fe s dvol M Fissata una simmetria v in V possiamo allora definire un applicazione lineare

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "fe s dvol M Fissata una simmetria v in V possiamo allora definire un applicazione lineare"

Transcript

1 Dalle simmetrie dell azione alle correnti conservate. Iniziamo come al solito con un modello finito-dimensionale. Sia pertanto una varietà differenziabile compatta dotata di una forma di volume dvol e sia S : R un applicazione differenziabile (l azione). Se f : R è una funzione integrabile rispetto alla misurs e S dvol, scriviamo f per indicare l integrale fe s dvol (valor medio di f). Infine, se v è un campo vettoriale su, indichiamo con div S (v) la divergenza di v rispetto alla forma di volume e S dvol, ovvero la funzione su definita da L v (e S dvol) = div S (v)e S dvol. Diremo che un campo vettoriale v è una simmetria di (, S, dvol) se v è una simmetria dell azione, cioè (ds v) = 0, e ha divergenza nulla rispetto alla forma di volume dvol. Notiamo che queste due condizioni implicano in particolare div S (v) = 0. Aggiungiamo adesso l ultimo ingediente: supponiamo di avere un azione delle funzioni C su una superficie connessa su un sottospazio V dello spazio vettoriale X () dei campi vettoriali su, C (; R) R V V Fissata una simmetria v in V possiamo allora definire un applicazione lineare Φ v : C 0 (; R) C (; R) ρ div S (ρ v). Poiché v è una simmetria di (, S, dvol), le costanti sono nel nucleo di Φ v. D altronde le costanti sono il nucleo del differenziale di de Rham d : C (; R) Ω 1 (; R) e dunque esiste (non unica) un applicazione lineare tale che j v : Ω 1 (; R) C (; R) Φ v (ρ) = j v (dρ). L applicazione j v può essere vista come un applicazione differenziabile da in Ω 1 (; R) : per ogni punto m di, j m v : ω (j v (ω)) m. Con qualche abuso qua e là possiamo supporre che i funzionali lineari su Ω 1 () siano dati da 1-forme: ω η ω. 1

2 Con questa identificazione, jv m è una 1-forma su, con la proprietà che Φ v (ρ) m = dρ = ρ dj v m, jv m dove, al solito, il principio del migliore dei mondi possibili ci dice che non c è da preoccuparsi di eventuali termini di bordo. Ovvero, abbiamo la seguente identità tra funzioni su : Φ v (ρ) = ρ dj v, dove nell espressione a destra è solo j v a dipendere dal punto m di, e il differenziale è il differenziale di de Rham in (e dunque non legge la dipendenza di j v da m). Prendiamo adesso il valor medio di Φ v (ρ): Φ v (ρ) = div S (ρ v) = L ρ v (e S dvol) = 0. D altronde, scambiando l integrazione su con l integrazione su, Φ v (ρ) = ρ d j v. Dunque per ogni funzone ρ, da cui ρ d j v = 0 d j v = 0, ovvero la 1-forma j v è chiusa. Tanto per confondere le idee, i testi di stringhe tendono a scrivere questa equazione come dj v = 0. Bisogna farci l abitudine; in fondo non è diverso da imparare a leggere g 21 come l elemento di posto due-uno della matrice g anziché come la variabile g elevata alla ventuno. Le correnti come operatori. Sia ora p un punto fissato di e sia A(p) : R una funzione che dipenda solo dal comportamento di m attorno a p. Questa richiesta non ha ovviamente alcun senso così in astratto, mentre è chiaro cosa voglia dire nel caso concreto in cui è uno spazio di mappe dalla superficie in un altra varietà. Possiamo però formalizzare nel contesto finito-dimensionale nel quale stiamo lavorando la richiesta di dipendenza dal germe di m in p mediante l azione di C (; R) sul sottospazio V di X () che abbiamo assunto come parte dei nostri dati. Alla funzione A(p) chiederemo di soddisfare L ρ v A(p) = L v A(p) 2

3 per ogni ρ identicamente uguale ad 1 in un intorno di p, e per ogni v in V. Se una tale funzione A(p) possa effettivamente esistere senza essere banale in dimensione finita non ci deve interessare, quello che stiamo facendo adesso è solamente mettere in evidenza quale sia la proprietà formale che ci interesserà usare quando sarà uno spazio di mappe su (e la nozione di dipendere solamente dal germe in p sarà dunque chiara). Assumiamo ora che v sia una simmetria di (, S, dvol) appartenente al sottospazio V e calcoliamo la media di L ρ v A(p). Si ha: L ρ v A(p) = L ρ v (A(p)e S dvol) A(p)div S (ρ v) = A(p) ρ dj v = ρ A(p)dj v. Se come ρ prendiamo una funzione identicamente uguale ad 1 in un intorno di p otteniamo L v A(p) = ρ A(p)dj v. Da questa identità si vede che il termine a sinistra non dipende da ρ, purché ρ sia costanetemente uguale ad 1 in un intorno di p. Con funzioni ρ di questo tipo possiamo approssimare in norma L 1 la funzione caretteristica di un disco B p centrato in p. Otteniamo dunque L v A(p) = A(p)dj v. B p Il punto p di è fissato una volte per tutte: la funzione A(p) è una funzione del solo punto m di, e dunque non viene vista dal differenziale di de Rham su : A(p)dj v = d(a(p) j v ). Inoltre, come abbiamo già osservato, il differenziale di de Rham su non vede l integrazione su. Ne segue: L v A(p) = A(p)j v, ovvero l azione della derivata di Lie L si esprime mediante gli operatori j v Anche qui, la noatazione dei fisici non è la più amichevole possibile: si scrive semplicemente j v 3

