1 Combinazioni lineari.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1 Combinazioni lineari."

Transcript

1 Geometria Lingotto LeLing5: Spazi Vettoriali Ārgomenti svolti: Combinazioni lineari Sistemi lineari e combinazioni lineari Definizione di spazio vettoriale Ēsercizi consigliati: Geoling 6, Geoling 7 Combinazioni lineari Data una colonna a a m a m e un numero c possiamo moltiplicarli, cioe c a a m a m = c a c c c a m c a m Date due colonne A, B e due numeri c, c 2 possiamo combinarli linearmente, cioe c A + c 2 B = c a a m a m + c 2 b b 2 b 3 b m b m = c a + c 2 b c + c 2 b 2 c + c 2 b 3 c a m + c 2 b m c a m + c 2 b m Piu in generale dati dei numeri (chiamati coefficienti) c, c 2,, c n A, A 2,, A n possiamo scrivere la loro combinazione lineare: e le colonne Ingegneria dell Autoveicolo, LeLing5 Geometria

2 Geometria Lingotto Ovviamente C e una colonna Esempio La colonna D =, B = e C = C = c A + c 2 A c n A n i coefficienti della combinazione lineare e combinazione lineare delle colonne A = Infatti, D = 3A + 5B + 7C, dunque 3, 5 e 7 sono Possiamo allora chiederci quando una data colonna B e combinazione lineare delle colonne A, A 2,, A n Possiamo dunque pensare i coefficienti c, c 2,, c n come incognite x, x 2,, x n e la domanda e se esistono soluzioni del seguente problema: Ecco un esempio x A + x 2 A x n A n = B () Esempio 2 Vediamo il caso n =, cioe con una sola ( colonna ) A ( Dunque ) il problema e se esiste x tale che xa = B Allora se A = e B = tale x ( ) ( ) x non esiste poiche xa = per qualsiasi x Ecco altro esempio: Esempio 3 Vediamo il caso n = 2 e B =, la colonna zero Dunque il problema e se esistono x, x 2 tali che x A + x 2 A 2 = Certamente x = x 2 = e una soluzione Ecco un esempio piu concreto: 5 Esempio 4 Sia A =, A 2 =, A 3 = 3 7 l equazione () e x A + x 2 A 2 + x 3 A 3 = B, cioe x 3 + x x = 3 7 e sia B = ; 3 7 Ingegneria dell Autoveicolo, LeLing5 2 Geometria

3 Geometria Lingotto sommando si trova x + x x 3 2 x + x 2 ( ) + x 3 ( 2) x 3 + x x 3 2 e infine si arriva a un sistema non-omogeneo = 3 7 x + x x 3 2 = x + x 2 ( ) + x 3 ( 2) = 3 x 3 + x x 3 2 = 7 Dunque x, x 2, x 3 esistono se e solo se questo sistema e compatibile L ultimo esempio illustra il fatto che l equazione () nasconde un sistema lineare, ossia e un modo piu semplice di scrivere un sistema lineare di m equazioni e n incognite Ecco piu esplicitamente: scriviamo le colonne A i = Dunque l equazione () si scrive come: a i i n i x i = i= a m i a m i b b 2 b 3 b m b m a i i i a m i a m i Così si arriva al seguente sistema lineare: a x + a 2 x a n x n = b x + 2 x n x n = b 2 S = x + 2 x n x n = b 3 a m x + a m 2 x a m n x n = b m e B = b b 2 b 3 b m b m Proposizione 5 L equazione x A + x 2 A x n A n = B ha soluzione se e solo se il sistema lineare S e compatibile Ingegneria dell Autoveicolo, LeLing5 3 Geometria

