Matrice incidenza =

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Matrice incidenza ="

Transcript

1 Matrice incidenza La matrice d'incidenza completa Ac di un grafo orientato G con N nodi ed R rami, è una matrice rettangolare di N righe ed R colonne che si costruisce come segue: si numerano con n=1,2,...,n tutti i nodi e con r=1,2,...,r tutti i rami. Gli elementi generici anr ( n = 1, 2,..., N),( r = 1, 2,..., R) della matrice Ac hanno valore +1 se il ramo r ha verso uscente dal nodo n, -1 se il ramo r ha verso entrante nel ramo r, 0 se il ramo r non interessa il nodo n. Esempio SMSMI#110#230#1#6C#130#150#1#0R#210#170#1#2L#230#150#1#0C#310#170#1#2R#1 R SMSMW#300#130#1#220#210W#300#130#1#140#130W#220#130#1#22 6 I g 1 C 4 2 L R 2 C A c nodi rami =

2 La matrice di incidenza completa definisce matematicamente la struttura del grafo orientato ad esso associata. In Ac ciascuna colonna contiene solo due elementi non nulli: un +1 e un -1. Ogni riga di Ac può essere ottenuta come somma, cambiata di segno, delle altre righe. Quindi rank( A ) N 1. Se si sceglie un nodo di riferimento e si elimina la corrispondente riga da Ac si ottiene la Matrice incidenza. Per esempio, scegliendo come nodo di riferimento il nodo 4, si ha la matrice incidenza: c A = Si può dimostrare che: un albero del grafo ha matrice incidenza (quadrata con N-1 righe ed N-1 colonne) con determinante pari a +1 o -1. Di conseguenza: rank( A ) = N 1. t il numero di alberi possibili del grafo è uguale a: n a = det ( ) AA. 2

3 Introduciamo nella rete di bipoli che vogliamo studiare i vettori di tensione v e di corrente i come vettori colonna di R righe, aventi come elementi le tensioni vk (k = 1, 2,..., R) e le correnti ik (k = 1,2,...,R) dei rami assunte con il loro verso: v v v =, i = vl i i i l La KCL fa sì che il prodotto della matrice d'incidenza A per il vettore delle correnti i è nullo: Ai = 0 Questa relazione matriciale corrisponde ad (N - 1) equazioni scalari e sintetizza le equazioni di Kirchhoff delle correnti agli N - 1 nodi indipendenti del grafo. 3

4 Nell' esempio considerato: corrisponde alle tre equazioni: i1 i i = i i 5 i 6 i1 + i4 + i6 = i 2 i + 4 i = 5 i 3 i 5 i = Queste equazioni non sono altro che le equazioni di Kirchhoff delle correnti nei nodi indipendenti 1, 2 e 3. La matrice di incidenza A consente quindi di scrivere in forma matriciale tutte le equazioni di Kirchhoff indipendenti delle correnti. 4

5 La matrice d'incidenza permette di scrivere anche le equazioni di Kirchhoff indipendenti delle tensioni. Per far questo introduciamo un nuovo vettore vn che chiameremo vettore delle tensioni ai nodi. Tale vettore è una matrice colonna con un numero di righe pari al numero dei nodi indipendenti N - 1 ed avente come elementi le N - 1 tensioni ai nodi vk 0 tra il nodo k (k = 1, 2,..., N - 1) ed il nodo di riferimento: v n v10 v 20 = vn 1,0 Introducendo la matrice trasposta A t ottenuta dalla matrice di incidenza A scambiando le righe con le colonne, si ha che il prodotto di tale matrice per il vettore vn delle tensioni ai nodi determina il vettore v delle tensioni sui rami della rete: A t v = n v Tale relazione matriciale corrisponde ad R equazioni scalari. Eliminando da queste equazioni le N - 1 tensioni ai nodi, si ottengono le R - N + 1 equazioni di Kirchhoff indipendenti delle tensioni. 5

6 Nell'esempio considerato, si ha: a cui corrispondono le sei equazioni: v v v 2 v10 v3 v 20 = v 4 v 30 v5 6 v10 = v1 v20 = v2 v30 = v3 v v = v v v = v v v = v Eliminando da queste equazioni le 3 tensioni ai nodi, si ottengono le 3 equazioni di Kirchhoff indipendenti per le tensioni: v + v = v v + v = v v + v = v

7 Teorema di Tellegen Consideriamo nuovamente l equazione: A t v = n v Il trasposto di questa equazione è uguale a: t t v = ( v ) A n moltiplichiamo per il vettore i delle correnti di ramo i due membri dell equazione: Ricordando che: Ai = t t v i = ( v ) Ai 0, si ottiene: n t v i = 0 Quest ultima equazione esprime il Teorema di Tellegen che ha trovato notevoli applicazioni nella teoria delle reti. In particolare, secondo la convenzione di segno utilizzata, in una determinata rete la quantità: t v i = v i + v i + + v i l l esprime la potenza istantanea entrante in tutti i bipoli della rete. Il Teorema di Tellegen assicura l'annullarsi di questa quantità ed esprime il principio di conservazione delle potenze istantanee. 7

