schema di scarico di un ponte strallato

La Struttura. Schema di scarico di un viadotto con travate semplicemente appoggiate. Schema di scarico di un ponte strallato La Struttura Obiettivo del Corso è quello di fornire un approccio metodologico per la trattazione analitica dei modelli meccanici della parte resistente della Costruzione. La trattazione è fondata su un

Dettagli