4 Geometria Lingotto 2 Spazi Vettoriali Dall inizio del corso si e vista l importanza dell operazione + somma (tra righe, colonne, equazioni, etc,) e la moltiplicazione per un numero c (di solito chiamato coefficiente) Usando somme e coefficienti si arriva al concetto di combinazione lineare: c A + c 2 A c n A n La struttura matematica che permette di sommare e moltiplicare per numeri si chiama spazio vettoriale e si la denota con la lettera V Detto in parole semplice uno spazio vettoriale e un insieme V dove e possibile sommare due elementi e moltiplicare un elemento per un numero c, tale che una combinazione lineare c A + c 2 A c n A n tra numeri c i e elementi A i di V sia ancora un elemento di V Ecco qualche esempio conosciuto Esempio 2 L insieme R n = {(x, x 2,, x n ) : x i R} e uno spazio vettoriale Cioe, se A, A 2,, A n R n e c, c 2,, c n R allora la combinazione lineare c A + c 2 A c n A n appartiene a R n Esempio 22 L insieme C n = { a a n : a i R} delle colonne con n elementi e uno spazio vetoriale Cioe, se A, A 2,, A n C n e c, c 2,, c n R allora la combinazione lineare c A + c 2 A c n A n appartiene a C n Esempio 23 L insime R n = {(a a n ) : a i R} delle righe con n elementi e uno spazio vetoriale Cioe, se A, A 2,, A n R n e c, c 2,, c n R allora la combinazione lineare c A + c 2 A c n A n appartiene a R n 2 Definizione astratta di spazio vettoriale Dall inizio del corso la parola numero ha voluto significare numero reale Ma conosciamo, o abbiamo sentito parlare, di altri numeri, cioe complessi, razionali, etc Oggi il computer usa numeri binari, cioe + = Dunque esistono molti classi di numeri e allora ci puo capitare di trovare combinazioni lineari c A + c 2 A c n A n dove i coefficienti non sono piu numeri reali Un esempio di questo e il gioco All Lights Dunque, nella definizione generale di spazio vettoriale si deve precisare l insieme K dei numeri 2 in anticipo, ossia dove prendiamo i coefficienti c, c 2, Ecco la definizione 2 Un insieme di numeri K si chiama campo numerico Ingegneria dell Autoveicolo, LeLing5 4 Geometria

5 2 Definizione astratta di spazio vettoriale Geometria Lingotto Definizione 24 Un insieme V, un campo numerico K, una somma + tra elementi di V, cioe se A, B V allora A + B V, una moltiplicazione tra i numeri di K e gli elementi di V, cioe se c K e A V allora ca V e uno spazio vettoriale 3 se i seguenti otto assiomi sono soddisfatti: S Per ogni scelta di A, B, C V si ha: (A + B) + C = A + (B + C) S2 Per ogni scelta di A, B V si ha: A + B = B + A S3 Esiste un elemento O V tale che: A + O = A per ogni A V 4 S4 Per ogni A V esiste B tale che A + B = P Per ogni A V si ha A = A, dove K P2 Per ogni A V si ha (ab)a = a(ba) per ogni scelta di a, b K D Per ogni A V si ha (a + b)a = aa + ba per ogni scelta di a, b K D2 Per ogni a K si ha a(a + B) = aa + ab per ogni scelta di A, B V E importante sapere che lo scopo degli otto assiomi e quello di permetterci di lavorare facilmente con le combinazione lineari Ecco qualche esempio Esempio 25 L assioma S ci permette di non usare le parentesi, altrimenti non sarebbe chiaro se le seguenti combinazioni lineari sono uguali o pure no: (c A + c 2 A 2 ) + c 3 A 3? = c A + (c 2 A 2 + c 3 A 3 ); cioe serve un assioma per chiarire questo dubbio L assioma S2 serve per assicurare che l ordine della somma di una combinazione lineare non e importante, cioe da lo stesso risultato c A + c 2 A 2 + c 3 A 3 = c 3 A 3 + c A + c 2 A 2 L assioma S3 ci permette di mettere zero al posto di tutti i coefficienti e trovare quello che ci aspettiamo, cioe la combinazione banale o nulla come un elemento di V L assioma S4 ci permete di passare combinazioni lineari dal lato destro al sinistro (o vicerversa) di una equazione tra combinazioni lineari 3 Di solito si dice che V e uno K-spazio vettoriale 4 Attenzione: L elemento O V si chiama diversamente a seconda la natura dello spazio vettoriale, ad esempio, elemento neutro, vettore nullo, vettore zero, funzione nulla, vettore banale, colonna banale, riga banale,etc Ingegneria dell Autoveicolo, LeLing5 5 Geometria