8 Relazioni costitutive Ciascun componente bipolare impone una relazione tra la tensione vk e la corrente ik del suo ramo. La forma più generale di questa relazione è: ykvk + zkik = wk che dipende dalle tre costanti yk, zk, w k. Esempi: Resistore: v R i = 0 quindi : y = 1, z = R, w = 0 k k k k k k k Conduttore: G v i = 0 quindi : y = G, z = 1, w = 0 k k k k k k k Generatore indipendente di tensione: v = E quindi : y = 1, z = 0, w = E k k k k Generatore indipendente di corrente: i = I quindi : y = 0, z = 1, w = I k k k k 8

9 Induttore (nel dominio dei fasori): V jωl I = 0 quindi : y = 1, z = jωl, w = 0 k k k k k k k Condensatore (nel dominio dei fasori): jωc V I = 0 quindi : y = jωc, z = 1, w = 0 k k k k k k k Nel caso di componenti multipolari la relazione costitutiva è una relazione matriciale del tipo: YV + ZI = W 9

10 Esempi: Transconduttanza (generatore di corrente controllato in tensione): SMSMJ#280#110#1#2 W#210#110#1#180#110 W#210#170#1#180#170 W#320#110#1#280 v j + - i j i k + i j = 0 v k - i k = g v v j 1 0 i j 0 g 0 v + k 0 1 i = k 0 cioè : Y = g 0 Z = = 0 1 W 0 10

11 Generatore di tensione controllato in tensione: SMSMW#210#110#1#180#110 W#210#170#1#180#170 W#320#110#1#280#110 W#320#17 v j + - i j i k + i j = 0 v k - v k = k v v j 1 0 i j 0 k 1 v + k 0 0 i = k 0 cioè : Y = = = k Z W 11

12 Nella tabella seguente, altri esempi: 12

13 Considerando tutti i componenti di un circuito con R rami, le relazioni costitutive portano all equazione matriciale (corrispondente ad R equazioni scalari): YV + ZI = W dove V e I sono i vettori delle tensioni e delle correnti di ramo. 13

14 Metodo del Tableau Ponendo in un unico sistema le relazioni che esprimono le KCL, le KVL e le relazioni costitutive: KVL R. C. KCL si ha : t V A V = 0 YV + ZI = W AI = 0 t 1 0 -A V 0 = Y Z 0 I W 0 A 0 V n 0 Il sistema è costituito da 2R+N-1 equazioni in 2R+N-1 incognite. A questa formulazione delle equazioni di un circuito si dà il nome di Tableau. n 14

15 Esempio: 15

16 Esempio: 16

17 Metodo ai nodi Se si fa l ipotesi di avere tutti componenti con rappresentazione ammettenza e solo gen. indipendenti di corrente, le relazioni costitutive possono essere espresse nella forma: e, poiché V = A t V n, si ha: sostituendo in AI = e quindi: 0, si ha: I = YV + J I = YA t V + J n t ( n ) A YA V + J = 0 cioè : t AYA V n = -AJ Yn V n = J n questa è la classica rappresentazione ai nodi valida per componenti con rappresentazione ammettenza e gen. ind. di corrente. In particolare Y n è la matrice delle ammettenze della rete (di dimensioni N-1 x N-1) e J n è il vettore dei generatori indipendenti di corrente. 17

18 Metodo ai nodi modificato (MNA) Per tener conto dei componenti che non hanno rappresentazione ammettenza (es. generatori di tensione, resistori, induttori, gen. controllati, ecc.) si aumenta l ordine del sistema aggiungendo equazioni e incognite. In sintesi: A partire da una netlist, cioè da un elenco dei componenti presenti con indicazione dei nodi a cui sono collegati, si vuol rappresentare il circuito con un sistema lineare del tipo: Tx = w nel dominio dei fasori si vuole che T sia esprimibile nella forma: T = G + jωb Si contano i nodi indipendenti (n=n-1) e si dimensiona T ad n x n e w ad n Si esamina la netlist componente per componente: I componenti con rapp. Ammettenza vengono inseriti in T con le regole note (matrice ammettenza ai nodi). Per i componenti con rapp. Impedenza, si aumenta l ordine di T e w (si aggiunge a T una riga ed una colonna) e si aggiunge un incognita I. Vedi tabella seguente. 18

19 19

20 20

21 Esempio: NETLIST J G G G G G OP OP

Cosa c è nell unità. Matrice di incidenza Teorema di Tellegen

Cosa c è nell unità. Matrice di incidenza Teorema di Tellegen 1 Cosa c è nell unità Introduzione ai metodi generali Prime definizioni della Teoria dei Grafi Definizioni Cammino e grafi connessi Maglie Taglio Albero e coalbero Grafi orientati Metodo del Tableau sparso

Dettagli

Lez.11 Formulazione matriciale. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 11 Pagina 1

Lez.11 Formulazione matriciale. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 11 Pagina 1 Lez.11 Formulazione matriciale Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 11 Pagina 1 Formulazione matriciale delle leggi di Kirchhoff Come ben sappiamo,