4 per indicare l operatore scritto sopra. Esempio: i generatori delle simmetrie conformi. Vogliamo adesso calcolare esplicitamente la corrente e l operatore associati alla simmetria z n+1 z dell azione S[X] = X µ X ν G µν, dove = C\{0} e X è una mappa da in R D dotato della metrica standard. Per come è definita in generale la corrente j v non dobbiamo far altro che esprimere la divergenza div S (ρ v) come j v dρ. Se assumiamo che il campo vettoriale ρ v non abbia divergenza rispetto alla misura dvol (uno dei tanti vantaggi del lavorare nel migliore dei mondi possibili), quuesto si riduce all identità L ρ v S = j v dρ. Nel nostro caso, il sottospazio V dello spazio dei campi vettoriali su aps(, R D ) è lo spazio vettoriale dei campi vettoriali indotti dai diffeomorfismi infinitesimali di (ovvero dai campi vettoriali su ). L azione di C (; R) su questi campi vettoriali è quella ovvia indotta dalla moltiplicazione C (; R) R X () X (). Per calcolare la variazione dell azione S rispetto alla variazione di X indotta dal campo vettoriale ρ(z, z) z n+1 z è conveniente ragionare come segue: mentre l azione S è invariante per i soli diffeomorfismi conformi, l azione di Polyakov S P [X, g] è invariante per tutti i diffeomorfismi. In particolare L ρz n+1 z S P = 0. Dunque, se indichiamo con δ w X e δ w g le variazioni di X e g indotte dal diffeomorfismo infinitesimale w = ρz n+1 z, troviamo L w S = δs P δx δ wx g=g0 = δs P δg δ wg g=g0, dove g 0 è la metrica standard su C \ {0}. Ricordando la definizione del tensore energia-impulso, troviamo dunque L w S = (T (z)δ w g zz + T (z)δ w g zz )dz dz Rimangono da calcolare le variazioni δ w g zz e δ w g zz nel punto g = g 0. Si ha L w (g ab a b ) = L w (g ab ) a b g ab a (ρ z n+1 ) z b g ab b (ρ z n+1 ) a z. Ricordando che in g = g 0 si ha g zz = g zz = 0 e g zz = g zz = 1/2, se ne ricava Dunque L ρz n+1 z S = δ w g zz = ( z ρ)z n+1 ; δ w g zz = 0. T (z)( z ρ)z n+1 dz dz = (T (z)z n+1 dz) dρ, 4

5 da cui j z n+1 z = T (z)z n+1 dz. Il corrispondente operatore è di conseguenza L n := 1 T (z)z n+1 dz 2πi 5

Istituzioni di geometria superiore - prova scritta del 4 febbraio y 2 ) 4xe (x. e γ(t) = t2 + 1 log (t 4 + 2) div g (X) ω g.

Istituzioni di geometria superiore - prova scritta del 4 febbraio y 2 ) 4xe (x. e γ(t) = t2 + 1 log (t 4 + 2) div g (X) ω g. Istituzioni di geometria superiore - prova scritta del 4 febbraio 6 Prima parte Su R dotato delle coordinate cartesiane {x, y} si considerino la metrica g data da e il campo vettoriale g = dx dx + e x

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 10 2.11.2016 Equazione di Poisson Metodo delle cariche immagine Anno Accademico 2016/2017 Equazione di Poisson Tramite

Dettagli

Soluzione della Prova Scritta di Analisi Matematica 4-25/06/13. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E.

Soluzione della Prova Scritta di Analisi Matematica 4-25/06/13. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E. Soluzione della Prova Scritta di Analisi Matematica 4-5/6/ C.L. in Matematica e Matematica per le Applicazioni Proff. K. R. Payne e E. Terraneo Esercizio. a. Le funzioni f n (x) sono continue e quindi

Dettagli

Analisi a più variabili: Integrazione sulle curve e superfici, forme differenziali

Analisi a più variabili: Integrazione sulle curve e superfici, forme differenziali Analisi a più variabili: Integrazione sulle curve e superfici, forme differenziali 1 Definizione (Parametrizzazione di T): T R n, una sua parametrizzazione è una coppia φ, con = a, b intervallo di R e

Dettagli

Soluzione della Prova Scritta di Analisi Matematica III - 28/02/02. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R.

Soluzione della Prova Scritta di Analisi Matematica III - 28/02/02. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R. Soluzione della Prova Scritta di Analisi Matematica III - 28/2/2 C.L. in Matematica e Matematica per le Applicazioni Prof. Kevin R. Payne Esercizio 1. 1a. Teorema: (di ini) Sia Φ : A R n R R dove A è aperto.