6 Geometria Lingotto Insomma, ogni assioma coglie una proprieta (molto semplice) delle combinazioni lineari tra numeri (coefficienti) e vettori 5 3 Altri esempi di spazi vettoriali Abbiamo visto che le colonne e le righe (di n elementi) sono uno spazio vettoriale Ecco due generalizzazioni: R := {(a ) : a i R}, cioe l insieme delle righe con infiniti elementi Scrivendo a = (a i ) R per denotare una riga con infiniti elementi, la somma si definisce come (componente a componente) a + b := (a i + b i ) e il prodotto con un numero r R ra := (ra i ) a Analogamente C := { }, cioe l insieme delle colonne con infiniti elementi Scrivendo a = (a i ) C per denotare una colonna con infiniti elementi la somma si definisce come (componente a componente) a + b := (a i + b i ) e il prodotto con un numero r R ra := (ra i ) 3 Matrici e tensori: gli indici servono per sommare componente a componente Guardando il caso delle colonne e le righe ci si rende conto che la cosa importante e l indice, cioe per sommare e moltiplicare abbiamo sommato gli elementi con lo stesso sottoindice Dunque approfittando di questa osservazione si vede che l insieme M n,m delle matrici con n righe e m-colonne e uno spazio vettoriale Ecco come si definisce la somma e il prodotto: si usa l osservazione precedente, cioe se a, b M n,m sono due matrici la loro somma si definisce come a + b := (a i j + b i j ), dove a = (a i j ) e b = (b i j ) Se r e un numero allora ra := (ra i j ) I tensori si definiscono in modo analogo, cioe generalizzando l idea e usando 3,4,5,etc indici Ad esempio prendiamo lo spazio vettoriale dei tensori con tre indice (t ijk ) La somma si definisce come s + t := (s i j k + t i j k ) e se r e un numero allora rt := (rt ijk ) 5 Un vettore e (per definizione) un elemento di V, cioe se A V allora A e un vettore Ingegneria dell Autoveicolo, LeLing5 6 Geometria

7 32 Bits, bytes e computers, cioe spazi vettoriali su Z 2 Geometria Lingotto 32 Bits, bytes e computers, cioe spazi vettoriali su Z 2 La definizione di spazio vettoriale permette di usare numeri diversi dei numeri reali Il computer usa i numeri binari, cioe Z 2 = {, }, dove + =, etc Gli elementi di Z 2 = {, } si chiamano bits Possiamo allora definire colonne, righe, matrici, tensori, etc, con numeri in Z 2 Ad esempio, lo spazio R 8 = {(a a 4 a 5 a 6 a 7 a 8 ) : a i Z 2 } e forse lo spazio vettoriale piu importante della informatica E cosi importante che i suoi vettori hanno un nome particolare: si chiamano bytes Il famoso codice ASCII usa R 8 per rappresentare l alfabeto e i simboli piu usati del linguagio Ad esempio, la lettera a e il vettore (meglio dire byte ) ( ), la virgola, e ( ), etc Se uno interpreta i bytes come le cifre dei numeri scritti in base 2 allora e facile vedere che la lettera a corrisponde al numero 97 e la virgola, corresponde al numero 44 Allora e naturale aspettarsi che la lettera b corresponda al numero 98 Infatti e cosi, poiche la lettera b e rappresentata del byte ( ) Notare che 98 = Ingegneria dell Autoveicolo, LeLing5 7 Geometria

1 Definizione di sistema lineare omogeneo.

1 Definizione di sistema lineare omogeneo. Geometria Lingotto. LeLing1: Sistemi lineari omogenei. Ārgomenti svolti: Definizione di sistema lineare omogeneo. La matrice associata. Concetto di soluzione. Sistemi equivalenti. Operazioni elementari

Dettagli

LeLing9: Prodotto tra matrici.