Dettagli

Metodi generali per l analisi dei circuiti

Metodi generali per l analisi dei circuiti Metodi generali per l analisi dei circuiti 128 I metodi introdotti per la scrittura sistematica delle equazioni indipendenti di Kirchhoff hanno portato all introduzione delle matrici topologiche [A] e

Dettagli

Teoria dei Circuiti. Corso di. di analisi dei circuiti. Metodi sistematici. Università degli Studi di Pavia. Facoltà di Ingegneria

Teoria dei Circuiti. Corso di. di analisi dei circuiti. Metodi sistematici. Università degli Studi di Pavia. Facoltà di Ingegneria Università degli Studi di Pavia Facoltà di Ingegneria Corso di Teoria dei Circuiti di analisi dei circuiti METODO DEI POTENZILI DI NODO Si scelgano come incognite non le l tensioni di lato (legate da [M][]=),

Dettagli

D. METODI DI ANALISI CIRCUITALE

D. METODI DI ANALISI CIRCUITALE D. METODI DI ANALISI CIRCUITALE Generalità (problema fondamentale della Teoria dei Circuiti) Schema concettuale dell analisi circuitale Metodo basato sui Tagli (equilibrio delle correnti) Metodo dei Nodi

Dettagli

Il modello circuitale. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 6 Pagina 1

Il modello circuitale. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 6 Pagina 1 Lez.6 Il modello circuitale Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 6 Pagina 1 Legge di Kirchhoff Legge di Kirchhoff delle correnti per gli insiemi

Dettagli

il determinante che si ottiene da A, sopprimendo la i - esima riga e la j - esima colonna. Si definisce complemento algebrico dell'elemento a ij

il determinante che si ottiene da A, sopprimendo la i - esima riga e la j - esima colonna. Si definisce complemento algebrico dell'elemento a ij Determinanti Sia data la matrice quadrata a... a n a a n =...... a... a n nn Chiamiamo determinante di il numero det o che ad essa viene associato. det = a a... a... a... a n n n... a nn Un generico elemento

Dettagli

Reti elettriche: definizioni

Reti elettriche: definizioni TEORIA DEI CIRCUITI Reti elettriche: definizioni La teoria dei circuiti è basata sul concetto di modello. Si analizza un sistema fisico complesso in termini di interconnessione di elementi idealizzati.

Dettagli

Introduzione ai circuiti

Introduzione ai circuiti università DEGLI STUDI DI NAPOLI FEDERICO II Facoltà di Ingegneria Registro delle Lezioni dell insegnamento di Introduzione ai circuiti Corso di laurea in Ingegneria delle Telecomunicazioni Dettate dal

Dettagli

Insegnamento Introduzione ai circuiti. Argomento: Introduzione al corso e sua organizzazione. Note:

Insegnamento Introduzione ai circuiti. Argomento: Introduzione al corso e sua organizzazione. Note: data 20 settembre 2017 data 22 settembre 2017 data 27 settembre 2017 data 29 settembre 2017 Introduzione al corso e sua organizzazione didattica, sussidi didattici. Interazione elettromagnetica, sistemi

Dettagli

VETTORI E MATRICI. Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI

VETTORI E MATRICI. Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 I VETTRORI E MATRICI (RICHIAMI) Ad ogni matrice quadrata a coefficienti reali è possibile associare un numero reale, detto determinante, calcolato

Dettagli

università DEGLI STUDI DI NAPOLI FEDERICO II

università DEGLI STUDI DI NAPOLI FEDERICO II università DEGLI STUDI DI NAPOLI FEDERICO II Facoltà o Scuola di INGEGNERIA Registro delle Lezioni del Corso di Introduzione ai Circuiti C.d.L. in Ingegneria dell'automazione e D.d.L. in Ingegneria informatica

Dettagli

SMSMW#300#130#1#220#210W#300#130#1#140#130W#220#13

SMSMW#300#130#1#220#210W#300#130#1#140#130W#220#13 Marice icideza La marice d'icideza complea A c di u grafo orieao G co N odi ed R rami, è ua marice reagolare di N righe ed R coloe che si cosruisce come segue: si umerao co =1,2,...,N ui i odi e co r=1,2,...,r

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001 Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. / Esame del gennaio Soluzione a cura di: Bellini Matteo Es. n Data la rete in figura determinare tutte le correnti

Dettagli

università DEGLI STUDI DI NAPOLI FEDERICO II

università DEGLI STUDI DI NAPOLI FEDERICO II università DEGLI STUDI DI NAPOLI FEDERICO II Facoltà di Ingegneria Registro delle Lezioni dell insegnamento di: Introduzione ai Circuiti Corso di Laurea in Ingegneria dell'automazione Corso di Laurea in

Dettagli

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare.