Dettagli

L equazione di Schrödinger

L equazione di Schrödinger 1 Forma dell equazione L equazione di Schrödinger Postulato - ψ r, t 0 ) definisce completamente lo stato dinamico del sistema al tempo t 0. L equazione che regola l evoluzione di ψ r, t) deve essere:

Dettagli

Soluzione della Prova Parziale di Analisi Matematica III - 17/02/04. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R.

Soluzione della Prova Parziale di Analisi Matematica III - 17/02/04. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R. Soluzione della Prova Parziale di Analisi Matematica III - 7//4 C.L. in Matematica e Matematica per le Applicazioni Prof. Kevin R. Payne Esercizio. a. Ricordiamo inanzitutto la seguente: efinizione: Si

Dettagli

1. Funzioni implicite

1. Funzioni implicite 1. Funzioni implicite 1.1 Il caso scalare Sia X R 2 e sia f : X R. Una funzione y : (a, b) R si dice definita implicitamente dall equazione f(x, y) = 0 in (a, b) quando: 1. (x, y(x)) X x (a, b); 2. f(x,

Dettagli

p(ϕ) = a 0 Id + a 1 ϕ + + a n ϕ n,

p(ϕ) = a 0 Id + a 1 ϕ + + a n ϕ n, 1. Autospazi e autospazi generalizzati Sia ϕ: V V un endomorfismo. Allora l assegnazione x ϕ induce un morfismo di anelli ρ: K[x] End K (V ). Più esplicitamente, al polinomio p dato da viene associato

Dettagli

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Secondo appello

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Secondo appello Fondamenti di Analisi Matematica - a.a. 6/7 Secondo appello Esercizi senza svolgimento - Tema ρ = cos ϑ, ϑ [, π/], F(x, y = ( x + e x cos y cos y i + ( xe x cos y sen y j. Figura : Il sostegno Γ. ( ; 4

Dettagli

1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010

1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010 1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010 Si consideri il sistema dinamico con { ẋ = y ẏ = d U(x) U(x) = 2 ( x 2 3 x + 4 ) e x/2. (2) 1. Tracciare qualitativamente le curve di fase del sistema

Dettagli

Esercitazione n 5. 1 Limiti e continuità di funzioni in più variabili. Esercizio 1: Si verifichi che la funzione f definita per ogni (x, y) R 2 da

Esercitazione n 5. 1 Limiti e continuità di funzioni in più variabili. Esercizio 1: Si verifichi che la funzione f definita per ogni (x, y) R 2 da Esercitazione n 5 1 Limiti e continuità di funzioni in più variabili Esercizio 1: Si verifici ce la funzione f definita per ogni (, y) R 2 da { 4 y 4 se (, y) (0, 0) f(, y) = 2 +y 2 0 se (, y) = (0, 0)

Dettagli

4 Funzioni continue. Geometria I 27. Cfr: Sernesi vol II, cap I, 4 [1].

4 Funzioni continue. Geometria I 27. Cfr: Sernesi vol II, cap I, 4 [1]. Geometria I 27 4 Funzioni continue Cfr: Sernesi vol II, cap I, 4 [1]. Le funzioni continue tra spazi topologici si dicono anche mappe. Si può dimostrare, esattamente come in (2.10) e in (1.10), che vale

Dettagli

10. Il gruppo Speciale Lineare SL(V )

10. Il gruppo Speciale Lineare SL(V ) 1 2 3 4 5 6 7 8 9 1 10. Il gruppo Speciale Lineare SL(V ) Siano F un campo e V uno spazio vettoriale di dimensione n su F. Indichiamo con GL(V ) l insieme delle applicazioni lineari biiettive di V in sé.

Dettagli

Proposizione 2 Il polinomio minimo di t corrisponde all annullatore minimale di M V.

Proposizione 2 Il polinomio minimo di t corrisponde all annullatore minimale di M V. Fogli NON riletti. Grazie per ogni segnalazione di errori. L esempio qui sviluppato vuole mostrare in concreto il significato dei risultati trattati a lezione e qui velocemente riassunti. Si assume che

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/12/2004

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/12/2004 Algebra Lineare. a.a. 004-05. Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/1/004 Esercizio 1. Siano V e W due spazi vettoriali e sia F : V W un isomorfismo (quindi F è lineare e

Dettagli

Derivata direzionale e connessione

Derivata direzionale e connessione Capitolo 3 Derivata direzionale e connessione Introduciamo ora il concetto di connessione su una superficie differenziabile e di connessione Riemanniana o connessione di Levi-Civita. Sono possibili molte

Dettagli

Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del

Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del 04-06-007 Esercizio. (8 punti) Si consideri il seguente campo vettoriale F = + y + z i y ( + y + z ) j z ( + y + z ) k a) (5

Dettagli

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda.

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda. 1. Problema della corda vibrante Si consideri una corda monodimensionale, di sezione nulla avente densità per unità di lunghezza ρ e modulo elastico lineare E. Una corda reale approssima quella ideale

Dettagli

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A.