LeLing9: Prodotto tra matrici. Geometria Lingotto LeLing9: Prodotto tra matrici Ārgomenti svolti: Prodotto tra matrici Dimostrazione del teorema del rango L algebra delle matrici quadrate: Il prodotto tra matrici non e commutativo Rotazioni

Dettagli

1 Indipendenza lineare e scrittura unica

1 Indipendenza lineare e scrittura unica Geometria Lingotto. LeLing7: Indipendenza lineare, basi e dimensione. Ārgomenti svolti: Indipendenza lineare e scrittura unica. Basi e dimensione. Coordinate. Ēsercizi consigliati: Geoling. Indipendenza

Dettagli

1 Riduzione per righe e matrici equivalenti per righe.

1 Riduzione per righe e matrici equivalenti per righe. Geometria Lingotto. LeLing2: Sistemi lineari omogenei. Ārgomenti svolti: Riduzione per righe e matrici equivalenti per righe. Forma echelon e sistemi gia risolti. Il metodo di Gauss-Jordan e la forma echelon.

Dettagli

1 Definizione di sistema lineare non-omogeneo.

1 Definizione di sistema lineare non-omogeneo. Geometria Lingotto LeLing: Sistemi lineari non-omogenei Ārgomenti svolti: Sistemi lineari non-omogenei Il metodo di Gauss-Jordan per sistemi non-omogenei Scrittura della soluzione generale Soluzione generale

Dettagli

LeLing12: Ancora sui determinanti.

LeLing12: Ancora sui determinanti. LeLing2: Ancora sui determinanti. Ārgomenti svolti: Sviluppi di Laplace. Prodotto vettoriale e generalizzazioni. Rango e determinante: i minori. Il polinomio caratteristico. Ēsercizi consigliati: Geoling

Dettagli

Inversa di una matrice

Inversa di una matrice Geometria Lingotto. LeLing: La matrice inversa. Ārgomenti svolti: Inversa di una matrice. Unicita e calcolo della inversa. La inversa di una matrice. Il gruppo delle matrici invertibili. Ēsercizi consigliati:

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Metodo di Gauss-Jordan 1

Metodo di Gauss-Jordan 1 Metodo di Gauss-Jordan 1 Nota Bene: Questo materiale non debe essere considerato come sostituto delle lezioni. Ārgomenti svolti: Riduzione per righe e matrici equivalenti per righe. Forma echelon e sistemi

Dettagli

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Politecnico di Torino. Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Sottospazi. Generatori. Confrontando sottospazi: intersezione.

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

I numeri sulla Mole Antonelliana.

I numeri sulla Mole Antonelliana. Ārgomenti svolti: Serie di numeri di Fibonacci. Potenza n-esima di matrici. Autovalori ed autovettori. Formula di Binet. LeLing: Fibonacci, Autovalori e Autovettori. Ēsercizi consigliati: Geoling 6. I

Dettagli

Risoluzione di ax 2 +bx+c = 0 quando a, b, c sono numeri complessi.

Risoluzione di ax 2 +bx+c = 0 quando a, b, c sono numeri complessi. LeLing14: Ancora numeri complessi e polinomi Ārgomenti svolti: Risoluzione di ax + bx + c = 0 quando a, b, c sono numeri complessi La equazione di Eulero: e i θ = cos(θ) + i sin(θ) La equazione x n = a,

Dettagli

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016.

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016. Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016 Di seguito si riporta il riassunto degli argomenti svolti; i riferimenti sono a parti del Cap8 Elementi di geometria e algebra lineare Par5

Dettagli

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione

Dettagli

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare.

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare. ALGEBRA COMPLESSA Nel corso dei secoli gli insiemi dei numeri sono andati man mano allargandosi per rispondere all esigenza di dare soluzione a equazioni e problemi sempre nuovi I numeri complessi sono

Dettagli

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice Pordenone Corso di Matematica e Statistica 3 Algebra delle UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica Università di Udine

Dettagli

LA CODIFICA DELL INFORMAZIONE

LA CODIFICA DELL INFORMAZIONE LA CODIFICA DELL INFORMAZIONE Prof. Enrico Terrone A. S: 20/2 Lo schema di Tanenbaum Il livello al quale ci interessiamo in questa lezione è il linguaggio macchina, l unico dove le informazioni e istruzioni