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare. ALGEBRA COMPLESSA Nel corso dei secoli gli insiemi dei numeri sono andati man mano allargandosi per rispondere all esigenza di dare soluzione a equazioni e problemi sempre nuovi I numeri complessi sono

Dettagli

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II Mod. 2 UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II REGISTRO DEGLI INCARICHI DIDATTICI conferiti ai sensi del Regolamento per il conferimento di incarichi didattici e per la determinazione della retribuzione

Dettagli

università DEGLI STUDI DI NAPOLI FEDERICO II

università DEGLI STUDI DI NAPOLI FEDERICO II università DEGLI STUDI DI NAPOLI FEDERICO II Facoltà o Scuola di INGEGNERIA Registro delle Lezioni del Corso di Introduzione ai Circuiti C.d.L. in Ingegneria dell'automazione e D.d.L. in Ingegneria informatica

Dettagli

Elettrotecnica - Ing. Biomedica Ing. Elettronica Informatica e Telecomunicazioni (V. O.) A.A. 2013/14 Prova n luglio 2014.

Elettrotecnica - Ing. Biomedica Ing. Elettronica Informatica e Telecomunicazioni (V. O.) A.A. 2013/14 Prova n luglio 2014. ognome Nome Matricola Firma Parti svolte: E E E D Esercizio I I R 6 R 5 D 6 G 0 g Supponendo noti i parametri dei componenti e la matrice di conduttanza del tripolo, illustrare il procedimento di risoluzione

Dettagli

Rappresentazione doppi bipoli. Lezione 18 2

Rappresentazione doppi bipoli. Lezione 18 2 Lezione 8 Rappresentazione doppi bipoli Lezione 8 2 Introduzione Lezione 8 3 Cosa c è nell Unità 5 In questa sezione si affronteranno Introduzione alle rappresentazioni dei doppi bipoli Le sei rappresentazioni

Dettagli

Esercizi sui circuiti in fase transitoria

Esercizi sui circuiti in fase transitoria Esercizi sui circuiti in fase transitoria Esercizio. Determinare la costante di tempo del circuito di figura per k =.5 Ω,.5 Ω, Ω. τ = ms,.5 ms, 6 ms. Ω Ω.5 Ω i [A] k i [V] mh V Il circuito contiene un

Dettagli

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II Mod. 1 UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II REGISTRO DELLE LEZIONI Anno accademico 2016-2017 Insegnamento: Introduzione ai circuiti Prof. Massimiliano de Magistris DIPARTIMENTO di Ingegneria Elettrica

Dettagli

Esercizi sui circuiti in fase transitoria

Esercizi sui circuiti in fase transitoria Esercizi sui circuiti in fase transitoria v 5 mh 6 Ω Ω µf Ω Esercizio. alcolare la tensione v un i- stante dopo la chiusura dell interruttore T (t =). Si supponga che il circuito sia in regime stazionario

Dettagli

Introduzione a MATLAB

Introduzione a MATLAB Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Introduzione a MATLAB Parte 4 Dr. Carlo Petrarca Dipartimento di Ingegneria Elettrica Università

Dettagli

Teoria dei Circuiti. Corso di. di analisi dei circuiti. Metodi sistematici. Università degli Studi di Pavia. Facoltà di Ingegneria

Teoria dei Circuiti. Corso di. di analisi dei circuiti. Metodi sistematici. Università degli Studi di Pavia. Facoltà di Ingegneria Università degli Studi di Pavia Facoltà di ngegneria Corso di Teoria dei Circuiti Metodi sistematici di analisi dei circuiti MTODO DLL CONT D MAGLA (MTODO DLL MAGL) DU CAS: A) Correnti di maglia = correnti

Dettagli

Circuiti elettrici 2. Elettrotecnica. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica

Circuiti elettrici 2. Elettrotecnica. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica Università degli Studi di Pavia Facoltà di Ingegneria Corso di Elettrotecnica Teoria dei Circuiti 2 LEGGI DI KIRCHHOFF Le due leggi fondamentali dei circuiti elettrici nascono come leggi sperimentali (G.

Dettagli

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 603 Crema email:

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

68 Luciano De Menna Corso di Elettrotecnica. Metodi sistematici per la risoluzione delle reti

68 Luciano De Menna Corso di Elettrotecnica. Metodi sistematici per la risoluzione delle reti 68 Luciano De Menna Corso di Elettrotecnica Metodi sistematici per la risoluzione delle reti La scrittura delle equazioni risolventi per una rete di bipoli attivi e passivi può essere resa automatica e

Dettagli

Università degli Studi di Napoli Federico II

Università degli Studi di Napoli Federico II Università degli Studi di Napoli Federico II Facoltà di Ingegneria Registro delle lezioni del corso di Elettrotecnica per allievi Meccanici dettate da Luigi Verolino, professore ordinario nell Anno Accademico

Dettagli

Passività e relazioni costitutive

Passività e relazioni costitutive 1 Cosa c è nell unità 1/3 Passività e relazioni costitutive Potenza entrante Passività Relazioni costitutive Bipoli ideali Resistore ideale Generatori di tensione Generatori ideali di corrente Principio

Dettagli

Elementi di topologia circuitale, Leggi di Kirchhoff. Teorema di Tellegen

Elementi di topologia circuitale, Leggi di Kirchhoff. Teorema di Tellegen Lezione n. Elementi di topologia circuitale, Leggi di Kirchhoff. Teorema di Tellegen. La soluzione di un circuito. Nozioni di topologia circuitale: nodo, lato, grafo, sotto-grafo, grafo orientato, albero,

