Integrazione per parti e per sostituzione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Integrazione per parti e per sostituzione"

Transcript

1 Integrazione per parti e per sostituzione Riccarda Rossi Università di Brescia 1/51

2 Formula di integrazione per parti Integrazione per parti Si applica all integrazione di prodotti di funzioni Proposizione: formula di integrazione per parti Sia I R intervallo in R esianof, g : I! R due funzioni derivabili con derivata continua (cioè f, g 2 C 1 (I )). Allora per ogni a, b 2 I abbiamo che Z b a f 0 (x)g(x) dx =[f (x)g(x)] b a Il Z b a f (x)g 0 (x) dx. flbiglbifcdg.cat 2/51

3 Dimostrazione derivazione del è basata sulla formula di prodotto di funzioni : ( fugate ftxigixit fai gtx ) integra entrambi i membri fra aeb /! fai guida fffklg da + "2It * gabba fabfcxig ' cxidx 3/51

4 fab =D fa ' f ha già da = fai g ' calda + fai gia) ba DX 4/51

5 5/51

6 Osservazioni ffixtglxidx = ffixgkxdx la formula vale anche per integrali indefiniti tfcxigix fa Z b f 0 (x)g(x) dx =[f (x)g(x)] b a a Z b a f (x)g 0 (x) dx riconduce il calcolo di Z b a f 0 g stata scaricata dalla f alla g). L idea è: passare dall integrale di semplice R b a fg 0. al calcolo di Z b a fg 0 (la derivata è cile R b a f 0 g all integrale più 6/51

7 Operativamente, per applicare l integrazione per parti al calcolo di Z b a h(x)k(x) dx bisogna scegliere, fra h e k, I quale ha il ruolo di f 0, I quale ha il ruolo di g. è fondamentale scegliere bene quale delle due funzioni derivare e quale integrare. 7/51

8 Miscellanea di integrali per parti Prodotto di un polinomio per una funzione trigonometrica Sia P : R! R una funzione polinomiale esia 6= 0: Z b a P(x) sin( x) dx oppure Z b a P(x) cos( x) dx Applichiamo la formula di integrazione per parti con le scelte ( f 0 $ sin( x) (oppure f 0 $ cos( x)) g $ P(x), cioè integriamo la funzione trigonometrica e deriviamo il polinomio. così si abbassa il grado di R 8/51

9 Esempio I = Z 1 0 x cos(2x) dx Applico la formula con le scelte l:: :*: " : 2 E fisime. edxxfx.si#difstfiefam:i3 : 9/51

10 = cascai e sin 2 10 / 51

11 11 / 51

12 Può essere necessario applicare l integrazione per parti ripetutamente, Esempio I = Z 2 1 x 3 sin(x) dx Scelte : a ftxtsinlx 94 1=3 2 { text cosa ) E ftp.3xdxtfxsfcosu?ni/lotralascio 12 / 51

13 tratto E per parti { 9*13 2 f Takashi { 9kt ox feat sincx ) Tifiamo dxtfsxsrnu.tt } Io tralascio I intgwrpartiow f! In.FI! 13 / 51

14 . Ì = FI 6 cosa, da t ( 6 cosa! 2 = esercizio : completare il calcolo 14 / 51

15 15 / 51

16 16 / 51

17 Prodotto di un polinomio per una funzione esponenziale. Sia P : R! R una funzione polinomiale esia 6= 0. Z P(x)e x dx. Applichiamo la formula di integrazione per parti con le scelte ( f 0 $ e x, g $ P(x), cioè integriamo la funzione esponenziale e deriviamo il polinomio. 17 / 51

18 .... Esempio I = Z 2 0 xe 2x dx scelte : :# : : E SI e " da fx.ge» ; = I fà lei " 18 / 51

19 19 / 51

20 20 / 51

21 21 / 51

22 22 / 51

23 Prodotto di un polinomio per una funzione iperbolica. Sia P : R! R una funzione polinomiale esia 6= 0: ed ax E e è Z b Z b P(x) sinh( x) dx e mia oppure P(x) cosh( x) dx a a ex Applichiamo la formula di integrazione per parti con le scelte ( f 0 $ sinh( x) (oppure f 0 $ cosh( x)) g $ P(x), cioè integriamo la funzione iperbolica e deriviamo il polinomio. 23 / 51

24 Prodotto di un polinomio per una funzione logaritmica. Sia P : R! R una funzione polinomiale esia 6= 0.Siano 0 < a < b : Z b a P(x) ln( x) dx. Applichiamo la formula di integrazione per parti con le scelte ( f 0 $ P(x), g $ ln( x), cioè integriamo il polinomio e deriviamo la funzione logaritmica. 24 / 51

25 Esempio I = f? I = Z 3 1 x ln(2x) dx? È # SEE f txt / garage È g EH = 1 e fè eog KAI, : = f È e Elogia xd! 25 / 51

26 26 / 51

27 27 / 51

28 se Esempio III. Z I = ln(x) dx iii. TÈ :{ È; = = ftp.zdxxxlogcxi + se log che e 28 / 51