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

Matematica per Analisi dei Dati,

Matematica per Analisi dei Dati, Matematica per Analisi dei Dati, 230209 1 Spazio vettoriale R n Sia n un intero positivo fissato Lo spazio vettoriale R n e l insieme delle n ple ordinate di numeri reali, che rappresenteremo sempre come

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

Note sui sistemi lineari

Note sui sistemi lineari Note sui sistemi lineari Sia K un campo e siano m e n due numeri interi positivi. Sia A M(m n, K) e sia b K m. Consideriamo il sistema lineare Ax = b nell incognita x K n (o, se preferite, nelle incognite

Dettagli

Esercitazioni di Algebra e Geometria

Esercitazioni di Algebra e Geometria Esercitazioni di Algebra e Geometria Anno Accademico 2010 2011 Dott.ssa Elisa Pelizzari e-mail elisa.peli@libero.it Esercitazioni: lunedì 14.30 16.30 venerdì 14.30 16.30 Ricevimento studenti: venerdì 13.30

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque

Dettagli

ESERCIZI SULLE MATRICI

ESERCIZI SULLE MATRICI ESERCIZI SULLE MATRICI Consideriamo il sistema lineare a, x + a, x + + a,n x n = b a, x + a, x + + a,n x n = b a m, x + a m, x + + a m,n x n = b m di m equazioni in n incognite che ha a, a,n A = a m, a

Dettagli

Note per il corso di Geometria e algebra lineare 2009-10 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni

Note per il corso di Geometria e algebra lineare 2009-10 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Note per il corso di Geometria e algebra lineare 009-0 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Spazi di n-uple e matrici. I prodotti cartesiani RR R e RRR R 3, costituiti dalle coppie

Dettagli

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA Foglio 4 Esempio. Sia V = P 5 (R) lo spazio dei polinomi di grado strettamente minore di 5. Si considerino i seguenti sottoinsiemi di V (i) Dimostrare

Dettagli

1. Un sistema di m equazioni lineari in n incognite x 1,... x n aventi tutte termine noto nullo A =...

1. Un sistema di m equazioni lineari in n incognite x 1,... x n aventi tutte termine noto nullo A =... Algebra/ Algebra Lineare, 230207 1 Un sistema di m equazioni lineari in n incognite x 1, x n aventi tutte termine noto nullo a i1 x 1 + a i2 x 2 + + a in x n = 0, i = 1,, m si dice omogeneo; ponendo x

Dettagli

A m n B n p = P m p. 0 1 a b c d. a b. 0 a 0 c Il risultato e lo stesso solo nel caso in cui c = 0 e a = d.

A m n B n p = P m p. 0 1 a b c d. a b. 0 a 0 c Il risultato e lo stesso solo nel caso in cui c = 0 e a = d. Matematica II, 220404 Il prodotto di matrici e un operazione parziale che prende in entrata una matrice A ed una matrice B, tali che il numero delle colonne di A sia uguale al numero delle righe di B,

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

Rappresentazione dell Informazione

Rappresentazione dell Informazione Rappresentazione dell Informazione Rappresentazione delle informazioni in codice binario Caratteri Naturali e Reali positivi Interi Razionali Rappresentazione del testo Una stringa di bit per ogni simbolo

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

Esercitazioni di Algebra e Geometria

Esercitazioni di Algebra e Geometria Esercitazioni di Algebra e Geometria Anno Accademico 2011 2012 Dott.ssa Elisa Pelizzari e-mail elisa.peli@libero.it Esercitazioni: lunedì 14.30 16.30 venerdì 14.30 16.30 Ricevimento studenti: venerdì 13.00

Dettagli

Piccolo teorema di Fermat

Piccolo teorema di Fermat Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod p). Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari

Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari In questa lezione ci dedicheremo a studiare a fondo quali proprietà della matrice dei coefficienti di un sistema (e della

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Il determinante. Calcolo del determinante di matrici particolari. matrici di ordine 2: sia. a11 a A = allora

Il determinante. Calcolo del determinante di matrici particolari. matrici di ordine 2: sia. a11 a A = allora Calcolo del determinante di matrici particolari matrici di ordine 2: sia allora Esempio. [ ] a11 a A = 12, a 21 a 22 det A = a 11 a 22 a 21 a 12. Calcolare il determinante di [ ] 1 2 A =. 3 4 matrici di

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2

Dettagli

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma.