Dettagli

Rappresentazione doppi bipoli

Rappresentazione doppi bipoli Rappresentazione doppi bipoli ntroduzione 3 Cosa c è nell Unità 5 n questa sezione si affronteranno introduzione alle rappresentazioni dei doppi bipoli le sei rappresentazioni classice tabella di trasformazione

Dettagli

Analisi di Reti in Regime Stazionario

Analisi di Reti in Regime Stazionario nalisi di eti in egime Stazionario ata una rete con l elementi bipolari, identifico un sistema di l tensioni e l correnti descrittive (ad ex, usando la.u.). l incognite Le l incognite devono soddisfare:

Dettagli

Parte 1. Teoria. Elettrotecnica T-A, Ingegneria Elettronica e delle Telecomunicazioni Prova scritta di Mercoledì 9 Gennaio 2013

Parte 1. Teoria. Elettrotecnica T-A, Ingegneria Elettronica e delle Telecomunicazioni Prova scritta di Mercoledì 9 Gennaio 2013 Parte 1. Teoria Quesito 1 Si consideri un generico grafo con N = 5 nodi e R = 6 rami. 1. Nel grafo sono individuabili 2 LKC indipendenti. 2. Nel grafo sono individuabili 5 LKT indipendenti. 3. Qualsiasi

Dettagli

ESERCIZI SULLE MATRICI

ESERCIZI SULLE MATRICI ESERCIZI SULLE MATRICI Consideriamo il sistema lineare a, x + a, x + + a,n x n = b a, x + a, x + + a,n x n = b a m, x + a m, x + + a m,n x n = b m di m equazioni in n incognite che ha a, a,n A = a m, a

Dettagli

Corso di Principi di ingegneria elettrica I

Corso di Principi di ingegneria elettrica I Anno Accad. 2008/2009, II anno: Corso di Laurea in Ingegneria Elettrica Nuovo Ordinamento Corso di Principi di ingegneria elettrica I (prof. G. Rubinacci) Diario delle Lezioni Materiale didattico di riferimento:

Dettagli

PreCorso di Matematica - PCM Corso M-Z

PreCorso di Matematica - PCM Corso M-Z PreCorso di Matematica - PCM Corso M-Z DOCENTE: M. Auteri Outline Docente: Auteri PreCorso di Matematica 2016 2 Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti

Dettagli

Analisi di Reti in Regime Stazionario

Analisi di Reti in Regime Stazionario nalisi di eti in egime Stazionario Data una rete con l elementi bipolari, identifico un sistema di l tensioni e l correnti descrittive (ad ex, usando la.u.). l incognite Le l incognite devono soddisfare:

Dettagli

Potenza in regime sinusoidale

Potenza in regime sinusoidale 26 Con riferimento alla convenzione dell utilizzatore, la potenza istantanea p(t) assorbita da un bipolo è sempre definita come prodotto tra tensione v(t) e corrente i(t): p(t) = v(t) i(t) Considerando

Dettagli

APPUNTI DI ALGEBRA LINEARE

APPUNTI DI ALGEBRA LINEARE APPUNTI DI ALGEBRA LINEARE. Definizione Si dice spazio vettoriale (sul campo dei numeri reali R) un insieme V per il quale siano definite l operazione interna di somma (che ad ogni coppia di vettori e

Dettagli

Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni

Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Definizioni e breve richiamo alle principali leggi dei circuiti elettrici Risolvere un circuito elettrico significa determinare i

Dettagli

Algebra matriciale. Un algebra è un sistema di segni in cui sono definite delle operazioni Algebra scalare Algebra dei vettori Algebra matriciale

Algebra matriciale. Un algebra è un sistema di segni in cui sono definite delle operazioni Algebra scalare Algebra dei vettori Algebra matriciale Algebra matriciale Algebra Un algebra è un sistema di segni in cui sono definite delle operazioni Algebra scalare Algebra dei vettori Algebra matriciale In algebra matriciale un numero è chiamato scalare

Dettagli

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan Note per il corso di Geometria 2006-07 Corso di laurea in Ing. Edile/Architettura Sistemi lineari. Metodo di eliminazione di Gauss Jordan.1 Operazioni elementari Abbiamo visto che un sistema di m equazioni

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica Soluzione del Problema Per t < 0 il circuito da considerare è il seguente: gv v R Applicando la KCL al nodo superiore si ottiene l equazione: Si ha inoltre v (0 ) gv (0 ) v (0 ) v (0 ) R 0 R g 0 00 00

Dettagli

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte c Partitori di tensione e di corrente Partitore di tensione: si fa riferimento ad una tensione nota che alimenta una

Dettagli

Note per il corso di Geometria e algebra lineare 2009-10 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni

Note per il corso di Geometria e algebra lineare 2009-10 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Note per il corso di Geometria e algebra lineare 009-0 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Spazi di n-uple e matrici. I prodotti cartesiani RR R e RRR R 3, costituiti dalle coppie