29 29 / 51

30 30 / 51

31 Prodotto di un polinomio per l arcotangente. Sia P : R! R una funzione polinomiale esia 6= 0. Z b a P(x) arctan( x) dx. Applichiamo la formula di integrazione per parti con le scelte ( f 0 $ P(x), g $ arctan( x), cioè integriamo il polinomio e deriviamo la funzione arcotangente. 31 / 51

32 % fi ariana da ]. Esempio E = = E. I = la y fa Z 1 0 x arctan(x) dx. Ha Scelte La g che a ràan ex ) ariana f. DI t f. { fa % 9 ' D; " " ]? I 32 / 51

33 =. 33 / 51

34 34 / 51

35 Integrazione per sostituzione Esempio Come integrare Z 1 Intuitivamente: ponendo 0 sin 2 (t)arctan(sin(t)) cos(t) dt?? x =sin(t), cioè t =arcsin(x), ottengo il termine x 2 arctan(x), che so come trattare (integrando per parti). Come diventa il termine cos(t) dt? come diventano gli estremi di integrazione? 35 / 51

36 La formula di integrazione per sostituzione ci dice come si trasforma l integrale dopo il cambiamento di variabile x = '(t), t = ' 1 (x) tramite una ' invertibile. ( prima : «sin HD Formula di integrazione per sostituzione Sia f :[a, b]! R una funzione continua esia x = '(t) un cambiamento di variabile tale che ' : I! R è invertibile e derivabile con derivata continua: ' 2 C 1 (I ). Allora Z b a f (x) dx = Z ' 1 (b) ' 1 (a) f ('(t))' 0 (t) dt. Vi è anche una versione per gli integrali indefiniti. 36 / 51

37 Dimostrazione: Sia F una primitiva di f.quindi Z b a f (x) dx = F (b) F (a). Per l ipotesi la funzione F ('(t)) è derivabile e vale (F ('(t))) 0 = F 0 ('(t)) ' 0 (t) =f ('(t)) ' 0 (t). Dunque Z ' 1 (b) ' 1 (a) Osservazione: f ('(t)) ' 0 (t) dt = Z ' 1 (b) ' 1 (a) (F ('(t))) 0 dt = F ('(' 1 (b))) F ('(' 1 (a))) = F (b) F (a) = Z b a f (x) dx integrazione per parti integrazione di un prodotto di funzioni la dimostrazione della formula di integ. per parti è basata su formula per la derivata del prodotto di funzioni integrazione per sostituzione integrazione tramite cambiamento di variabile la dimostrazione della formula di integ. per sostituzione è basata su formula per la derivata della composizione di funzioni 37 / 51

38 Struttura di Z b a f (x) dx = Xeqlt ) dedicata ) Z ' 1 (b) ' 1 (a) f ('(t))' 0 (t) dt = yllttdt f (x) f ('(t)) dx ' 0 (t) dt R b R ' 1 (b) a ' 1 (a) xvadafraaebx.cat t=9 allora ftvanafaàyaeè 1 38 / 51

39 G) Sabinia = Esempio iniziale I = Z 1 0 fai:b ' fatti àttiat sin 2 (t)arctan(sin(t)) cos(t) dt Passo da t a = sin IH _ e leggo # da essa sn flqltt ) = dx = l' sintttartanlsrnltt celttsrnlt ) ma fate Xzonàorncx ) lhdt costa dt. dx Qui ) 39 / 51

40 . tuona fra 0 e 1 X = sin la varia fra Simca e smisi I = fiim ' " xraràancxidx che poi si calcola per ponti 40 / 51

41 41 / 51

42 . Strategia per integrare funzioni che contengono termini con radicali: e ettuare la sostituzione in modo da eliminare il radicale. Esempio 1 I = Z 2 Faccio la sostituzione 0 x p x +1 dx. 5 ETÀ se s' 1 A. " sostituisco la sua espressione in s sistemiamo il ds " Fai ds = DÀ = 12nF, da 42 / 51

43 Nds 2 % ; ds Se = s' 1 xetois ], E TÉELT, t ] 1=2 f? Nba : Ho zff.sjrsefff.fm 1 =. 43 / 51

44 44 / 51

45 45 / 51

46 46 / 51

47 Esempio 2 I = Z 1 0 s 3 e s2 ds. I. = fjs.se?dsdt=dist2sds=zgoisysds/*ie?sgfo ' tetdt 47 / 51

48 et = ( tè ) }.. 48 / 51

49 49 / 51

50 50 / 51

51 51 / 51

L integrale di Riemann

L integrale di Riemann L integrale di Riemann Riccarda Rossi Università di Brescia Analisi I Riccarda Rossi (Università di Brescia) L integrale di Riemann Analisi I 1 / 41 Formule di integrazione Integrazione per parti Si applica

Dettagli

Integrazione per parti e per sostituzione

Integrazione per parti e per sostituzione Integrazione per parti e per sostituzione Riccarda Rossi Università di Brescia Analisi B Riccarda Rossi (Università di Brescia) Integrazione per parti e per sostituzione Analisi B 1/51 Formula di integrazione

Dettagli

Polinomi di Taylor. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Polinomi di Taylor. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Polinomi di Taylor Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi Matematica 1 1 / 18 Introduzione Sia f : I R e sia x 0 I. Problemi:

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

Soluzioni. Calcolo Integrale Calcolare l integrale indefinito. 1 x + x. dx. R. Procediamo effettuando il cambio di variabile t = x ossia

Soluzioni. Calcolo Integrale Calcolare l integrale indefinito. 1 x + x. dx. R. Procediamo effettuando il cambio di variabile t = x ossia Calcolo Integrale 5 Soluzioni. Calcolare l integrale indefinito x + x dx. R. Procediamo effettuando il cambio di variabile t = x ossia x = t e dx = t dt. Quindi dx = x + x t dt = t + t dt = log + t + c

Dettagli

SOLUZIONI DEGLI INTEGRALI

SOLUZIONI DEGLI INTEGRALI SOLUZIONI DEGLI INTEGRALI. x + x + log x dx Integrando per parti, si ha: x + x + [ x log x dx + x + x logx ] 8 + + log 6 x + x + x x dx + + log x + x + log 6 [ ] x 6 log 9 + x + x dx log 6 6 log 8 9 +

Dettagli

Corso di Analisi Matematica

Corso di Analisi Matematica Corso di Laurea in Ingegneria Edile Corso di DERIVATE Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Secanti e tangenti Sia f : D R, sia I = [a, b] oppure I = (a, b),

Dettagli

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema PIPPO COGNOME: NOME: MATR.: 1) 7; C: x sin(x) dx è A: π ; B:2 ; C: 0 ; D: π/2; E: N.A.

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema PIPPO COGNOME: NOME: MATR.: 1) 7; C: x sin(x) dx è A: π ; B:2 ; C: 0 ; D: π/2; E: N.A. Prima prova in Itinere Ist. Mat., Prima parte, Tema PIPPO 4 aprile 7 COGNOME: NOME: MATR.: ) Una primitiva di x 5 e x3 è A: e x3 (x 3 ); B: e x3 (x 5 ) 7; C: ex3 (x 3 + ) D: ex3 (x 3 ) + 7; E: N.A. ) Il

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 5 febbraio 07 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 7) Posto

Dettagli

Esercizi svolti sugli integrali

Esercizi svolti sugli integrali Esercizio. Calcolare il seguente integrale indefinito x dx. Soluzione. Poniamo da cui x = t derivando rispetto a t abbiamo t = x x = t dx dt = quindi ( t x dx = ) poiché t = t, abbiamo t dt = = in definitiva:

Dettagli

Integrali (M.S. Bernabei & H. Thaler)

Integrali (M.S. Bernabei & H. Thaler) Integrali (M.S. Bernabei & H. Thaler) Integrali. Motivazione Che cos é un integrale? Sia f 0 e limitata b a f ( x) dx area f ( x, y) dxdy volume Definizione di integrale: b a dove f ( x) dx lim n n k b

Dettagli

Studi di funzione, invertibilità, Taylor

Studi di funzione, invertibilità, Taylor Studi di funzione, invertibilità, Taylor 1. Studiare le funzioni elencate:dominio di definizione; asintoti; crescenza e decrescenza; punti di non derivabilità, max/min locali; convessità. (a f (x x 2 ln(x

Dettagli

Svolgimento degli esercizi N. 3

Svolgimento degli esercizi N. 3 Svolgimento degli esercizi N. 3 Prova scritta parziale n. del // Fila. Calcolare il valore del seguente integrale definito: ( x + e x ) dx. ( x + e x ) dx ( x + e 4x + x e x) dx x dx + e 4x dx + x e x

Dettagli

Calcolo integrale: esercizi svolti

Calcolo integrale: esercizi svolti Calcolo integrale: esercizi svolti Integrali semplici................................ Integrazione per parti............................. Integrazione per sostituzione......................... 4 4 Integrazione

Dettagli

Esercizi Analisi 1. Foglio 1-19/09/2018. n(n + 1)(2n + 1) 6. (3k(k 1) + 1) = n 3. a n = 1 + a k

Esercizi Analisi 1. Foglio 1-19/09/2018. n(n + 1)(2n + 1) 6. (3k(k 1) + 1) = n 3. a n = 1 + a k Esercizi Analisi Foglio - 9/09/208 Dimostrare che per ogni a, b e per ogni n N si ha: n a n b n = (a b) a n j b j j= Dimostrare che per ogni n N si ha: n j 2 = j= n(n + )(2n + ) 6 Dimostrare che per ogni

Dettagli

(x (0, + )) (sin x) = cos x (x R) (cos x) = sin x (x R)

(x (0, + )) (sin x) = cos x (x R) (cos x) = sin x (x R) Registro Lezione di Analisi del 07 dicembre 06. Di seguito si riporta il riassunto degli argomenti svolti; i riferimenti sono a parti del Cap.8 (Calcolo integrale...) Par.5 (Metodi elementari...) del testo

Dettagli

Analisi Matematica. Calcolo integrale

Analisi Matematica. Calcolo integrale a.a. 2014/2015 Laurea triennale in Informatica Analisi Matematica Calcolo integrale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti. Parte

Dettagli

Integrali inde niti. F 2 (x) = x5 3x 2

Integrali inde niti. F 2 (x) = x5 3x 2 Integrali inde niti Abbiamo sinora studiato come ottenere la funzione derivata di una data funzione. Vogliamo ora chiederci, data una funzione f, come ottenerne una funzione, che derivata dia f. Esempio

Dettagli

Analisi Matematica (A L) Polinomi e serie di Taylor

Analisi Matematica (A L) Polinomi e serie di Taylor a.a. 2015/2016 Laurea triennale in Informatica Analisi Matematica (A L) Polinomi e serie di Taylor Nota: questo file differisce da quello proiettato in aula per la sola impaginazione. Polinomio di Taylor

Dettagli

Derivate. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33

Derivate. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33 Derivate Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33 Definizione: rapporto incrementale Sia f : domf R R. Dati x 1, x 2 domf con x 1 x

Dettagli

Corso di Analisi Matematica 1

Corso di Analisi Matematica 1 Corso di Analisi Matematica 1 in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2016 Versione del 21 dicembre 2016 Appello del 14 gennaio 2016 Tempo: 150 minuti Compito A 1. Enunciare e dimostrare

Dettagli

41 POLINOMI DI TAYLOR

41 POLINOMI DI TAYLOR 4 POLINOMI DI TAYLOR DERIVATE DI ORDINI SUCCESSIVI Allo stesso modo della derivata seconda si definiscono per induzione le derivate di ordine k: la funzione derivata 0-ima di f si definisce ponendo f (0

Dettagli

d f dx (x 0), (D f )(x 0 ), cui corrispondono vari modi di indicare la funzione derivata:

d f dx (x 0), (D f )(x 0 ), cui corrispondono vari modi di indicare la funzione derivata: Derivate Di solito, considereremo funzioni f : A R, dove A e un intervallo, o un unione di intervalli non ridotti a un punto. Indicato con B l insieme dei punti nei quali f e derivabile 1 si a una funzione

Dettagli

5. CALCOLO INTEGRALE. 5.1 Integrali indefiniti

5. CALCOLO INTEGRALE. 5.1 Integrali indefiniti 5. CALCOLO INTEGRALE Il calcolo integrale nasce, da un lato per l esigenza di calcolare l area di regioni piane o volumi e dall altro come operatore inverso del calcolo differenziale. 5. Integrali indefiniti

Dettagli

Analisi matematica I. Calcolo integrale. Primitive e integrali indefiniti

Analisi matematica I. Calcolo integrale. Primitive e integrali indefiniti Analisi matematica I Calcolo integrale Regole di integrazione Integrali definiti condo Riemann Teorema fondamentale del calcolo integrale Integrali impropri 2 2006 Politecnico di Torino 1 Calcolo integrale

Dettagli

Matematica - Canale E - A.A Esercitazione 8

Matematica - Canale E - A.A Esercitazione 8 Matematica - Canale E - A.A. 6-7 Esercitazione 8. INTEGRALI INDEFINITI Integrazione quasi immediati e per sostituzione diretta Per i seguenti integrali si puó Utilizzare la formula con F antiderivata di

Dettagli

Funzione derivabile. La derivata.

Funzione derivabile. La derivata. Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto

Dettagli

CALCOLO DI DERIVATE. Passando al limite per h 0, si ha (fg) (x) = f (x)g(x) + f(x)g (x)

CALCOLO DI DERIVATE. Passando al limite per h 0, si ha (fg) (x) = f (x)g(x) + f(x)g (x) La derivata di un prodotto fg di due funzioni derivabili: [(fg)(x+h)-(fg)(x)]/h =[f(x+h)g(x+h)-f(x)g(x)]/h = [f(x+h)g(x+h) -f(x)g(x+h) +f(x)g(x+h)-f(x)g(x)]/h= [(f(x+h)-f(x))/h]g(x+h) + [(g(x+h)-g(x))/h]f(x)

Dettagli

Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti

Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti A.M. Bigatti e G. Tamone Esercizi Una funzione g() derivabile su un intervallo (a, b) si dice primitiva della funzione f() se f() =

Dettagli

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come ite del rapporto incrementale) Se esiste finito (cioè, non + o ) il ite del rapporto incrementale

Dettagli

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1 5 Roberto Tauraso - Analisi Soluzioni. Risolvere il problema di Cauchy y (x) + y(x) = 3e x y() = R. Troviamo la soluzione generale in I = R. Una primitiva di a(x) = è A(x) = a(x) dx = dx = x e il fattore

Dettagli

ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE

ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE Determinare l incremento della funzione f (x) = x 2 relativo al punto x 0 e all incremento x x 0, nei seguenti casi:. x 0 =, x = 2 2. x 0 =, x =. 3. x 0 =,

Dettagli

sin(3x) 3 sinh(x) x 2 cos(3x + x 2 ) log(1 + x)

sin(3x) 3 sinh(x) x 2 cos(3x + x 2 ) log(1 + x) Analisi Matematica LA - Primo appello e prova conclusiva CdL in Ingegneria per l Ambiente e il Territorio e CdL in Ingegneria per le Telecomunicazioni A.A. 24/25 Dott. F. Ferrari Dicembre 24 Gli esercizi

Dettagli

CALCOLO INTEGRALE per Informatica Risoluzione dell'esercitazione n.4, 8 aprile 2013

CALCOLO INTEGRALE per Informatica Risoluzione dell'esercitazione n.4, 8 aprile 2013 CALCOLO INTEGRALE per Informatica Risoluzione dell'esercitazione n., 8 aprile Es.. Calcolare i seguenti integrali indeniti (cioé le funzioni primitive o antiderivate), con l'aiuto del metodo di sostituzione,

Dettagli

Matematica per le scienze sociali Derivata e integrale. Domenico Cucina

Matematica per le scienze sociali Derivata e integrale. Domenico Cucina Matematica per le scienze sociali Derivata e integrale Domenico Cucina University of Roma Tre D. Cucina (domenico.cucina@uniroma3.it) 1 / 16 Outline 1 Derivata 2 Integrale Derivata rapporto incrementale

Dettagli

Dispense di Matematica Analisi Matematica. Riccarda Rossi

Dispense di Matematica Analisi Matematica. Riccarda Rossi Dispense di Matematica Analisi Matematica Riccarda Rossi Corso di Laurea in Disegno Industriale Università degli Studi di Brescia Anno Accademico 2009/200 2 Capitolo Nozioni preinari 4 Riccarda Rossi Analisi

Dettagli

Esercizi sugli integrali impropri

Esercizi sugli integrali impropri Esercizi sugli integrali impropri Esercizio. Studiare 2 x4 dx. Svolgimento: è un integrale improprio, in quanto f(x) =, x (, 2] ha una singolarità in : x4 lim x + x4 = +. Osserviamo che f è positiva, quindi

Dettagli

25 IL RAPPORTO INCREMENTALE - DERIVATE

25 IL RAPPORTO INCREMENTALE - DERIVATE 25 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

1 Integrazione per parti

1 Integrazione per parti Integrazione per parti Un pò di teoria Date le funzioni f, g : [a, b] R con f, g C [a, b] la regola di integrazione per parti per gli integrali definiti è: b a f(g ( d = f(bg(b f(ag(a b a f (g( d la regola

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 3..7 TEMA Esercizio Calcolare l integrale log(3) 4 dx Svolgimento. Si ha log(3) 4 dx = (ponendo ex = t, per cui dx = dt/t) e = 4 3

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A (ST) V foglio di esercizi ESERCIZIO. Siano f(t) = t t + per ogni t R ed F una primitiva di f. Se F () =, si calcoli F (). Le primitive di f(t) sono tutte della forma

Dettagli

Scritto di Matematica per Biotecnologie Anno Accademico 2007/08 15/09/2008

Scritto di Matematica per Biotecnologie Anno Accademico 2007/08 15/09/2008 Anno Accademico 2007/08 5/09/2008 COG segnare preferenza per 6/09, 7/09 o inizio ottobre a Calcolare la derivata della funzione f definita da fx = x 7 arctanx2 sinπx b Sia g una funzione tale che g x =

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 27 giugno 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Temi d esame di Analisi Matematica 1

Temi d esame di Analisi Matematica 1 Temi d esame di Analisi Matematica 1 Area di Ingegneria dell Informazione - a cura di M. Bardi 31.1.95 f(x) = xe arctan 1 x (insieme di definizione, segno, iti ed asintoti, continuità e derivabilità, crescenza

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 30 Gennaio 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Calcolo Integrale. F (x) = f(x)?

Calcolo Integrale. F (x) = f(x)? 3 Calcolo Integrale Nello studio del calcolo differenziale si è visto come si può associare ad una funzione la sua derivata. Il calcolo integrale si occupa del problema inverso: data una funzione f è possibile

Dettagli

Argomento 8 Integrali indefiniti

Argomento 8 Integrali indefiniti 8. Integrale indefinito Argomento 8 Integrali indefiniti Definizione 8. Assegnata la funzione f definita nell intervallo I, diciamo che una funzione F con F : I R è una primitiva di f in I se i) F è derivabile

Dettagli

Universitá degli Studi Roma Tre - Corso di Laurea in Matematica. Tutorato di AM120

Universitá degli Studi Roma Tre - Corso di Laurea in Matematica. Tutorato di AM120 Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di AM A.A. - - Docente: Prof. G.Mancini Tutore: Matteo Bruno ed Emanuele Padulano Soluzioni - 9 Maggio. Se f é pari abbiamo che

Dettagli

1 Primitive e integrali indefiniti

1 Primitive e integrali indefiniti Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 2 CALCOLO INTEGRALE Primitive e integrali indefiniti. Definizione di primitiva e di integrale indefinito Data una funzione

Dettagli

Esercizi svolti sugli integrali indefiniti

Esercizi svolti sugli integrali indefiniti SCIENTIA http://www.scientiajournal.org/ International Review of Scientific Synthesis ISSN 8-9 Quaderni di Matematica 05 Matematica Open Source http://www.etrabyte.info Esercizi svolti sugli integrali

Dettagli

12 - Tecniche di integrazione

12 - Tecniche di integrazione Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica - Tecniche di integrazione Anno Accademico 05/06 M. Tumminello,

Dettagli

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1 Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. Es. Es. 3 Es. 4 Es. 5 AVVERTENZA: Scrivere le risposte scelte nello spazio in alto a destra. In ogni esercizio una sola risposta è corretta. Esercizio.

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

Esercizio 1. Calcolare i seguenti integrali: 1. I (x) = (x 2 2x + 3) lnxdx. 2. I (x) = x ln ( 1 x *** Soluzione. 1. Integriamo per parti: = x3.

Esercizio 1. Calcolare i seguenti integrali: 1. I (x) = (x 2 2x + 3) lnxdx. 2. I (x) = x ln ( 1 x *** Soluzione. 1. Integriamo per parti: = x3. Esercizio. I ( = ( + 3 ln. I ( = ln ( +. Integriamo per parti: ( 3 I ( = lnd 3 + 3 ( 3 ( 3 = 3 + 3 ln 3 + 3 Poniamo: ( 3 J ( = 3 + 3 ( = 3 + 3 = 3 9 + 3 + C ( ( 3 3 I ( = 3 + 3 ln 9 + 3 + C = 3 9 (3 ln

Dettagli

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26 ANALISI 1 1 UNDICESIMA LEZIONE DODICESIMA LEZIONE TREDICESIMA LEZIONE Derivata - definizione e teoremi di calcolo delle derivate Massimi e minimi relativi e teorema di Fermat Teorema di Lagrange Monotonia

Dettagli

Alcuni esercizi sulle equazioni di erenziali

Alcuni esercizi sulle equazioni di erenziali Alcuni esercizi sulle equazioni di erenziali Calcolo dell integrale generale Per ciascuna delle seguenti equazioni di erenziali calcolare l insieme di tutte le possibili soluzioni. SUGGERIMENTO: Ricordatevi

Dettagli

Università di Roma Tor Vergata Corso di Laurea in Ingegneria Edile-Architettura e dell Edilizia Analisi Matematica I Prova Scritta del 8.2.

Università di Roma Tor Vergata Corso di Laurea in Ingegneria Edile-Architettura e dell Edilizia Analisi Matematica I Prova Scritta del 8.2. Analisi Matematica I Prova Scritta del 822013 1 Data la funzione f(x) = x + 1 + x + ln ( ) 2x + 1 x 1 (a) Studiare il dominio di definizione e l esistenza di eventuali asintoti orizzontali/verticali/obliqui

Dettagli

Equazioni differenziali. f(x, u, u,...,u (n) )=0,

Equazioni differenziali. f(x, u, u,...,u (n) )=0, Lezione Equazioni differenziali Un equazione differenziale è una relazione del tipo f(x, u, u,...,u (n) )=, che tiene conto del valori di una funzione (incognita) u e delle sue derivate fino ad un certo

Dettagli

Esercizi con i teoremi di de L Hôpital e la formula di Taylor. Mauro Saita Versione provvisoria.

Esercizi con i teoremi di de L Hôpital e la formula di Taylor. Mauro Saita  Versione provvisoria. Esercizi con i teoremi di de L Hôpital e la formula di Taylor. Mauro Saita e-mail maurosaita@tiscalinet.it Versione provvisoria. Novembre 05 Esercizi proposti durante le esercitazioni del corso di Analisi

Dettagli

Limiti di funzione - svolgimenti

Limiti di funzione - svolgimenti Limiti di funzione - svolgimenti Useremo la notazione f f g per 0 0 g =. Inoltre ricordiamo la definizione di o piccolo: f f = og f è o piccolo di g per 0 0 g =0. Dalla definizione abbiamo subito: og+og

Dettagli

CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova parziale di ANALISI MATEMATICA I - 15/11/2017 Prova A

CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova parziale di ANALISI MATEMATICA I - 15/11/2017 Prova A Prova parziale di ANALISI MATEMATICA I - 5//207 Prova A da Si studino l insieme di definizione ed il segno della funzione definita fx) = log 2 ) 2 sinx3 cos x+5) + arctan 3 x 3 x + π 4 ) 2 Si risolva la

Dettagli

ESERCITAZIONE 19 : INTEGRALI

ESERCITAZIONE 19 : INTEGRALI ESERCITAZIONE 9 : INTEGRALI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 4 23 Aprile 203 Esercizio Calcola i seguenti

Dettagli

Prova scritta di Analisi Matematica T-A, Ingegneria Energetica, 22/12/2014. MATRICOLA:...NOME e COGNOME:...

Prova scritta di Analisi Matematica T-A, Ingegneria Energetica, 22/12/2014. MATRICOLA:...NOME e COGNOME:... Prova scritta di Analisi Matematica T-A, Ingegneria Energetica, //4 A = {x R : x n } =, n N, n >. cosπn)n! + n 3n + 5 e n + n + )!. x sinx + x ) + log x x + x 4 ) + + x. x + coshx x ) e x sinh x x 3 )

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA

UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - 6.Funzioni con derivate - CTF Matematica Codice Compito: - Numero d Ordine D. Un polinomio di grado e tangente all asse x ed ha un flesso orizzontale nel punto

Dettagli

FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito

FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito FORMULARIO: tavola degli integrali indefiniti Definizione Proprietà dell integrale indefinito Integrali indefiniti fondamentali Integrali notevoli Integrali indefiniti riconducibili a quelli immediati:

Dettagli

Derivate. Def. Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come

Derivate. Def. Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come Lezioni 21-22 72 Derivate Def. Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y) = f(x) f(y). x y OSSERVAZIONI:

Dettagli

Esercizi 10: Calcolo Integrale Integrali indefiniti. Calcolare i seguenti integrali indefiniti, verificando i risultati indicati.

Esercizi 10: Calcolo Integrale Integrali indefiniti. Calcolare i seguenti integrali indefiniti, verificando i risultati indicati. Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in Farmacia - anno acc / docente: Giulia Giantesio, gntgli@unifeit Esercizi : Calcolo Integrale Integrali indefiniti

Dettagli

CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova scritta di ANALISI MATEMATICA I - 22/01/2018

CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova scritta di ANALISI MATEMATICA I - 22/01/2018 Prova scritta di ANALISI MATEMATICA I - 22/0/208 Studiare la funzione definita da fx) = x + x 2 2 Calcolare, se esiste, il ite sin3x) x cos3x) 2x x 0 log 4 + sin cos x) x ) 3 Calcolare log 2 xdx 4 Si risolva

Dettagli

x + 1 2x], g(x) = x x + 2, h(x) = ln(x 1 2x 2 4x).

x + 1 2x], g(x) = x x + 2, h(x) = ln(x 1 2x 2 4x). Funzioni Esercizio Siano f, g due funzioni definite da fx) = x x 2, gx) = ln x Trovare l insieme di definizione di f e g 2 Determinare le funzioni composte f g e g f, precisandone insieme di definizione

Dettagli

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere ) DMINIO + 3 Determinare il dominio della funzione f ) + 3 Deve essere Ovviamente, inoltre: se > + 3 ) 3) quindi < o 3 se < + 3, + 3 quindi 7 Determinare il dominio della funzione f ) + 5 Deve essere +

Dettagli

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza Vicenza, 27 gennaio 214 TEMA Esercizio 1 (9 punti Si consideri la funzione f(x =xe x 2 x+2 (a Determinare il dominio, eventuali simmetrie ed il segno di f; (b determinare i iti agli estremi del dominio,

Dettagli

21 IL RAPPORTO INCREMENTALE - DERIVATE

21 IL RAPPORTO INCREMENTALE - DERIVATE 21 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

= 0 Ciascuna frazione tende ad x x 4 2 cos x lim x = il secondo addendo del numeratore è una funzione x (cos sin x 3 1) cos(x π 2 )

= 0 Ciascuna frazione tende ad x x 4 2 cos x lim x = il secondo addendo del numeratore è una funzione x (cos sin x 3 1) cos(x π 2 ) + sen x Es. lim x = il numeratore tende ad un numero positivo, il x 4 denominatore tende a zero. x 4 lim x = il denominatore ha grado maggiore del numeratore. x 8 + x sen x lim x +( + x) sen x = lim x

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

ANALISI 1 1 UNDICESIMA LEZIONE Derivazione- definizione e prime proprietà

ANALISI 1 1 UNDICESIMA LEZIONE Derivazione- definizione e prime proprietà ANALISI 1 1 UNDICESIMA LEZIONE Derivazione- definizione e prime proprietà 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://www2.ing.unipi.it/

Dettagli

Prova scritta di Analisi Matematica T-1, 18/12/2018. MATRICOLA:...NOME e COGNOME:...

Prova scritta di Analisi Matematica T-1, 18/12/2018. MATRICOLA:...NOME e COGNOME:... Prova scritta di Analisi Matematica T-, 8/2/28 MATRICOLA:...NOME e COGNOME:............................................. Ingegneria chimica e biochimica Ingegneria elettronica e telecomunicazioni )3 punti)

Dettagli

APPELLO X AM1C 17 SETTEMBRE 2009

APPELLO X AM1C 17 SETTEMBRE 2009 Cognome e nome APPELLO X AMC 7 SETTEMBRE 29 Esercizio. Sia f(x) = x arctan x + log( + x 2 ) (a) Determinarne: insieme di esistenza e di derivabilità, iti ed eventuali asintoti, eventuali massimi, minimi

Dettagli

Foglio 3 Esercizi su forme differenziali lineari ed integrali di seconda specie (alcuni con cenno di soluzione).

Foglio 3 Esercizi su forme differenziali lineari ed integrali di seconda specie (alcuni con cenno di soluzione). Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e MeccanicaMeccatronica, V. Casarino P. Mannucci (-) Foglio 3 Esercizi su forme differenziali lineari ed integrali

Dettagli

Istituzioni di Matematiche quarta parte

Istituzioni di Matematiche quarta parte Istituzioni di Matematiche quarta parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 22 index Derivate 1 Derivate 2 Teoremi

Dettagli

Studio qualitativo del grafico di una funzione

Studio qualitativo del grafico di una funzione Studio qualitativo del grafico di una funzione Obiettivo: ottenere informazioni per descrivere qualitativamente l andamento del grafico di una funzione f campo di esistenza (cioè, l insieme di definizione)

Dettagli

Il teorema fondamentale del calcolo

Il teorema fondamentale del calcolo Il teorema fondamentale del calcolo Versione da non divulgare. Scritta per comodità degli studenti. Può contenere errori. 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Dicembre 2013

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali Derivate - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Novembre 2013 Retta secante un grafico e rapporto incrementale Sia f una funzione e x 0 un punto

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1 Scritto del sesto appello, 6 luglio 208 Testi Prima parte, gruppo.. Trovare α [0, 2π) per cui vale l identità trigonometrica sin(x π/3) = cos(x + α). 2. Trovare il polinomio di Taylor (in 0) di ordine

Dettagli

Mario Nocera Roberto Raucci Luigi Taddeo. Integrali indefiniti

Mario Nocera Roberto Raucci Luigi Taddeo. Integrali indefiniti A01 85 Mario Nocera Roberto Raucci Luigi Taddeo Integrali indefiniti Copyright MMVI ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133 A/B 00173 Roma (06) 93781065

Dettagli

Provetta scritta di Calcolo I Corsi di laurea in Fisica - Scienza e Tecnologia dei Materiali Prova scritta del 7/12/2005 Fila A

Provetta scritta di Calcolo I Corsi di laurea in Fisica - Scienza e Tecnologia dei Materiali Prova scritta del 7/12/2005 Fila A Provetta scritta di Calcolo I Prova scritta del 7/2/25 Fila A ) Calcolare i limiti 3 x 3 x 4 ; b) lim sin(2x) + x2 x( cos(3x)) c) lim + 5 x 7 x 4 x 2 + x. 2) Determinare il massimo di x 3 (2 + x 4 ) 3/2,

Dettagli

Esercitazione 12 - Soluzioni

Esercitazione 12 - Soluzioni Esercitazione - Soluzioni Francesco Davì dicembre 0 Soluzioni esercizio Si può notare che sin x cos 8 x dx sin x sin x cos 8 x dx sin x cos x) cos 8 x dx sin x cos 8 x cos 0 x) dx È possibile allora effettuare

Dettagli

Teorema Ogni funzione monotona e limitata nell intervallo [a, b] é integrabile

Teorema Ogni funzione monotona e limitata nell intervallo [a, b] é integrabile ALCUNI COMPLEMENTI TEORICI Tra le classi di funzioni integrabili secondo Riemann, oltre alle funzioni continue (Paragrafo 66 del libro di testo), ci sono le funzioni monotone (limitate): Teorema Ogni funzione

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Polinomi di Taylor. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 1 / 27

Polinomi di Taylor. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 1 / 27 Polinomi di Taylor Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 1 / 27 Introduzione Sia f : I R e sia x 0 I. Problemi: come approssimare

Dettagli

Corso di Analisi Matematica 1

Corso di Analisi Matematica 1 Corso di Analisi Matematica in Ingegneria Biomedica Prof A Iannizzotto Prove d esame 207 Versione del aprile 207 Appello del 2//207 Tempo: 80 minuti Compito A Determinare gli estremi superiore e inferiore

Dettagli

Forme differenziali lineari

Forme differenziali lineari Forme differenziali lineari Sia Ω R un insieme aperto e siano A, B, C: Ω R funzioni continue in Ω. Si definisce forma differenziale ω in Ω l espressione ω = A(x, y, z)dx + B(x, y, z)dy + C(x, y, z)dz Data

Dettagli

24 IL RAPPORTO INCREMENTALE - DERIVATE

24 IL RAPPORTO INCREMENTALE - DERIVATE 24 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y 2 domf con x 6= y, sidefinisceilrapporto incrementale di f tra x e y come P f (x, y) =

Dettagli

Metodi di Integrazione. Integrazione per decomposizione in somma

Metodi di Integrazione. Integrazione per decomposizione in somma Metodi di Integrazione Integrazione per decomposizione in somma Integrazione per parti Integrazione per sostituzione Integrazione per decomposizione in somma In molti casi il calcolo dell integrale indefinito

Dettagli

Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni.

Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni. Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni. Università di Pisa. Primo Compitino di Analisi Matematica I. Soluzioni. Esercizio. Si consideri la successione a k k N definita dalla relazione

Dettagli

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare:

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare: 42 Roberto Tauraso - Analisi 2 Ora imponiamo condizione richiesta: ( lim c e 4x + c 2 + c 3 e 2x cos(2x) + c 4 e 2x sin(2x) ) = 3. x + Il limite esiste se e solo c 3 = c 4 = perché le funzioni e 2x cos(2x)

Dettagli

INTEGRALE INDEFINITO DI UNA FUNZIONE COMPOSTA

INTEGRALE INDEFINITO DI UNA FUNZIONE COMPOSTA INTEGRALE INDEFINITO DI UNA FUNZIONE COMPOSTA Integrale di: Funzione Composta*Derivata[argomento] Metodo di sostituzione FunzioneComposta*Derivata[argomento] L integrale di una FunzioneComposta*Derivata[argomento]

Dettagli