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma. Matematica II, 20.2.. Lunghezza di un vettore nel piano Consideriamo il piano vettoriale geometrico P O. Scelto un segmento come unita, possiamo parlare di lunghezza di un vettore v P O rispetto a tale

Dettagli

i) la somma e il prodotto godano delle proprietà associativa, commutativa e distributiva;

i) la somma e il prodotto godano delle proprietà associativa, commutativa e distributiva; 1 Spazi vettoriali 11 Definizioni ed assiomi Definizione 11 Un campo è un insieme K dotato di una operazione somma K K K, (x, y) x + y e di una operazione prodotto K K K, (x, y) xy tali che i) la somma

Dettagli

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3)

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Nicola Durante 2011-12 Abstract 1 Insiemi numerici (Lezione del 5.10.11) 1.1 Cenni di teoria degli insiemi Richiamiamo brevemente alcuni simboli usati in

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Matrici. Prof. Walter Pugliese

Matrici. Prof. Walter Pugliese Matrici Prof. Walter Pugliese Le matrici Una matrice è un insieme di numeri reali organizzati in righe e colonne. Se n è il numero delle righe e m e il numero delle colonne si dice che la matrice è di

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

dipendenti. Cosa possiamo dire sulla dimensione di V?

dipendenti. Cosa possiamo dire sulla dimensione di V? Esercizi Esercizi. In uno spazio vettoriale V ci sono tre vettori v, v 2, v linearmente indipendenti. Cosa possiamo dire sulla dimensione di V? 2. In uno spazio vettoriale V ci sono tre vettori v, v 2,

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

La codifica dei numeri

La codifica dei numeri La codifica dei numeri La rappresentazione dei numeri con il sistema decimale può essere utilizzata come spunto per definire un metodo di codifica dei numeri all interno degli elaboratori: la sequenza

Dettagli

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Capitolo 1 Insiemistica Prerequisiti Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Obiettivi Sapere utilizzare opportunamente le diverse rappresentazioni insiemistiche Sapere

Dettagli

Operazioni tra matrici e n-uple

Operazioni tra matrici e n-uple CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,

Dettagli

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa

Dettagli

Fondamenti di ALGEBRA LINEARE E GEOMETRIA

Fondamenti di ALGEBRA LINEARE E GEOMETRIA Fondamenti di ALGEBRA LINEARE E GEOMETRIA Corso di laurea in Ingegneria Gestionale 2011-2012 Michel Lavrauw Dipartimento di Tecnica e Gestione dei Sistemi Industriali Università di Padova Lezione 19 Capitolo

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5. SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga

Dettagli

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati. LEZIONE 2 2 Sistemi di equazioni lineari Definizione 2 Un equazione lineare nelle n incognite x, x 2,, x n a coefficienti reali, è un equazione della forma (2 a x + a 2 x 2 + + a n x n = b, ove a j, b

Dettagli

Applicazioni eliminazione di Gauss

Applicazioni eliminazione di Gauss Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari 1 Sistemi di equazioni lineari 1.1 Determinante di matrici quadrate Ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante della matrice

Dettagli

Il teorema di Rouché-Capelli

Il teorema di Rouché-Capelli Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un

Dettagli

Dipendenza e indipendenza lineare

Dipendenza e indipendenza lineare Dipendenza e indipendenza lineare Luciano Battaia Questi appunti () ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia campus

Dettagli

LeLing13: Polinomi e numeri complessi. Divisione di polinomi. L algoritmo di Euclide e le radici multiple. Ēsercizi consigliati: Geoling 15.

LeLing13: Polinomi e numeri complessi. Divisione di polinomi. L algoritmo di Euclide e le radici multiple. Ēsercizi consigliati: Geoling 15. LeLing13: Polinomi e numeri complessi. Ārgomenti svolti: Polinomi e non polinomi. Le radice della equazione x + 1 = 0: i numeri complessi. L inverso 1 e il coniugato. z Radici di polinomi. Radici coniugate.