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici elettrici Elementi fondamentali Rappresentazione in variabili di stato Esempi di rappresentazione in variabili di stato Modellistica

Dettagli

r 2 r 2 2r 1 r 4 r 4 r 1

r 2 r 2 2r 1 r 4 r 4 r 1 SPAZI R n 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x, y, z)

Dettagli

PROBLEMA. Costruire matrici quadrate contenute. Fare i determinanti delle matrici quadrate contenute in A

PROBLEMA. Costruire matrici quadrate contenute. Fare i determinanti delle matrici quadrate contenute in A A = PROBLEMA 0 1 2 7 2 5 3 0 (2 4) Costruire matrici quadrate contenute in A (possibili solo matrici quadrate 2 2 e 1 1) Fare i determinanti delle matrici quadrate contenute in A Questo porta al concetto

Dettagli

MATRICI. Matrici Una matrice A con n-righe e m-colonne, ad elementi reali, è una tabella con la seguente forma: a 2 m. a n m) i j R, 1 i n, 1 j m.

MATRICI. Matrici Una matrice A con n-righe e m-colonne, ad elementi reali, è una tabella con la seguente forma: a 2 m. a n m) i j R, 1 i n, 1 j m. MATRICI Matrici Una matrice A con n-righe e m-colonne, ad elementi reali, è una tabella con la seguente forma: 11 a 12 a 1 3 a 1m A=(a a 21 a 2 3 a 2m con a a n1 a n2 a n 3 a nm i j R, 1 i n, 1 j m. per

Dettagli

Federica Gregorio e Cristian Tacelli

Federica Gregorio e Cristian Tacelli 1 Sistemi lineari Federica Gregorio e Cristian Tacelli Un sistema lineare m n (m equazioni in n incognite) è un insieme di equazioni lineari che devono essere soddisfatte contemporaneamente a 11 x 1 +

Dettagli

1. Sistemi di equazioni lineari. 1.1 Considerazioni preliminari

1. Sistemi di equazioni lineari. 1.1 Considerazioni preliminari 1. Sistemi di equazioni lineari 1.1 Considerazioni preliminari I sistemi lineari sono sistemi di equazioni di primo grado in più incognite. Molti problemi di matematica e fisica portano alla soluzione

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi Esercizio. ( ) Data la matrice, determinare tutte le matrici X Mat( ) tali che AX = 0 e tutte le matrici Y Mat( ) tali che Y 0. ( ) ( ) ( ) x y x + z y + w Soluzione:

Dettagli

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica 7.09.0 Problema L interruttore indicato nel circuito in figura commuta nell istante t 0 dalla posizione AA alla posizione BB. Determinare le espressioni delle tensioni v (t) ev (t) per ogni istante di

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari 1 Sistemi di equazioni lineari 1.1 Determinante di matrici quadrate Ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante della matrice

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Esercizio. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y, z: { x + y z = x + y z = x + y z = S : x y + z =, S :, S 3 : x 3y =,

Dettagli

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ 9.8 Con la LKT si scrive l equazione seguente: di L Ri cos( t) () dt La costante di tempo èτ L / R ms / 5s ; la soluzione della () è 5t i( t) Ke Acos(t θ ) () Sia A θ il fasore corrispondente alla risposta

Dettagli

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II Mod. 1 UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II REGISTRO DELLE LEZIONI Anno accademico 2018-2019 Insegnamento: Fondamenti di circuiti elettrici Prof. Massimiliano de Magistris DIPARTIMENTO di Ingegneria

Dettagli

Laurea di I Livello in Ingegneria Informatica

Laurea di I Livello in Ingegneria Informatica Laurea di I Livello in Ingegneria Informatica Sede di Mantova TEORIA DEI CIRCUITI II prova in itinere 3.2.2003 Problema I Nel circuito indicato in figura si ha v 1 = 10 cos (1000 t sec ) V Determinare

Dettagli

CAPITOLO 3 PROPRIETA DELLE EQUAZIONI DI KIRCHHOFF. 3.1 Introduzione

CAPITOLO 3 PROPRIETA DELLE EQUAZIONI DI KIRCHHOFF. 3.1 Introduzione CAPITOLO 3 PROPRIETA DELLE EQUAZIONI DI KIRCHHOFF 3.1 Introduzione In questo Capitolo studieremo le proprietà delle equazioni circuitali derivanti unicamente dalla struttura peculiare delle equazioni di

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

Principi di ingegneria elettrica. Reti in regime sinusoidale. Lezione 13 a. Impedenza Ammettenza

Principi di ingegneria elettrica. Reti in regime sinusoidale. Lezione 13 a. Impedenza Ammettenza Principi di ingegneria elettrica Lezione 3 a Reti in regime sinusoidale mpedenza Ammettenza Legge di Ohm simbolica n un circuito lineare comprendente anche elementi dinamici (induttori e condensatori)

Dettagli

Esercitazione 5: Sistemi a risoluzione immediata.

Esercitazione 5: Sistemi a risoluzione immediata. Esercitazione 5: Sistemi a risoluzione immediata. Ipotesi: Supponiamo le matrici non singolari. Nota: Per verificare che si ha risolto correttamente il sistema lineare Ax = b basta calcolare la norma del

Dettagli

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte e Multipoli resistivi I principali multipoli resistivi ideali sono: il trasformatore ideale l amplificatore operazionale

Dettagli

Lezione 11. Somma di matrici Prodotto di una matrice per uno scalare Prodotto di matrici Determinante Sistemi lineari in forma matriciale

Lezione 11. Somma di matrici Prodotto di una matrice per uno scalare Prodotto di matrici Determinante Sistemi lineari in forma matriciale Lezione Somma di matrici Prodotto di una matrice per uno scalare Prodotto di matrici Determinante Sistemi lineari in forma matriciale Matrici. Somma Date due matrici n x m, A = A ij e B = B ij, con i =,,,

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Rango e teorema di Rouché-Capelli Esercizio. Calcolare il rango di ciascuna delle seguenti matrici: ( ) ( ) ( ) A =, A =, A =, A 4 = ( ). a a a Soluzione.

Dettagli

Elementi a più terminali

Elementi a più terminali Elementi a più terminali Gli elementi circuitali che rappresentano modelli astratti di dispositivi fisici a più terminali sono chiamati, in generale, multipoli. Un elemento ad n morsetti si chiamerà n-polo

Dettagli

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene:

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene: M. CARAMIA, S. GIORDANI, F. GUERRIERO, R. MUSMANNO, D. PACCIARELLI RICERCA OPERATIVA Isedi Esercizi proposti nel Cap. 5 - Soluzioni Esercizio 5. - La norma Euclidea di è 9 6 5 - Il versore corrispondente

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 24 12.1.2016 Circuiti elettrici Equazioni per la soluzione dei circuiti Anno Accademico 2015/2016 Forza elettromotrice

Dettagli

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà Prof. Adolfo Santini - Dinamica delle Strutture 1 Vibrazioni libere non smorzate 1/6 Le equazioni del moto di un sistema

Dettagli

R u = R i. (48) e la potenza elettrica assorbita dal trasformatore ideale è uguale a zero) vale. R u /n 2 R i ( 1+ R u /n 2 R i ) 2 (49) R u.

R u = R i. (48) e la potenza elettrica assorbita dal trasformatore ideale è uguale a zero) vale. R u /n 2 R i ( 1+ R u /n 2 R i ) 2 (49) R u. 319 R u = R i. (48) Il generatore di tensione E in serie con il resistore di resistenza R i potrebbe rappresentare, ad esempio, il circuito equivalente secondo Thévenin (con tensione a vuoto E e resistenza

Dettagli

Argomento 12 Matrici

Argomento 12 Matrici Argomento 2 Matrici 2 Vettori di R n eoperazioni I Vettore di R n : x =(x i ) i=n =(x i ) n i=,conx i R componenti di x I R n = spazio dei vettori reali a n componenti = spazio vettoriale reale n-dimensionale

Dettagli

UNIVERSITA DEGLI STUDI LA SAPIENZA DI ROMA POLO DI RIETI FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DELL AMBIENTE E DEL TERRITORIO

UNIVERSITA DEGLI STUDI LA SAPIENZA DI ROMA POLO DI RIETI FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DELL AMBIENTE E DEL TERRITORIO UNIVERSITA DEGLI STUDI LA SAPIENZA DI ROMA POLO DI RIETI FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DELL AMBIENTE E DEL TERRITORIO Geometria 9 5 A.A. 5 Cognome Nome Matricola Codice Scrivere in

Dettagli

Impedenze ed Ammettenze 1/5

Impedenze ed Ammettenze 1/5 Impedenze ed Ammettenze 1/5 V=Z I. Rappresentazione alternativa I=Y V Z ed Y sono numeri complessi Bipolo di impedenza Z = R+ j X Resistenza Reattanza Conduttanza 1 Y = = G+ jb Z Suscettanza Lezione 2

Dettagli

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa

Dettagli

CIRCUITI IN REGIME SINUSOIDALE

CIRCUITI IN REGIME SINUSOIDALE CIRCUITI IN REGIME SINUSOIDALE CIRCUITO PURAMENTE OHMICO Esaminiamo il comportamento dei circuiti in regime sinusoidale iniziando da un circuito puramente ohmico. Si consideri (figura 1) un circuito costituito

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito C 3/5/25 A. A. 24 25 ) Risolvere il seguente sistema

Dettagli

SISTEMI LINEARI, METODO DI GAUSS

SISTEMI LINEARI, METODO DI GAUSS SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti

Dettagli

di porre a sinistra del nello stesso

di porre a sinistra del nello stesso Òà-0ESERCIZIO 1 Per scrivere tali equazioni, una volta deciso il verso di percorrenza a di ciascunaa maglia e quello dellee correnti in ciascuno dei tre rami riferiti alle tre resistenze, è sufficiente

Dettagli

Capitolo 3 Matrici. Marco Robutti. Facoltà di ingegneria Università degli studi di Pavia. Anno accademico