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Geometria Canale. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 1 7 2 6 6 4 6+1 5 6+2 Totale 1+ ATTENZIONE:

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 10 3.11.2017 Equazione di Poisson Funzione δ(x) di Dirac Metodo delle cariche immagine Anno Accademico 2017/2018 Equazione

Dettagli

INGEGNERIA MECCANICA - CANALE L-Z ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL COMPITO A. ( 1) k 2k + 1 e(2k+1)(x+y),

INGEGNERIA MECCANICA - CANALE L-Z ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL COMPITO A. ( 1) k 2k + 1 e(2k+1)(x+y), 1 INGEGNERIA MECCANICA - CANALE L-Z ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL 1-6-16 - COMPITO A ESERCIZIO 1 Studiare la convergenza assoluta, puntuale e totale della serie k + 1 e(k+1)(x+y),

Dettagli

Endomorfismi nilpotenti, diagrammi di Young e basi di Jordan

Endomorfismi nilpotenti, diagrammi di Young e basi di Jordan Endomorfismi nilpotenti, diagrammi di Young e basi di Jordan Sia V uno spazio vettoriale su C e sia ν : V V un suo endomorfismo. L applicazione ν si dice nilpotente se esiste un intero positivo N tale

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 6 18.10.2017 Divergenza e teorema della divergenza Forma differenziale della Legge di Gauss Energia del campo elettrostatico

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di forma differenziale chiusa. Sia A R N ; sia A aperto; sia ω = N i=1 ω i dx i una forma differenziale su A; sia ω di classe C 1 ; si dice

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016) Corso di Laurea in Matematica Docente: Claudia Anedda Analisi Matematica 3/Analisi 4 - SOLUZIONI (//6) ) i) Dopo averla classificata, risolvere l equazione differenziale tẋ x = t cos(t), t >. ii) Scrivere

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del (x y) log

Analisi Matematica II Corso di Ingegneria Gestionale Compito del (x y) log Analisi Matematica II Corso di Ingegneria Gestionale Compito del -6-4 Esercizio. punti Data la funzione { x y log +, fx, y = x +y 4 x, y,, x, y =, i dire in quali punti del dominio è continua; ii dire

Dettagli

20. L integrale di Lebesgue: un breve riassunto, II

20. L integrale di Lebesgue: un breve riassunto, II 64 20. L integrale di Lebesgue: un breve riassunto, II 20.a Il teorema di Fubini e le formule di riduzione Per integrare funzioni di due variabili, l idea intuitiva è integrare prima in una variabile e

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

Calcolo 2B - Analisi III dicembre 2004

Calcolo 2B - Analisi III dicembre 2004 Calcolo 2B - Analisi III dicembre 2. Verificare esplicitamente il teorema di Stokes in R 2 : dω = ω per la -forma: nella regione piana data da: ω = x 2 + y 2 dx = x, y x 2 + y 2 ª x, y y 2x 2ª 2. Considerato

Dettagli

Trasformazione della metrica per cambiamenti di coordinate

Trasformazione della metrica per cambiamenti di coordinate TERZA ESERCITAZIONE Trasformazione della metrica per cambiamenti di coordinate Consideriamo lo spazio di Minkowski in coordinate cartesiane {x µ } (x, x, x, x 3. La sua metrica è ds (dx + (dx + (dx + (dx

Dettagli

1 Trasformazione di vettori e 1-forme per cambiamenti

1 Trasformazione di vettori e 1-forme per cambiamenti PRIMA ESERCITAZIONE Trasformazione di vettori e -forme per cambiamenti di coordinate Consideriamo lo spazio di Minkowski in coordinate cartesiane {x } (x,x,x 2,x 3 ). La sua metrica è ds 2 (dx ) 2 +(dx

Dettagli

Istituzioni di Probabilità - A.A

Istituzioni di Probabilità - A.A Istituzioni di Probabilità - A.A. 25-26 Prima prova di verifica intermedia - 29 aprile 25 Esercizio. Sia (X n ) n una successione di v.a. i.i.d. centrate con < X P-q.c., sia λ R ed F una v.a. integrabile

Dettagli

1 Trasformazione di vettori e 1-forme per cambiamenti

1 Trasformazione di vettori e 1-forme per cambiamenti Trasformazione di vettori e -forme per cambiamenti di coordinate Consideriamo lo spazio di Minkowski in coordinate cartesiane {x µ } (x,x,x 2,x 3 ). La sua metrica è ds 2 (dx ) 2 +(dx ) 2 +(dx 2 ) 2 +(dx

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di derivata di una funzione in un punto. Sia A R N ; sia a A; sia f : A R M ; sia f differenziabile in a; allora la derivata di f in a è...

Dettagli

Ψ(U i ). Dalla proposizione 0.3 segue che per ogni i R h esiste c i ( δ, δ) n k tale che ϕ 2 Ψ(U i ) c i, quindi ϕ 2 (L h ) = i R h

Ψ(U i ). Dalla proposizione 0.3 segue che per ogni i R h esiste c i ( δ, δ) n k tale che ϕ 2 Ψ(U i ) c i, quindi ϕ 2 (L h ) = i R h Foliazioni Definition 0.1 Siano date una varieta M, C, una distribuzione involutiva di dimensione k ed una immersione iniettiva Ψ : N M con N varieta connessa di dimensione k. Diremo che N e una sottovarieta

Dettagli

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Primo Scritto [ ]

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Primo Scritto [ ] Corsi di laurea in Matematica e Fisica - Anno Accademico 017/18 FM10 / MA Primo Scritto [1-6-018] 1. Si consideri il sistema meccanico bidimensionale per x R. ẍ = ( x 4 1)x, (a) Si identifichino due integrali

Dettagli

Operatori nilpotenti, diagrammi di Young e basi di Jordan

Operatori nilpotenti, diagrammi di Young e basi di Jordan Operatori nilpotenti, diagrammi di Young e basi di Jordan Sia V uno spazio vettoriale su C e sia ν : V V un suo endomorfismo. L applicazione ν si dice nilpotente se esiste un intero positivo N tale che

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #5. Sia f : R R la funzione definita da f(x, y) x + x + y + x + y (x, y) R. (a) Determinare il segno di f. (b) Calcolare

Dettagli

dipendenti. Cosa possiamo dire sulla dimensione di V?

dipendenti. Cosa possiamo dire sulla dimensione di V? Esercizi Esercizi. In uno spazio vettoriale V ci sono tre vettori v, v 2, v linearmente indipendenti. Cosa possiamo dire sulla dimensione di V? 2. In uno spazio vettoriale V ci sono tre vettori v, v 2,

Dettagli

Esercizi Di Geometria 1 (BAER) Canale 1

Esercizi Di Geometria 1 (BAER) Canale 1 Esercizi Di Geometria 1 (BAER) Canale 1 SETTIMANA 9 (23 29 Novembre 2015) da consegnare Mercoledi 2 Dicembre. Esercizio 1. Sia E = (V,, ) uno spazio metrico finito dimensionale. sottospazio vettoriale

Dettagli

FUNZIONI DI DUE VARIABILI REALI. f(x, y) = ax + by + c. f(x, y) = x 2 + y 2

FUNZIONI DI DUE VARIABILI REALI. f(x, y) = ax + by + c. f(x, y) = x 2 + y 2 0.1 FUNZIONI DI DUE VARIABILI REALI Sia A R 2. Una applicazione f : A R si chiama funzione reale di due variabili reali ESEMPI: 1. La funzione affine di due variabili reali: 2. f(x, y) = ax + by + c f(x,

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = 2x 2 + x 4 + 4y 4., x 2 + y 2 1.

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = 2x 2 + x 4 + 4y 4., x 2 + y 2 1. Analisi Matematica II Corso di Ingegneria Gestionale Compito A del 05-06-08 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Matematica 2

Analisi Matematica 2 Analisi Matematica Appunti delle lezioni tenute dal Prof. A. Fonda Università di Trieste CdL Matematica a.a. 07/08 La derivata direzionale In questa sezione E sarà un sottoinsieme aperto di R N x 0 un

Dettagli

y + P(x) y + Q(x) y = 0 y(x) = c 1y 1(x) + c 2 y 2(x).

y + P(x) y + Q(x) y = 0 y(x) = c 1y 1(x) + c 2 y 2(x). Proposizione 4. Se y 1(x) e y (x) sono soluzioni linearmente indipendenti di y + P(x) y + Q(x) y = 0 ogni altra soluzione della stessa equazione si scrive nella forma per una scelta opportuna delle costanti

Dettagli

OPERAZIONI SU SPAZI DI HILBERT. Nel seguito introdurremo i concetti di prodotto diretto e somma diretta di due spazi di Hilbert.

OPERAZIONI SU SPAZI DI HILBERT. Nel seguito introdurremo i concetti di prodotto diretto e somma diretta di due spazi di Hilbert. 2/7 OPERAZIONI SU SPAZI DI HILBERT 11/12 1 OPERAZIONI SU SPAZI DI HILBERT Dati due spazi di Hilbert H (1) e H (2) si possono definire su di essi operazioni il cui risultato è un nuovo spazio di Hilbert

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

Analisi Vettoriale A.A Soluzioni del Foglio 4

Analisi Vettoriale A.A Soluzioni del Foglio 4 Analisi Vettoriale A.A. 26-27 - Soluzioni del Foglio 4 Esercizio 4.1. Sia Σ la superficie cartesiana z = 1 x y, (x, y) = {x 2 + y 2 1}, determinare in ogni punto di Σ il versore normale diretto nel verso

Dettagli

Funzioni di n variabili a valori vettoriali

Funzioni di n variabili a valori vettoriali Funzioni di n variabili a valori vettoriali Ultimo aggiornamento: 22 maggio 2018 1 Differenziale per funzioni da R n in R k Una funzione F : A R n R k può essere vista come una k-upla di funzioni scalari

Dettagli

Corso di Controllo Digitale Equazioni alle Differenze e Z-trasformate a

Corso di Controllo Digitale Equazioni alle Differenze e Z-trasformate a Corso di Controllo Digitale Equazioni alle Differenze e Z-trasformate a Università degli Studi della Calabria Corso di Laurea in Ingegneria Elettronica. Ing. Domenico Famularo a Proprietà Letteraria Riservata

Dettagli

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x? A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento

Dettagli

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Secondo compitino ( ) Svolgimento della Versione B