Dettagli

La codifica. dell informazione

La codifica. dell informazione 00010010101001110101010100010110101000011100010111 00010010101001110101010100010110101000011100010111 La codifica 00010010101001110101010100010110101000011100010111 dell informazione 00010010101001110101010100010110101000011100010111

Dettagli

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1.

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Le matrici Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Siano m, n N\{0}. Una matrice m n a coefficienti in K è una tabella di m n elementi di K disposti

Dettagli

CODICI CICLICI. TEORIA DEI CODICI CORSO DI GRAFI E COMBINATORIA A.A Prof.ssa Bambina Larato - Politecnico di Bari

CODICI CICLICI. TEORIA DEI CODICI CORSO DI GRAFI E COMBINATORIA A.A Prof.ssa Bambina Larato - Politecnico di Bari CODICI CICLICI TEORIA DEI CODICI CORSO DI GRAFI E COMBINATORIA A.A. 2011-2012 Prof.ssa Bambina Larato - larato@poliba.it Politecnico di Bari CODICI CICLICI Qualche richiamo Sia F=GF(q) e sia F[x] l insieme

Dettagli

ESERCIZI sui VETTORI

ESERCIZI sui VETTORI ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di

Dettagli

Somma di numeri binari

Somma di numeri binari Fondamenti di Informatica: Codifica Binaria dell Informazione 1 Somma di numeri binari 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 10 Esempio: 10011011 + 00101011 = 11000110 in base e una base Fondamenti di

Dettagli

SISTEMI LINEARI, METODO DI GAUSS

SISTEMI LINEARI, METODO DI GAUSS SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti

Dettagli

Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006

Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 Congruenze Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 1 Il resto nella divisione tra interi Consideriamo i numeri naturali 0, 1, 2, 3,... ed effettuiamone la divisione per 3, indicando il resto:

Dettagli

Sistemi di equazioni differenziali

Sistemi di equazioni differenziali Capitolo 5 Sistemi di equazioni differenziali Molti problemi sono governati non da una singola equazione differenziale, ma da un sistema di più equazioni. Ad esempio questo succede se si vuole descrivere

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

GLI INSIEMI PROF. WALTER PUGLIESE

GLI INSIEMI PROF. WALTER PUGLIESE GLI INSIEMI PROF. WALTER PUGLIESE INSIEME DEFINIZIONE UN RAGGRUPPAMENTO DI OGGETTI RAPPRESENTA UN INSIEME IN SENSO MATEMATICO SE ESISTE UN CRITERIO OGGETTIVO CHE PERMETTE DI DECIDERE UNIVOCAMENTE SE UN

Dettagli

Lezioni di Algebra Lineare. II. Aritmetica delle matrici e eliminazione di Gauss. versione ottobre 2008

Lezioni di Algebra Lineare. II. Aritmetica delle matrici e eliminazione di Gauss. versione ottobre 2008 versione ottobre 2008 Lezioni di Algebra Lineare II. Aritmetica delle matrici e eliminazione di Gauss Contenuto. 1. Somma di matrici e prodotto di una matrice per uno scalare 2. Prodotto di matrici righe

Dettagli

OPERAZIONI IN Q = + = = = =

OPERAZIONI IN Q = + = = = = OPERAZIONI IN Q A proposito delle operazioni tra numeri razionali, affinché il passaggio da N a vero e proprio ampliamento è necessario che avvengano tre cose: Q risulti un ) le proprietà di ciascuna operazione

Dettagli

ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 2015/2016 docente: Elena Polastri,

ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 2015/2016 docente: Elena Polastri, ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 05/06 docente: Elena Polastri, plslne@unife.it Esercizi 3: SPAZI VETTORIALI e MATRICI Combinazioni lineari di vettori.. Scrivere il vettore