Capitolo 3 Matrici. Marco Robutti. Facoltà di ingegneria Università degli studi di Pavia. Anno accademico Capitolo 3 Matrici Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Anno accademico 2017-2018 Tutorato di geometria e algebra lineare Definizione (Matrice) Una matrice A M R (k, n) è

Dettagli

Sistemi d equazioni lineari

Sistemi d equazioni lineari Introduzione Introduzione Sia dato il seguente sistema d equazioni: S S S S Come si risolve un sistema... come si risolve? Lezione 25.wpd 08/01/2011 XXV - 1 Lezione 25.wpd 08/01/2011 XXV - 2 Introduzione

Dettagli

Note sull algoritmo di Gauss

Note sull algoritmo di Gauss Note sull algoritmo di Gauss 29 settembre 2009 Generalità Un sistema lineare di m equazioni in n incognite x,..., x n è un espressione del tipo: a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n

Dettagli

Sui determinanti e l indipendenza lineare di vettori

Sui determinanti e l indipendenza lineare di vettori Sui determinanti e l indipendenza lineare di vettori 1 Si dice che m vettori v 1, v 2,,v m di R n sono linearmente indipendenti, se una loro combinazione lineare può dare il vettore nullo solo se i coefficienti

Dettagli

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI MATRICI E SISTEMI LINEARI - PARTE I - Felice Iavernaro Dipartimento di Matematica Università di Bari 27 Febbraio 2006 Felice Iavernaro (Univ. Bari) Matrici e Sistemi lineari 27/02/2006 1 / 1 Definizione

Dettagli

4 - Topologia. Topologia delle reti elettriche. Elettrotecnica. Serie di due bipoli. Topologia delle reti elettriche

4 - Topologia. Topologia delle reti elettriche. Elettrotecnica. Serie di due bipoli. Topologia delle reti elettriche Topologia delle reti elettriche Elettrotecnica 4 - Topologia È data dai collegamenti degli n-poli. Prescinde dalla disposizione spaziale dei componenti. Considera le leggi di Kirchhoff (relazioni tra correnti

Dettagli

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2

Dettagli

Prova in itinere di Elettrotecnica

Prova in itinere di Elettrotecnica rova in itinere di Elettrotecnica Corso di Laurea in Ingegneria Biomedica isa 6/04/206 Allievo:...Matricola:. ) Determinare il circuito equivalente di Thevenin del bipolo AB in figura. Determinare quindi

Dettagli

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016.

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016. Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016 Di seguito si riporta il riassunto degli argomenti svolti; i riferimenti sono a parti del Cap8 Elementi di geometria e algebra lineare Par5

Dettagli

Dalle alle Docente: Dalle alle Docente:

Dalle alle Docente: Dalle alle Docente: 2 1 Corso di recupero di EETTROTECNICA Docente: prof. ing. Guido AA Mer 2-ott-13 Mar 1-ott-13 un 1 a SETTIMANA Ven 4-ott-13 Gio 3-ott-13 30-set-13 Richiami sugli operatori vettoriali gradiente, rotore

Dettagli

0 0 c. d 1. det (D) = d 1 d n ;

0 0 c. d 1. det (D) = d 1 d n ; Registro Lezione di Algebra lineare del 23 novembre 216 1 Matrici diagonali 2 Autovettori e autovalori 3 Ricerca degli autovalori, polinomio caratteristico 4 Ricerca degli autovettori, autospazi 5 Matrici

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è P 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer.

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer. ) Trovare le soluzioni del seguente sistema lineare: x+ y+ z = 3x y + z = 0 x + 5y 4z = 5 Osserviamo in primo luogo che il sistema dato è un sistema quadrato di tre equazioni in tre incognite, precisamente

Dettagli

Tipo 1 - Compiti A01 A04 A07 A10 A13 A16 A19 A22 A25 A28 A31. Esercizio 1. Esercizio 2

Tipo 1 - Compiti A01 A04 A07 A10 A13 A16 A19 A22 A25 A28 A31. Esercizio 1. Esercizio 2 Tipo - Compiti A0 A0 A07 A0 A A6 A9 A A5 A8 A Esercizio Esempio di risoluzione. Scelto come riferimento il nodo C, le incognite sono le tensioni di nodo V A e V D. (La tensione V B = V 6 è nota.). Il sistema

Dettagli

Manlio Bordoni. APPUNTI SULLA RAPPRESENTAZIONE DEI SOTTOSPAZI VETTORIALI DI R n I MODO. v 11. v n1

Manlio Bordoni. APPUNTI SULLA RAPPRESENTAZIONE DEI SOTTOSPAZI VETTORIALI DI R n I MODO. v 11. v n1 Manlio Bordoni APPUNTI SULLA RAPPRESENTAZIONE DEI SOTTOSPAZI VETTORIALI DI R n I MODO Sia dato un insieme di generatori v v =,, v k = v n di W : questo vuol dire che ogni vettore w W si scrive come combinazione

Dettagli

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice Pordenone Corso di Matematica e Statistica 3 Algebra delle UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica Università di Udine

Dettagli