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Secondo compitino ( ) Svolgimento della Versione B Analisi Matematica (Fisica), 2008-2009, M. Peloso e L. Vesely Secondo compitino (20.01.2009) Svolgimento della Versione B 1. (a) Dimostrare che l insieme G = { (x, y) R 2 : x 2 e 2y e 2y + (x 1)e x y =

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di sistema fondamentale di soluzioni di un equazione differenziale lineare d ordine n omogenea. Sia I un intervallo non banale di R; siano

Dettagli

Analisi II, a.a Soluzioni 1. j j + 1 ; ( 1)j

Analisi II, a.a Soluzioni 1. j j + 1 ; ( 1)j Analisi II, a.a. 7-8 Soluzioni Calcolare le seguenti distanze e norme: (i d (x, y dove x = {x j } e y = {y j } sono le successioni di l definite da x j = ( j, y j = j/(j + ; (ii d (f, g dove f, g sono

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE

AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE Sia g C 1 R 2 ), c R. L insieme γ = γ c := {x, y) R 2 : gx, y) = c} si chiama insieme

Dettagli

In questa lezione ci occuperemo di sistemi dinamici in tempo continuo, rappresentati da equazioni differenziali.

In questa lezione ci occuperemo di sistemi dinamici in tempo continuo, rappresentati da equazioni differenziali. Sistemi dinamici In questa lezione ci occuperemo di sistemi dinamici in tempo continuo, rappresentati da equazioni differenziali. Le equazioni differenziali sono delle equazioni in cui le incognite rispetto

Dettagli

1 Definizione di sistema lineare omogeneo.

1 Definizione di sistema lineare omogeneo. Geometria Lingotto. LeLing1: Sistemi lineari omogenei. Ārgomenti svolti: Definizione di sistema lineare omogeneo. La matrice associata. Concetto di soluzione. Sistemi equivalenti. Operazioni elementari

Dettagli

1 Combinazioni lineari.

1 Combinazioni lineari. Geometria Lingotto LeLing5: Spazi Vettoriali Ārgomenti svolti: Combinazioni lineari Sistemi lineari e combinazioni lineari Definizione di spazio vettoriale Ēsercizi consigliati: Geoling 6, Geoling 7 Combinazioni

Dettagli

Scritto di Analisi Vettoriale ( ) proff. F. De Marchis, F. Lanzara, E. Montefusco

Scritto di Analisi Vettoriale ( ) proff. F. De Marchis, F. Lanzara, E. Montefusco COGNOM, NOM e MATRICOLA: Scritto di Analisi Vettoriale 8..18) proff. F. De Marchis, F. Lanzara,. Montefusco DOCNT: De Marchis Lanzara Montefusco Se ammesso, sosterrò la prova orale: questo appello in un

Dettagli

Prova di geometria differenziale del , I parte VERSIONE A

Prova di geometria differenziale del , I parte VERSIONE A Prova di geometria differenziale del 26-2-204, I parte VERSIONE A Attenzione: riportare i dati personali su ogni foglio consegnato Esercizio.. Si descriva l atlante stereografico sulla sfera S 2 (), con

Dettagli

DEFINIZIONE. u (u; v); α 3. v (u; v); α 3. ha rango 2 in ogni punto della parametrizzazione. DEFINIZIONE

DEFINIZIONE. u (u; v); α 3. v (u; v); α 3. ha rango 2 in ogni punto della parametrizzazione. DEFINIZIONE DEFINIZIONE Una superficie in R 3 è un applicazione α : U R 3, di classe almeno C. In realtà, tratteremo solamente superfici di classe C. Inoltre, U R deve essere un aperto, e α deve essere iniettiva.

Dettagli

Geometria BAER Canale A-K Esercizi 8

Geometria BAER Canale A-K Esercizi 8 Geometria BAER 6-7 Canale A-K Esercizi 8 Esercizio Si consideri il sottospazio (a) Si trovi una base ortonormale di U (b) Si trovi una base ortonormale di U U = L v =, v, v 3 = (c) Si scriva la matrice

Dettagli

n copie 1. ω è multilineare, ovvero è lineare in tutte le variabili. in altre parole:

n copie 1. ω è multilineare, ovvero è lineare in tutte le variabili. in altre parole: Lo spazio vettoriale delle forme multilineari antisimmetriche Sia V uno spazio vettoriale di dimensione n su un campo K, di caratteristica diversa da 2, ovvero tale che + 0 in K. Tale ipotesi è necessaria

Dettagli

Si consideri il moto di un punto materiale di massa m soggetto ad un poten- ziale centrale. 1 r

Si consideri il moto di un punto materiale di massa m soggetto ad un poten- ziale centrale. 1 r 1 3 o tutorato - FM - 4/3/017 Si consideri il moto di un punto materiale di massa m soggetto ad un poten- Esercizio 1 ziale centrale dove V 0, r 0 > 0. V ( r ) = V 0 ( 1 10 ( r0 r ) 10 1 6 ( r0 ) ) 6 r

Dettagli

Integrali Curvilinei

Integrali Curvilinei Integrali Curvilinei Gianluca Gorni 11 gennaio 2006 1 Lunghezza di una curva Definizione 1.1. Una curva N-dimensionale è una funzione definita su un intervallo (compatto, se non specificato altrimenti)

Dettagli

Alcune nozioni di calcolo differenziale

Alcune nozioni di calcolo differenziale Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio

Dettagli

MA - Soluzioni dell esame scritto del

MA - Soluzioni dell esame scritto del MA - Soluzioni dell esame scritto del 7-9-015 1. Si consideri un punto materiale di massa m vincolato a muoversi su una superficie ellissoidale di equazione (x + y ) + z = R, sottoposto all azione della

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = sin( x 2 + 2y 2 )

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = sin( x 2 + 2y 2 ) Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--9 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

Analisi a più variabili: Misura di Peano - Jordan ed Integrale di Riemann

Analisi a più variabili: Misura di Peano - Jordan ed Integrale di Riemann Analisi a più variabili: Misura di Peano - Jordan ed Integrale di Riemann 1 Definizione (Algebra): T P Ω è un'algebra se: A, B T A B T, Ω T A T A C T Se A i T A i T si dice σ-algebra Definizione (Misura):

Dettagli

SPAZI METRICI COMPLETI

SPAZI METRICI COMPLETI Capitolo 1 SPAZI METRICI COMPLETI Sia dato uno spazio metrico (X, d). Definizione 1.1 Una successione {x n } si dice successione di Cauchy se ε > 0 n 0 n, m n 0 = d(x n x m ) < ε (1.1) Esercizio 1.1 Dimostrare

Dettagli

Teorema di Gauss per il campo elettrico E

Teorema di Gauss per il campo elettrico E Teorema di Gauss per il campo elettrico E Dove vogliamo arrivare? Vogliamo arrivare al teorema di Gauss per il campo elettrico E : Φ E = q ε 0 Che dice fondamentalmente questo: il flusso attraverso una

Dettagli

AM : Tracce delle lezioni- II Settimana

AM : Tracce delle lezioni- II Settimana AM210 2012-13: Tracce delle lezioni- II Settimana SPAZI METRICI Sia X un insieme. Una d : X X : [0, + ) tale che (i) 0 d(u, v), u, v R n d(u, v) = 0 u = v (positivitá) (ii) d(u, v) = d(v, u) u, v R n (simmetria)

Dettagli

F x 1 = x 1 + x 2. 2x 1 x 2 Determinare la matrice C associata a F rispetto alla base canonica (equivalentemente,

F x 1 = x 1 + x 2. 2x 1 x 2 Determinare la matrice C associata a F rispetto alla base canonica (equivalentemente, Corso di Laurea in Fisica. Geometria 1. a.a. 2006-07. Gruppo B. Prof. P. Piazza Esonero del 1/12/06 con soluzione Esercizio. Spazio vettoriale R 2 con base canonica fissata e coordinate associate (x 1,

Dettagli

SOLUZIONI DEL COMPITO DEL 24/02/ l unica radice reale di f (X), l insieme delle radici di f (X) è [E : Q] [F : Q]

SOLUZIONI DEL COMPITO DEL 24/02/ l unica radice reale di f (X), l insieme delle radici di f (X) è [E : Q] [F : Q] SOLUIONI DEL COMPITO DEL 24/02/206 Esercizio Sia E il campo di spezzamento del polinomio X 3 6 X] e sia F = ( i, 3 ( Si calcoli il grado EF : ] del campo composto EF (2 Si esibisca una -base di EF (3 Si

Dettagli

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof FPodestà, aa 003-004 Sia V uno spazio vettoriale e sia f : V V una applicazione lineare una tale applicazione da uno spazio vettoriale in se stesso è chiamata

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del x 2 + y 2 sin x 2 + y 2. 2y x x 2 + y 2 dxdy

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del x 2 + y 2 sin x 2 + y 2. 2y x x 2 + y 2 dxdy Analisi Matematica II Corso di Ingegneria Gestionale Compito A del 4--9 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Qualche informazione su gruppi e anelli

Qualche informazione su gruppi e anelli Qualche informazione su gruppi e anelli 1. Gruppi e sottogruppi: prime proprietà Cominciamo subito scrivendo la definizione formale di gruppo. Definizione 0.1. Un gruppo G è un insieme non vuoto dotato

Dettagli

AM : Tracce delle lezioni- II Settimana

AM : Tracce delle lezioni- II Settimana AM2 2010-11: Tracce delle lezioni- II Settimana SPAZI METRICI Sia X un insieme. Una d : X X : [0, + ) tale che (i) 0 d(u, v), u, v R n d(u, v) = 0 u = v (positivitá) (ii) d(u, v) = d(v, u) u, v R n (simmetria)

Dettagli

14. Curve, campi conservativi e forme fifferenziali

14. Curve, campi conservativi e forme fifferenziali 120 14. Curve, campi conservativi e forme fifferenziali In questo capitolo discutiamo le nozioni di forza, lavoro, forma differenziale, campo, campo conservativo e potenziale, e la risolubilità dell equazione

Dettagli

Analisi Matematica 3, a.a Scritto del quinto appello, 11 settembre 2019 Testi 1

Analisi Matematica 3, a.a Scritto del quinto appello, 11 settembre 2019 Testi 1 Scritto del quinto appello, 11 settembre 019 Testi 1 1. a) Dato u L 1 R), sia vx) := u x); esprimere ˆv in termini di û. b) Caratterizzare le funzioni u L 1 R) tali che û è una funzione dispari a valori

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Teorema sulla condizione affinchè φ(t) = e λt sia una soluzione di un equazione differenziale lineare d ordine n a coefficienti costanti. Siano a 1, a

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale

Es. 1 Es. 2 Es. 3 Es. 4 Totale Es. Es. Es. Es. 4 Totale Analisi e Geometria Seconda prova in itinere Docente: luglio Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3 Analisi Matematica II Corso di Ingegneria Gestionale Compito A del 7-7-8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi)

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi) Analisi Matematica 3 Fisica, 8-9, M. Peloso e L. Vesely Prova scritta del 4 luglio 9 Breve svolgimento con alcuni conti omessi. a Dimostrare che l insieme G = { x, y R : x + x + log y = ye x} coincide

Dettagli

IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO)

IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO) IL CALCOLO VETTORIALE SUPPLEMENTO AL LIBRO CLAUDIO BONANNO 28-9 Contents. Campi di vettori e operatori 2. Il lavoro di un campo di vettori 5 2.. Lavoro e campi conservativi 6 2.2. Lavoro e campi irrotazionali:

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Interazioni Elettrodeboli. Lezione n. 7

Interazioni Elettrodeboli. Lezione n. 7 Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 7 24.10.2017 Tensore energia impulso Invarianza di gauge globale Quantizzazione del campo di Dirac Invarianza di gauge locale

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = 2 x 2 y 2 x y 2 + x y

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = 2 x 2 y 2 x y 2 + x y Analisi Matematica II Corso di Ingegneria Gestionale Compito A del -7- - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti. Recupero compitino di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 7/8. Prof. M. Bramanti Tema n 3 4 5 6 Tot. Cognome e nome in stampatello codice persona o n di matricola

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria: Elettronica. Corso di Geometria ed Algebra Docente F. Flamini

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria: Elettronica. Corso di Geometria ed Algebra Docente F. Flamini Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria: Elettronica Corso di Geometria ed Algebra Docente F. Flamini Capitolo IV - 3: Teorema Spettrale degli operatori autoaggiunti e Teorema

Dettagli

Corso di Laurea in Fisica. Geometria 1. a.a Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 17/11/06 B =

Corso di Laurea in Fisica. Geometria 1. a.a Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 17/11/06 B = Corso di Laurea in Fisica. Geometria. a.a. 26-7. Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 7//6 Soluzione esercizio. Sia B {e, e 2 } e sia B {v, v 2 }. La matrice B del cambiamento di base

Dettagli

Analisi Matematica III 16 Gennaio (x 1) 2 + y2

Analisi Matematica III 16 Gennaio (x 1) 2 + y2 Analisi Matematica III 6 Gennaio 7. ( punti) Calcolare il seguente integrale triplo ( e z + y(x ) + dove = {(x, y, z) R 3 : (x ) + y 4 + z }. y + (x ) + y 4 + z ) dxdz, Il dominio di integrazione è un

Dettagli

Matrici jordanizzabili

Matrici jordanizzabili Capitolo 17 Matrici jordanizzabili 17.1 Introduzione Abbiamo visto che non tutte le matrici sono simili a matrici diagonali. Mostreremo in questo capitolo che alcune matrici sono simili a matrici di Jordan.

Dettagli

Serie di Fourier. Tra queste funzioni definiamo un prodotto scalare nel seguente modo: date f, g V poniamo f (x) g (x) dx. f (x) [g (x) + h (x)] dx

Serie di Fourier. Tra queste funzioni definiamo un prodotto scalare nel seguente modo: date f, g V poniamo f (x) g (x) dx. f (x) [g (x) + h (x)] dx Serie di Fourier Indichiamo con V l insieme delle funzioni f : R R che siano periodiche di periodo π, si abbia cioè f ( + π) = f (), e che risultino integrabili nell intervallo [, π]. Tra queste funzioni

Dettagli

Esame di Complementi di Matematica Corso di Laurea Triennale in Scienza dei Materiali 1 Febbraio 2007

Esame di Complementi di Matematica Corso di Laurea Triennale in Scienza dei Materiali 1 Febbraio 2007 Esame di Complementi di Matematica Corso di Laurea Triennale in Scienza dei Materiali 1 Febbraio 27 Motivare le soluzioni. Risposte prive di spiegazioni non saranno considerate valide. Risolvere almeno

Dettagli

a.a Geometria 2. Esercizi 9. Interpolazione. Curve composte. 1/2, b 3, b = 1

a.a Geometria 2. Esercizi 9. Interpolazione. Curve composte. 1/2, b 3, b = 1 aa - Geometria Esercizi 9 Interpolazione Curve composte Siano dati i punti del piano b i Determinare una curva di grado che passa per tali punti per t / / ii Quante ce ne sono? iii Col metodo dei minimi

Dettagli

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova in itinere

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova in itinere Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 208/9 - Prova in itinere 208--2 La durata della prova è di due ore e mezzo. Le risposte devono essere

Dettagli