Dettagli

Spazi Vettoriali ed Applicazioni Lineari

Spazi Vettoriali ed Applicazioni Lineari Spazi Vettoriali ed Applicazioni Lineari 1. Sottospazi Definizione. Sia V uno spazio vettoriale sul corpo C. Un sottoinsieme non vuoto W di V è un sottospazio vettoriale di V se è chiuso rispetto alla

Dettagli

Dipendenza e indipendenza lineare (senza il concetto di rango)

Dipendenza e indipendenza lineare (senza il concetto di rango) CAPITOLO 5 Dipendenza e indipendenza lineare (senza il concetto di rango) Esercizio 5.1. Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Esercizio 5.2. Stabilire se i vettori

Dettagli

Numeri di Fibonacci, Autovalori ed Autovettori.

Numeri di Fibonacci, Autovalori ed Autovettori. Numeri di Fibonacci, Autovalori ed Autovettori. I numeri sulla Mole Antonelliana. Ecco i numeri sulla Mole:,,, 3,, 8, 3,, 34,, 89, 44, 33, 377, 6, 987, dove ogni nuovo numero rappresenta la somma dei due

Dettagli

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1 Introduzione Nella computer grafica, gli oggetti geometrici sono definiti a partire da un certo numero di elementi di base chiamati primitive grafiche Possono essere punti, rette e segmenti, curve, superfici

Dettagli

Rappresentazione dei numeri interi in un calcolatore

Rappresentazione dei numeri interi in un calcolatore Corso di Calcolatori Elettronici I A.A. 2012-2013 Rappresentazione dei numeri interi in un calcolatore Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica

Dettagli

Informatica di Base - 6 c.f.u.

Informatica di Base - 6 c.f.u. Università degli Studi di Palermo Dipartimento di Ingegneria Informatica Informatica di Base - 6 c.f.u. Anno Accademico 27/28 Docente: ing. Salvatore Sorce Rappresentazione delle informazioni Sistemi di

Dettagli

1 Forme quadratiche 1. 2 Segno di una forma quadratica Il metodo dei minori principali Soluzioni degli esercizi 7.

1 Forme quadratiche 1. 2 Segno di una forma quadratica Il metodo dei minori principali Soluzioni degli esercizi 7. 1 FORME QUADRATICHE 1 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli esercizi

Dettagli

Introduzione all algebra delle matrici. Appunti a cura di Lara Ercoli

Introduzione all algebra delle matrici. Appunti a cura di Lara Ercoli Introduzione all algebra delle matrici ppunti a cura di Lara Ercoli Indice Definizioni 3. Matrici particolari............................ 4 2 Operazioni con le matrici 8 2. Somma di matrici.............................

Dettagli

Cap. 2 - Rappresentazione in base 2 dei numeri interi

Cap. 2 - Rappresentazione in base 2 dei numeri interi Cap. 2 - Rappresentazione in base 2 dei numeri interi 2.1 I NUMERI INTERI RELATIVI I numeri relativi sono numeri con il segno: essi possono essere quindi positivi e negativi. Si dividono in due categorie:

Dettagli

Def. 1. Si chiamano operazioni elementari sulle righe di A le tre seguenti operazioni:

Def. 1. Si chiamano operazioni elementari sulle righe di A le tre seguenti operazioni: Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G.Parmeggiani LEZIONE 5 Operazioni elementari sulle righe di una matrice Sia A una matrice m n. Def. 1. Si chiamano operazioni elementari sulle righe

Dettagli

Somma diretta di sottospazi vettoriali

Somma diretta di sottospazi vettoriali Capitolo 8 Somma diretta di sottospazi vettoriali 8.1 Introduzione Introduciamo un caso particolare di somma di due sottospazi vettoriali: la somma diretta. Anche questo argomento è stato visto nel corso

Dettagli

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1 . Scimone a.s 1997 98 pag 1 TEORI DELLE MTRICI Dato un campo K, definiamo matrice ad elementi in K di tipo (m, n) un insieme di numeri ordinati secondo righe e colonne in una tabella rettangolare del tipo

Dettagli

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im APPUNTI ed ESERCIZI su matrici, rango e metodo di eliminazione di Gauss Corso di Laurea in Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 23 Aprile 2010 Matrici, rango e metodo

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli