Introduzione a MATLAB

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Introduzione a MATLAB"

Transcript

1 Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Introduzione a MATLAB Parte 4 Dr. Carlo Petrarca Dipartimento di Ingegneria Elettrica Università di Napoli FEDERICO II

2 Numeri complessi In MATLAB è possibile fare operazioni con numeri complessi L unità immaginaria ( -1) i oppure j è assegnata per default >> i ans = i Attenzione perchè, se si assegna un valore diverso a queste variabili, esse perdono il loro valore di default!! >> i=5; >> i i = 5 2

3 Operazioni con i numeri complessi Assegnazione (forma cartesiana o algebrica): x=5+i4 Coniugato: >> x=5+i*4 x = i >> conj(x) ans = i Parte reale e parte immaginaria: >> real(x) ans = 5 >> imag(x) ans = 4 3

4 Operazioni con i numeri complessi Assegnazione (forma esponenziale o polare): y=8e i(π/6) >> y=8*exp(i*pi/6) y = i Modulo: >> abs(y) ans = 8 Argomento (in radianti): >> angle(y) ans =

5 Esercizi con i numeri complessi 1. Convertire i seguenti numeri dalla forma algebrica a quella polare 3 + 4j 5 5 3j 6 6j 2. Convertire i seguenti numeri dalla forma polare a quella algebrica 7 2 e j / 6 6 e π jπ / 4 j2π / 10 e 3 3. Eseguire le seguenti operazioni: ( 7 3j)( 4 + 6j) ( 2 + 4j) /( 1 3j) ( j ) ( 5 + j) 5

6 Esercizi con i numeri complessi 4. Esprimere la corrente i(t) in termini di fasore i () t π = 50sin t A; 4 ω i() t 5. Dati i seguenti fasori: π = 10 2 cos t A; 3 ω i() t π = 50 2 cos ωt + A; 4 V = e 1 10 jπ / 6 V2 = 10e jπ / 6 V = e 3 5 jπ /3 rappresentare su grafico le tensioni corrispondenti ai fasori V 1 + V 2 1 V2 V V1 V3 utilizzando la seguente trasformazione fasoriale: V ( t) = V sin( + α ) jα = V e v M t M 500 6

7 Esercizio La rete di figura è a regime sinusoidale. Ricavare l intensità di corrente nell induttore, tracciarne il grafico in un intervallo di tempo pari a 2 volte il periodo T, calcolare la potenza media erogata dal generatore di tensione e 1 π R1 = R2 = 5Ω; L = 2mH; C = 0.4mF; e1 () t = 40sin( ωt) A; e2() t = 50sin ωt V ; ω = 6 A rad 800 s R2 C R1 e2(t) + - il(t) + - e1(t) L B 7

8 Adottiamo il metodo simbolico: A IE2 ZR2 ZC ZR1 IE1 E E1 ZL IL B E risolviamo il sistema: I Z Z E1 R2 R1 + I I I E2 E1 E2 + I L = 0 ( Z + Z ) C ( Z + Z ) C L L I I L L = = E E 1 2 8

9 Assegniamo i dati del problema: % Assegnazione dati R1=5; R2=5; L=2e-3; C=0.4e-3; w=800; E1=40*exp(j*0); E2=50*exp(-j*pi/6); ZR1=R1; ZR2=R2; XL=w*L; ZL=j*XL; XC=1/(w*C); ZC=-j*XC; Scriviamo il sistema da risolvere: % Scrittura sistema di equazioni % Matrice A dei coeff. delle incognite A=[1 1 1;0 ZR2 -(ZC+ZL);ZR1 0 -(ZC+ZL)]; % Vettore colonna dei termini noti Noti=[0;E2;E1]; 9

10 Ricaviamo la corrente i L (t) I=inv(A)*Noti; % Calcolo del fasore della corrente IL IL=I(3); % Valore massimo di IL ILmax=abs(IL) % Fase di IL ILfase=angle(IL) i L (t)=14.8 sin(800t-2.88) A Ricaviamo la potenza media erogata da E1 % Calcolo della potenza complessa erogata da E1 IE1=I(1); PcE1=0.5*E1*conj(IE1); % Potenza media erogata da E1 PE1=real(PcE1) P E1 =137 W 10

11 Grafico di i L (t): % Tracciamo il grafico di il(t) % Calcolo del periodo T=2*pi/w; % Definizione dell'asse dei tempi t=[0:t/100:2*t]; % Calcolo della il(t) il=ilmax*sin(w.*t+ilfase); % Grafico di il(t) plot(t,il); xlabel('tempo [s]'); ylabel('corrente [A]'); title('corrente nell''induttore'); 11

12 Grafico della corrente nell induttore: 15 Corrente nell'induttore 10 5 corrente [A] tempo [s] 12

13 Metodo sistematico La matrice di incidenza completa A C definisce univocamente il grafo della rete Dato un grafo orientato con N nodi e L lati la matrice A C ha N righe e L colonne e il generico elemento a ik della matrice di incidenza completa è così definito: a ik + 1 se il lato k esce dal nodo i = 1 se il lato k entra nel nodo i 0 se il lato k non interessa il nodo i 13

14 Indicato con I il vettore colonna delle correnti di lato,la matrice di incidenza completa ci permette di scrivere in forma compatta matriciale le LKC a tutti gli N nodi della rete: [ A ]{ I} = { 0} a a.... a C i L i 2 0 a21 a a 2L.. = aii aik an1 an2.... anl i L 0 Eliminando una qualsiasi delle N equazioni ai nodi, le (N-1) equazioni rimanenti sono linearmente indipendenti. 14

15 La matrice che si ottiene dalla matrice di incidenza completa eliminando la generica k-esima riga è la matrice di incidenza ridotta A Le (N-1) equazioni indipendenti esprimenti la LKC verranno pertanto espresse in forma matriciale come: [ A]{ I} = { 0} Per la LKT, basta ricordare che essa è identicamente soddisfatta se si esprimono le tensioni di lato in funzione dei potenziali nodali. Per semplicità è opportuno fissare un nodo a potenziale zero di riferimento. La scelta più semplice è quella di adottare come nodo di riferimento il nodo k-esimo per il quale non si è scritta la LKC 15

16 Detto V il vettore delle tensioni di lato e v il vettore degli (N-1) potenziali nodali, è possibile scrivere la relazione: [ A] T { v} = { V} In conclusione le equazioni topologiche della rete sono: T [ A] v = { V} e [ A]{ I} = { 0} Per completare il sistema di equazioni non rimane ora che esprimere le caratteristiche di lato 16

17 Al fine di rendere sistematica e automatizzata le scrittura delle equazioni di lato è necessario che le equazioni caratteristiche assumano la forma più generale possibile Per bipoli controllabili in tensione, ci viene incontro il teorema del generatore equivalente di Norton I k G k J k I V k = Jk + GV k k k 17

18 In simboli matriciali, le caratteristiche di lato possono essere espresse dalla relazione: { I} = { J} + [ G]{ V} in cui il vettore J di dimensione L è rappresentativo dei generatori di corrente e la matrice G è detta matrice della conduttanze di lato ed è una matrice diagonale (G ii 0) di dimensione L L. Moltiplichiamo a sinistra l espressione per la matrice A: [ A]{ I} = [ A]{ J} + [ A][ G]{ V} 18

19 Per la LKC si ha: [ A]{ J} = [ A][ G]{ V} Utilizzando i potenziali nodali otteniamo: [ A]{ J} = [ A][ G][ A] T { v} da cui: [ G ] = [ A][ G][ A] T N { J } = [ A]{ J} N { J } = [ G ]{ v} N N è la matrice conduttanza di nodo è il vettore delle correnti impresse di nodo 19

20 Il vettore incognito dei potenziali di nodo si ottiene da: { v} [ G ] 1 { J } = N N Proprietà della matrice G N : 1. Il termine diagonale g ii è la somma delle conduttanze di tutti i lati collegati al nodo i, ed è detta autoconduttanza del nodo i; 2. Il termine g ik è la cosiddetta mutua ammettenza tra il nodo i ed il nodo k; essa è l opposto della somma di tutte le conduttanze di tutti i lati che collegano il nodo i al nodo k. 20

21 Proprietà del vettore J N : Il generico elemento J N (i) del vettore J N è pari alla somma algebrica delle correnti impresse nel nodo i. Le correnti sono pesate con il segno + se il riferimento di corrente è entrante nel nodo i, altrimenti sono pesate con il segno -. Noto il vettore dei potenziali di nodo, si ricavano le tensioni di lato: E, infine, anche le correnti: [ A] T { v} = { V} { I} = { J} + [ G]{ V} 21

22 Esercizio Risolvere con Matlab la rete di figura: J1 J2 R1 I R2 I R4 R1 R2 J4 R4 IV J6 E4 + - III J5 II IV J6 III J5 R5 II R5 J3 R3 R3 22

23 Procedere secondo i seguenti passi: 1) Trasformare ogni lato nel suo equivalente di Norton 2) Assegnare i dati del problema 3) Scrivere la matrice di incidenza Ac e A 4) Scrivere la matrice delle conduttanze di lato G 5) Scrivere il vettore delle correnti impresse di lato J 6) Ricavare la matrice delle conduttanze di nodo G N 7) Ricavare il vettore delle correnti impresse di nodo J N 8) Risolvere il sistema: { v} [ G ] 1 { J } = N N 9) Ricavare le tensioni di lato: 10) Ricavare le correnti di lato: [ A] T { v} = { V} { I} = { J} + [ G]{ V} 23

24 % Forma matriciale delle equazioni nei potenziali ai nodi clear all; clc; N=4; %numero di nodi L=6; % numero di lati % resistenze di lato R1=10; R2=5; R3=8; R4=10; R5=5; % sorgenti J5=10; J6=4; E=100; % Matrice di incidenza completa Ac Ac=[ ; ; ; ]; 24

25 % Matrice di incidenza ridotta A A=Ac(1:N-1,1:L); % Matrice delle conduttanze di lato G G=zeros(L,L); G(1,1)=1/R1; G(2,2)=1/R2; G(3,3)=1/R3; G(4,4)=1/R4; G(5,5)=1/R5; G(6,6)=0; % Vettore delle correnti impresse di lato J J=zeros(L,1); J(1,1)=0; J(2,1)=0; J(3,1)=0; J(4,1)=E/R4; J(5,1)=J5; J(6,1)=J6; 25

26 % Matrice delle conduttanze di nodo Gn Gn=A*G*A'; % Vettore delle correnti impresse di nodo Jn Jn=A*J; %%%%%%%% RISOLUZIONE DEL SISTEMA %%%%%%%%%%%%%% % Vettore dei potenziali di nodo v v=-inv(gn)*jn; % Vettore delle tensioni di lato V=A'*v; % vettore delle correnti di lato I=J+G*V; 26

Esercitazioni di Elettrotecnica

Esercitazioni di Elettrotecnica Esercitazioni di Elettrotecnica a cura dell Ing ntonio Maffucci Parte II: ircuiti in regime sinusoidale /3 Esercitazioni di Elettrotecnica /3 Maffucci ESEIZIONE N7: Fasori ed impedenze ESEIZIO 7 Esprimere

Dettagli

Il modello circuitale. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 6 Pagina 1

Il modello circuitale. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 6 Pagina 1 Lez.6 Il modello circuitale Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 6 Pagina 1 Legge di Kirchhoff Legge di Kirchhoff delle correnti per gli insiemi

Dettagli

Teoria dei Circuiti. Corso di. di analisi dei circuiti. Metodi sistematici. Università degli Studi di Pavia. Facoltà di Ingegneria

Teoria dei Circuiti. Corso di. di analisi dei circuiti. Metodi sistematici. Università degli Studi di Pavia. Facoltà di Ingegneria Università degli Studi di Pavia Facoltà di Ingegneria Corso di Teoria dei Circuiti di analisi dei circuiti METODO DEI POTENZILI DI NODO Si scelgano come incognite non le l tensioni di lato (legate da [M][]=),

Dettagli

Metodi generali per l analisi dei circuiti

Metodi generali per l analisi dei circuiti Metodi generali per l analisi dei circuiti 128 I metodi introdotti per la scrittura sistematica delle equazioni indipendenti di Kirchhoff hanno portato all introduzione delle matrici topologiche [A] e

Dettagli

Lez.16 Il metodo simbolico. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 16 Pagina 1

Lez.16 Il metodo simbolico. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 16 Pagina 1 Lez.16 Il metodo simbolico Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 16 Pagina 1 Regime sinusoidale Stato di funzionamento di un circuito in cui tutte

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001 Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. / Esame del gennaio Soluzione a cura di: Bellini Matteo Es. n Data la rete in figura determinare tutte le correnti

Dettagli

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ 9.8 Con la LKT si scrive l equazione seguente: di L Ri cos( t) () dt La costante di tempo èτ L / R ms / 5s ; la soluzione della () è 5t i( t) Ke Acos(t θ ) () Sia A θ il fasore corrispondente alla risposta

Dettagli

Esercizi sulle reti elettriche in corrente alternata (parte 2)

Esercizi sulle reti elettriche in corrente alternata (parte 2) Esercizi sulle reti elettriche in corrente alternata (parte 2) Esercizio 7: Verificare il bilancio delle potenze. Nota. l ramo costituito dal generatore di corrente in serie al resistore ha come caratteristica

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è P 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

Esercizi sulle reti elettriche in corrente alternata (parte 1)

Esercizi sulle reti elettriche in corrente alternata (parte 1) Esercizi sulle reti elettriche in corrente alternata (parte ) Esercizio : alcolare l andamento nel tempo delle correnti i, i 2 e i 3 del circuito in figura e verificare il bilancio delle potenze attive

Dettagli

Matrice incidenza =

Matrice incidenza = Matrice incidenza La matrice d'incidenza completa Ac di un grafo orientato G con N nodi ed R rami, è una matrice rettangolare di N righe ed R colonne che si costruisce come segue: si numerano con n=1,2,...,n

Dettagli

Lezione 14. Vettori rotanti. RL con forzamento sinusoidale. e( t) = E M. i( t) = ke R L t + I M. e(t) E = RI + jω LI. E ( ) 2 ; η arctg ω L

Lezione 14. Vettori rotanti. RL con forzamento sinusoidale. e( t) = E M. i( t) = ke R L t + I M. e(t) E = RI + jω LI. E ( ) 2 ; η arctg ω L ezione 4 ( A) A Vettori rotanti ( A) Piano di Gauss A = Ae j( ωt+α ) = Acos( ωt + α ) + jasen( ωt + α ) Prima di procedere oltre, facciamo vedere perché il termine fasori. a parte reale ed il coefficiente

Dettagli

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II Mod. 1 UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II REGISTRO DELLE LEZIONI Anno accademico 2016-2017 Insegnamento: Introduzione ai circuiti Prof. Massimiliano de Magistris DIPARTIMENTO di Ingegneria Elettrica

Dettagli

Esercizi sui circuiti in fase transitoria

Esercizi sui circuiti in fase transitoria Esercizi sui circuiti in fase transitoria Esercizio. Determinare la costante di tempo del circuito di figura per k =.5 Ω,.5 Ω, Ω. τ = ms,.5 ms, 6 ms. Ω Ω.5 Ω i [A] k i [V] mh V Il circuito contiene un

Dettagli

Principi di ingegneria elettrica. Reti in regime sinusoidale. Lezione 13 a. Impedenza Ammettenza

Principi di ingegneria elettrica. Reti in regime sinusoidale. Lezione 13 a. Impedenza Ammettenza Principi di ingegneria elettrica Lezione 3 a Reti in regime sinusoidale mpedenza Ammettenza Legge di Ohm simbolica n un circuito lineare comprendente anche elementi dinamici (induttori e condensatori)

Dettagli

Esercizi sulle reti elettriche in corrente alternata (parte 2)

Esercizi sulle reti elettriche in corrente alternata (parte 2) Esercizi sulle reti elettriche in corrente alternata (parte 2) Esercizio 7: Verificare il bilancio delle potenze. Nota. l ramo costituito dal generatore di corrente in serie al resistore ha come caratteristica

Dettagli

68 Luciano De Menna Corso di Elettrotecnica. Metodi sistematici per la risoluzione delle reti

68 Luciano De Menna Corso di Elettrotecnica. Metodi sistematici per la risoluzione delle reti 68 Luciano De Menna Corso di Elettrotecnica Metodi sistematici per la risoluzione delle reti La scrittura delle equazioni risolventi per una rete di bipoli attivi e passivi può essere resa automatica e

Dettagli

Potenza in regime sinusoidale

Potenza in regime sinusoidale 26 Con riferimento alla convenzione dell utilizzatore, la potenza istantanea p(t) assorbita da un bipolo è sempre definita come prodotto tra tensione v(t) e corrente i(t): p(t) = v(t) i(t) Considerando

Dettagli

Esercizi sui circuiti in fase transitoria

Esercizi sui circuiti in fase transitoria Esercizi sui circuiti in fase transitoria v 5 mh 6 Ω Ω µf Ω Esercizio. alcolare la tensione v un i- stante dopo la chiusura dell interruttore T (t =). Si supponga che il circuito sia in regime stazionario

Dettagli

Elettrotecnica - Ing. Aerospaziale, Ing. Meccanica A.A. 2018/19 - Prova n. 2 2 luglio 2019

Elettrotecnica - Ing. Aerospaziale, Ing. Meccanica A.A. 2018/19 - Prova n. 2 2 luglio 2019 ognome Nome Matricola Firma Parti svolte: E E D Esercizio A V G B 5 I 4 I G7 8 E D Supponendo noti i parametri dei componenti, illustrare il procedimento di risoluzione del circuito rappresentato in figura

Dettagli

. Applicando la KT al percorso chiuso evidenziato si ricava v v v v4 n Applicando la KC al nodo si ricava: i i i4 i n i i : n i v v v v 4 : n i 4 v v i i.7 Dalla relazione tra le correnti del trasformatore

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

Lez.22 Circuiti dinamici di ordine due. 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 22 Pagina 1

Lez.22 Circuiti dinamici di ordine due. 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 22 Pagina 1 Lez.22 Circuiti dinamici di ordine due. 2 Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 22 Pagina 1 Equazioni di stato L analisi dei circuiti dinamici tramite

Dettagli

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare.

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare. ALGEBRA COMPLESSA Nel corso dei secoli gli insiemi dei numeri sono andati man mano allargandosi per rispondere all esigenza di dare soluzione a equazioni e problemi sempre nuovi I numeri complessi sono

Dettagli

Insegnamento Introduzione ai circuiti. Argomento: Introduzione al corso e sua organizzazione. Note:

Insegnamento Introduzione ai circuiti. Argomento: Introduzione al corso e sua organizzazione. Note: data 20 settembre 2017 data 22 settembre 2017 data 27 settembre 2017 data 29 settembre 2017 Introduzione al corso e sua organizzazione didattica, sussidi didattici. Interazione elettromagnetica, sistemi

Dettagli

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica 7.09.0 Problema L interruttore indicato nel circuito in figura commuta nell istante t 0 dalla posizione AA alla posizione BB. Determinare le espressioni delle tensioni v (t) ev (t) per ogni istante di

Dettagli

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di Elettrotecnica Corso di Elettrotecnica - Cod. 900 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria A cura di Luca FEAIS Scheda N 6

Dettagli

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 603 Crema email:

Dettagli

scaricato da

scaricato da A. Maffucci: ircuiti in regime sinusoidale ver - 004 ES.. Esprimere la corrente i(t) in termini di fasore nei seguenti tre casi: a) i(t) = 4sin(ωt.4) b) i(t) = 0sin(ωt π) c) i(t) = 8sin(ωt π / ) isultato:

Dettagli

Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici

Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Dr. Carlo Petrarca Dipartimento di Ingegneria Elettrica Università di Napoli FEDERICO II 1 Lezione

Dettagli

università DEGLI STUDI DI NAPOLI FEDERICO II

università DEGLI STUDI DI NAPOLI FEDERICO II università DEGLI STUDI DI NAPOLI FEDERICO II Facoltà o Scuola di INGEGNERIA Registro delle Lezioni del Corso di Introduzione ai Circuiti C.d.L. in Ingegneria dell'automazione e D.d.L. in Ingegneria informatica

Dettagli

D. METODI DI ANALISI CIRCUITALE

D. METODI DI ANALISI CIRCUITALE D. METODI DI ANALISI CIRCUITALE Generalità (problema fondamentale della Teoria dei Circuiti) Schema concettuale dell analisi circuitale Metodo basato sui Tagli (equilibrio delle correnti) Metodo dei Nodi

Dettagli

Introduzione ai circuiti

Introduzione ai circuiti università DEGLI STUDI DI NAPOLI FEDERICO II Facoltà di Ingegneria Registro delle Lezioni dell insegnamento di Introduzione ai circuiti Corso di laurea in Ingegneria delle Telecomunicazioni Dettate dal

Dettagli

Analisi di Reti in Regime Stazionario

Analisi di Reti in Regime Stazionario nalisi di eti in egime Stazionario Data una rete con l elementi bipolari, identifico un sistema di l tensioni e l correnti descrittive (ad ex, usando la.u.). l incognite Le l incognite devono soddisfare:

Dettagli

Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici

Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Dr. Carlo Petrarca Dipartimento di Ingegneria Elettrica Università di Napoli FEDERICO II 1 Introduzione

Dettagli

Introduzione a PSPICE

Introduzione a PSPICE Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Introduzione a PSPICE Dr. Carlo Petrarca Dipartimento di Ingegneria Elettrica Università di Napoli

Dettagli

Corso di Principi di ingegneria elettrica I

Corso di Principi di ingegneria elettrica I Anno Accad. 2008/2009, II anno: Corso di Laurea in Ingegneria Elettrica Nuovo Ordinamento Corso di Principi di ingegneria elettrica I (prof. G. Rubinacci) Diario delle Lezioni Materiale didattico di riferimento:

Dettagli

Elettrotecnica - Modulo 1 - Ing. Biomedica, Ing. Elettronica per l Energia e l Informazione A.A. 2014/15 - Prova n.

Elettrotecnica - Modulo 1 - Ing. Biomedica, Ing. Elettronica per l Energia e l Informazione A.A. 2014/15 - Prova n. Cognome Nome Matricola Firma 1 Parti svolte: E1 E2 E3 D Esercizio 1 V G1 1 I G6 2 ri 4 5 3 4 Supponendo noti i parametri dei componenti, illustrare il procedimento di risoluzione del circuito rappresentato

Dettagli

G. Rizzoni, Elettrotecnica - Principi e applicazioni Soluzioni ai problemi, Capitolo 3

G. Rizzoni, Elettrotecnica - Principi e applicazioni Soluzioni ai problemi, Capitolo 3 CAPITOLO 3 Analisi delle reti resistive Paragrafi da 3.2 a 3.4: Analisi ai nodi e alle maglie Problema 3.1 Correnti di maglia: Correnti di lato in Fissa una direzione per la corrente in R 1 (ad esempio

Dettagli

SISTEMI DI DUE EQUAZIONI IN DUE INCOGNITE

SISTEMI DI DUE EQUAZIONI IN DUE INCOGNITE SISTEMI DI DUE EQUAZIONI IN DUE INCOGNITE Un equazione di primo grado in una incognita del tipo, con ha: una sola soluzione (equazione determinata) se nessuna soluzione (equazione impossibile) se tutte

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica Soluzione del Problema Per t < 0 il circuito da considerare è il seguente: gv v R Applicando la KCL al nodo superiore si ottiene l equazione: Si ha inoltre v (0 ) gv (0 ) v (0 ) v (0 ) R 0 R g 0 00 00

Dettagli

I j e jarctag. ovvero. ESERCIZIO 7.1: Determinare le espressioni temporali sinusoidali relative alle grandezze rappresentate dai seguenti fasori.

I j e jarctag. ovvero. ESERCIZIO 7.1: Determinare le espressioni temporali sinusoidali relative alle grandezze rappresentate dai seguenti fasori. EEO 7.: Determinare le espressioni temporali sinusoidali relative alle grandezze rappresentate dai seguenti fasori. 0 8e 3+ 4 ( 5 isulta necessario applicare le trasformazioni fra espressione polare ed

Dettagli

università DEGLI STUDI DI NAPOLI FEDERICO II

università DEGLI STUDI DI NAPOLI FEDERICO II università DEGLI STUDI DI NAPOLI FEDERICO II Facoltà di Ingegneria Registro delle Lezioni dell insegnamento di: Introduzione ai Circuiti Corso di Laurea in Ingegneria dell'automazione Corso di Laurea in

Dettagli

1. Serie, parallelo e partitori. ES Calcolare la

1. Serie, parallelo e partitori. ES Calcolare la Maffucci: ircuiti in regime stazionario ver-00 Serie, parallelo e partitori S - alcolare la vista ai morsetti - e quella vista ai morsetti -D S alcolare la resistenza uivalente vista ai capi del generatore

Dettagli

ITI M. FARADAY AS 2018/19. Programmazione modulare

ITI M. FARADAY AS 2018/19. Programmazione modulare ITI M. FARADAY AS 2018/19 Programmazione modulare Indirizzo: Elettrotecnica ed elettronica Classe: 3 AEE Disciplina: ELETTROTECNICA - ELETTRONICA Classe: 3 AEE Ore settimanali previste: 6 (3 ore Teoria

Dettagli

Scopi del corso. lezione 1 2

Scopi del corso. lezione 1 2 lezione 1 1 Scopi del corso Lo studente saprà analizzare circuiti elettrici dinamici per determinare il loro comportamento nel dominio del tempo e per ricavare le proprietà essenziali nel dominio della

Dettagli

Introduzione a MATLAB

Introduzione a MATLAB Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Introduzione a MATLAB Dr. Carlo Petrarca Dipartimento di Ingegneria Elettrica Università di Napoli

Dettagli

Esercizi di Elettrotecnica. prof. Antonio Maffucci Università degli Studi di Cassino. Circuiti in regime sinusoidale

Esercizi di Elettrotecnica. prof. Antonio Maffucci Università degli Studi di Cassino. Circuiti in regime sinusoidale Esercizi di Elettrotecnica prof. ntonio Maffucci Università degli Studi di assino ircuiti in regime sinusoidale versione. ottore 009 . Esercizi introduttivi. ES.. Esprimere la corrente i ( in termini di

Dettagli

4 Luglio 2012 Esame di Teoria dei Circuiti V 1 V 2. I R1 = 1 R 1 + R 2 (1 α) + R 3 V 1. I 2 = I R3 = 1 α 1 + β I R1 = V α

4 Luglio 2012 Esame di Teoria dei Circuiti V 1 V 2. I R1 = 1 R 1 + R 2 (1 α) + R 3 V 1. I 2 = I R3 = 1 α 1 + β I R1 = V α Esame di Teoria dei Circuiti 4 Luglio 202 () Esercizio I R R I R3 R 3 I 2 V αi R V 4 I 4 βi R3 Con riferimento al circuito di figura si assumano ( i seguenti ) valori: 0 Ω R R 3 kω, 5 kω,, α /2, β 2, V

Dettagli

Introduzione a MATLAB

Introduzione a MATLAB Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Introduzione a MTLB Lezione n. Dr. Carlo Petrarca Dipartimento di Ingegneria Elettrica e Tecnologie

Dettagli

Università degli Studi di Napoli Federico II

Università degli Studi di Napoli Federico II Università degli Studi di Napoli Federico II Facoltà di Ingegneria Registro delle lezioni del corso di Elettrotecnica per allievi Meccanici dettate da Luigi Verolino, professore ordinario nell Anno Accademico

Dettagli

Esercitazione 5: Sistemi a risoluzione immediata.

Esercitazione 5: Sistemi a risoluzione immediata. Esercitazione 5: Sistemi a risoluzione immediata. Ipotesi: Supponiamo le matrici non singolari. Nota: Per verificare che si ha risolto correttamente il sistema lineare Ax = b basta calcolare la norma del

Dettagli

5.12 Applicazioni ed esercizi

5.12 Applicazioni ed esercizi 138 5.12 pplicazioni ed esercizi pplicazione 1 1. Trovare il numero dei nodi e dei rami nel circuito in figura. 1 2 3 H 4 C D E 8 G 7 F 6 5 punti 1 e 2 costituiscono un unico nodo; lo stesso per i punti

Dettagli

Impedenze ed Ammettenze 1/5

Impedenze ed Ammettenze 1/5 Impedenze ed Ammettenze 1/5 V=Z I. Rappresentazione alternativa I=Y V Z ed Y sono numeri complessi Bipolo di impedenza Z = R+ j X Resistenza Reattanza Conduttanza 1 Y = = G+ jb Z Suscettanza Lezione 2

Dettagli

Traiettorie nello spazio degli stati

Traiettorie nello spazio degli stati . Traiettorie nello spazio degli stati Per mostrare i tipici andamenti delle traiettorie nello spazio degli stati in funzione della posizione dei poli del sistema si farà riferimento ad un esempio: un

Dettagli

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II Mod. 1 UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II REGISTRO DELLE LEZIONI Anno accademico 2018-2019 Insegnamento: Fondamenti di circuiti elettrici Prof. Massimiliano de Magistris DIPARTIMENTO di Ingegneria

Dettagli

Cosa c è nell unità. Matrice di incidenza Teorema di Tellegen

Cosa c è nell unità. Matrice di incidenza Teorema di Tellegen 1 Cosa c è nell unità Introduzione ai metodi generali Prime definizioni della Teoria dei Grafi Definizioni Cammino e grafi connessi Maglie Taglio Albero e coalbero Grafi orientati Metodo del Tableau sparso

Dettagli

( ) ( t) Lezione 15. Teorema di Tellegen. Potenza in regime sinusoidale ( ) ( ) = 0. i k P = V I

( ) ( t) Lezione 15. Teorema di Tellegen. Potenza in regime sinusoidale ( ) ( ) = 0. i k P = V I ezion5 Anche in regime sinusoidale, naturalmente, il prodotto vi della tensione ai morsetti di un bipolo e della corrente che lo attraversa rappresenta, istante per istante, la potenza assorbita dal bipolo

Dettagli

1.1 Assenza di generatori di tensione ideali

1.1 Assenza di generatori di tensione ideali ANALISI NODALE Questa dispensa presenta un metodo alternativo a quello presentato nel libro Circuiti Elettrici di C.K. Alexander, M.N.O.Sadiku - seconda edizione - traduzione a cura del Prof. P.Gubian

Dettagli

1. Andamenti transitori di carica e scarica di un condensatore in termini di tensione e corrente

1. Andamenti transitori di carica e scarica di un condensatore in termini di tensione e corrente Risposte alle domande di teoria 1. Andamenti transitori di carica e scarica di un condensatore in termini di tensione e corrente Il transitorio è un processo elettrico che descrive tramite una funzione

Dettagli

ESERCIZI SULLE MATRICI

ESERCIZI SULLE MATRICI ESERCIZI SULLE MATRICI Consideriamo il sistema lineare a, x + a, x + + a,n x n = b a, x + a, x + + a,n x n = b a m, x + a m, x + + a m,n x n = b m di m equazioni in n incognite che ha a, a,n A = a m, a

Dettagli

per la matrice R, e: I 1 = G 11 V 1 + G 12 V 2, I 2 = G 21 V 1 + G 22 V 2,

per la matrice R, e: I 1 = G 11 V 1 + G 12 V 2, I 2 = G 21 V 1 + G 22 V 2, 100 Luciano De Menna Corso di Elettrotecnica Il caso N = 2 è particolarmente interessante tanto da meritare un nome speciale: doppio bipolo I parametri indipendenti saranno tre: R 11, R 22 ed R 12 =R 21

Dettagli

Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici

Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Introduzione a MATLAB Dr. Carlo Petrarca Dipartimento di Ingegneria Elettrica Università di Napoli

Dettagli

Esercizi di Elettrotecnica

Esercizi di Elettrotecnica Esercizi di Elettrotecnica Ing. Carlo Forestiere carlo.forestiere@unina.it Corso di Laurea in Ingegneria Informatica Anno Accademico 2009-2010 Dipartimento di Ingegneria Elettrica Università degli studi

Dettagli

NOME COGNOME MATRICOLA CANALE

NOME COGNOME MATRICOLA CANALE NOME COGNOME MATRICOLA CANALE Fondamenti di Algebra Lineare e Geometria Proff. M. Imbesi - R. Sanchez - C. Zanella Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza TEMA 1 1. Scrivere la formula

Dettagli

Elettrotecnica - Ing. Aerospaziale, Ing. Meccanica A.A. 2014/15 - Prova n. 2-2 luglio 2015

Elettrotecnica - Ing. Aerospaziale, Ing. Meccanica A.A. 2014/15 - Prova n. 2-2 luglio 2015 ognome Nome Matricola Firma Parti svolte: E E D Esercizio I G 4 gv E 5 D 6 Supponendo noti i parametri dei componenti, illustrare il procedimento di risoluzione del circuito rappresentato in figura con

Dettagli

Esame di Teoria dei Circuiti 15 Gennaio 2015 (Soluzione)

Esame di Teoria dei Circuiti 15 Gennaio 2015 (Soluzione) Esame di eoria dei Circuiti 15 ennaio 2015 (Soluzione) Esercizio 1 I 1 R 2 I R2 R 4 αi R2 βi R3 + V 3 I 3 R 1 V 2 I 4 I R3 Con riferimento al circuito di figura si assumano ( i seguenti ) valori: 3/2 3/2

Dettagli

ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1

ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ESERCIZIO 1 Dopo aver risolto il circuito lineare tempo-invariante mostrato Fig. 1.1, calcolare la potenza erogata/assorbita da ogni componente. Fig. 1.1

Dettagli

Capitolo VIII Dinamica dei circuiti di ordine superior e

Capitolo VIII Dinamica dei circuiti di ordine superior e Capitolo VIII Dinamica dei circuiti di ordine superior e Nei capitoli precedenti abbiamo già esaminato, partendo da alcuni classici esempi, gli aspetti salienti della soluzione di una rete elettrica in

Dettagli

Prova di Elettrotecnica I prova B

Prova di Elettrotecnica I prova B C O N S O Z O N E T T U N O Prova di Elettrotecnica 4.05.004 prova B Cognome Nome matr ESECZO l circuito in figura funziona in regime sinusoidale. Determinare l andamento della corrente che fluisce nella

Dettagli

CALCOLO DI TENSIONI E CORRENTI IN UN CIRCUITO ELETTRICO. 1

CALCOLO DI TENSIONI E CORRENTI IN UN CIRCUITO ELETTRICO. 1 paolo carlizza (paolo.carlizza) CALCOLO DI TENSIONI E CORRENTI IN UN CIRCUITO ELETTRICO. 23 May 2013 Generalita' Delle volte capita di porci di fronte ad un circuito elettrico, formato da una rete di generatori

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime sinusoidale

Esercitazioni di Elettrotecnica: circuiti in regime sinusoidale Università degli Studi di assino Esercitazioni di Elettrotecnica: circuiti in regime sinusoidale ntonio Maffucci ver settembre 004 Maffucci: ircuiti in regime sinusoidale ver - 004 Esercizi introduttivi

Dettagli

DOPPI BIPOLI Stefano Usai

DOPPI BIPOLI Stefano Usai DOPP BPOL Si definisce doppio bipolo una rete di resistori, comunque complessa, accessibile da due coppie di morsetti. Se per ogni coppia di morsetti si verifica che la corrente entrante da un morsetto

Dettagli

Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici

Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Dr. Carlo Petrarca Dipartimento di Ingegneria Elettrica Università di Napoli FEDERICO II 1 Lezione

Dettagli

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria

UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria Corso di Elettrotecnica A.A. 2001/2002 Prova scritta del 4 settembre 1999 Esercizio n 1 Data la rete in figura, determinare tutte le correnti (4

Dettagli

Analisi di Reti in Regime Stazionario

Analisi di Reti in Regime Stazionario nalisi di eti in egime Stazionario ata una rete con l elementi bipolari, identifico un sistema di l tensioni e l correnti descrittive (ad ex, usando la.u.). l incognite Le l incognite devono soddisfare:

Dettagli

APPUNTI DI ALGEBRA LINEARE

APPUNTI DI ALGEBRA LINEARE APPUNTI DI ALGEBRA LINEARE. Definizione Si dice spazio vettoriale (sul campo dei numeri reali R) un insieme V per il quale siano definite l operazione interna di somma (che ad ogni coppia di vettori e

Dettagli

Elettronica I Bipoli lineari; legge di Ohm; caratteristica tensione-corrente; nodi e maglie di un circuito

Elettronica I Bipoli lineari; legge di Ohm; caratteristica tensione-corrente; nodi e maglie di un circuito Elettronica Bipoli lineari; legge di Ohm; caratteristica tensionecorrente; nodi e maglie di un circuito alentino Liberali Dipartimento di Tecnologie dell nformazione Università di Milano, 603 Crema email:

Dettagli

VETTORI E MATRICI. Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI

VETTORI E MATRICI. Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 I VETTRORI E MATRICI (RICHIAMI) Ad ogni matrice quadrata a coefficienti reali è possibile associare un numero reale, detto determinante, calcolato

Dettagli

Dipendenza e indipendenza lineare

Dipendenza e indipendenza lineare Dipendenza e indipendenza lineare Luciano Battaia Questi appunti () ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia campus

Dettagli

Parte 1. Teoria. Elettrotecnica T-A, Ingegneria Elettronica e delle Telecomunicazioni Prova scritta di Mercoledì 9 Gennaio 2013

Parte 1. Teoria. Elettrotecnica T-A, Ingegneria Elettronica e delle Telecomunicazioni Prova scritta di Mercoledì 9 Gennaio 2013 Parte 1. Teoria Quesito 1 Si consideri un generico grafo con N = 5 nodi e R = 6 rami. 1. Nel grafo sono individuabili 2 LKC indipendenti. 2. Nel grafo sono individuabili 5 LKT indipendenti. 3. Qualsiasi

Dettagli

RETI LINEARI R 3 I 3 R 2 I 4

RETI LINEARI R 3 I 3 R 2 I 4 RETI LINERI 1 Leggi di Kirchoff. Metodo delle correnti di maglia R 1 R 3 I 1 I 3 E 1 J 1 J 2 J 3 I 2 I 4 R 4 I 5 R 5 I 6 R 6 J 4 R 7 Il calcolo delle correnti e delle differenze di potenziale in un circuito

Dettagli

Soluzione di circuiti RC ed RL del primo ordine

Soluzione di circuiti RC ed RL del primo ordine Principi di ingegneria elettrica Lezione 11 a parte 2 Soluzione di circuiti RC ed RL del primo ordine Metodo sistematico Costante di tempo Rappresentazione del transitorio Metodo sistematico per ricavare

Dettagli

Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff

Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff alentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Bipoli lineari;

Dettagli

UNIVERSITÀ DEGLI STUDI DEL SANNIO

UNIVERSITÀ DEGLI STUDI DEL SANNIO UNIVERSITÀ DEGI STUDI DE SANNIO ORSI DI AUREA IN ING. ENERGETIA, INFORMATIA E TEEOMUNIAZIONI D Prova scritta di Elettrotecnica Teoria dei ircuiti 26/01/2006 Proff. D. Davino e. Visone ognome: Nome: Matr.

Dettagli

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3 I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I prova in itinere 1 Novembre 008 SOLUZIONE - 1 - D1. (punti 8 ) Rispondere alle seguenti domande: punto per ogni risposta corretta, - 0.5 per ogni risposta

Dettagli

Introduzione a MATLAB

Introduzione a MATLAB Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Introduzione a MATLAB Lezione n. Dr. Carlo Petrarca Dipartimento di Ingegneria Elettrica e Tecnologie

Dettagli

Circuiti Elettrici Lineari Sinusoidi e fasori

Circuiti Elettrici Lineari Sinusoidi e fasori Facoltà di Ingegneria Uniersità degli studi di Paia Corso di Laurea Triennale in Ingegneria Elettronica e Informatica Circuiti Elettrici Lineari Sinusoidi e fasori Circuiti Elettrici Lineari a.a. 08/9

Dettagli

Tipo 1 Compiti A01 A03 A05 A07 A09 A11 A13 A15 A17 A19 A21 A23 A25 A27 A29 A31 A33 A35 A37 A39

Tipo 1 Compiti A01 A03 A05 A07 A09 A11 A13 A15 A17 A19 A21 A23 A25 A27 A29 A31 A33 A35 A37 A39 Tipo ompiti A0 A03 A05 A07 A09 A A3 A5 A7 A9 A2 A23 A25 A27 A29 A3 A33 A35 A37 A39 Esercizio Esempio di risoluzione. Scelto come riferimento il nodo A, le incognite sono le tensioni di nodo, D e E. 2.

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica 22.0.206 Problema Con riferimento al circuito in figura, nel quale entrambi gli interruttori si aprono all istante t = 0, determinare l espressione di i(t) (per ogni istante di tempo t) e rappresentarne

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici elettrici Elementi fondamentali Rappresentazione in variabili di stato Esempi di rappresentazione in variabili di stato Modellistica

Dettagli

Collegamento generatori di tensione. Collegamento parallelo. Sia dato il sistema di figura 1: Fig. 1 -

Collegamento generatori di tensione. Collegamento parallelo. Sia dato il sistema di figura 1: Fig. 1 - Collegamento generatori di tensione Collegamento parallelo Sia dato il sistema di figura : Fig. - vogliamo trovare il bipolo equivalente al parallelo dei tre generatori di tensione, il bipolo, cioè, che

Dettagli

5 - Reti di bipoli generici

5 - Reti di bipoli generici rincipio di equivalenza lettrotecnica 5 - eti di bipoli generici Due n-poli sono equivalenti se: 1) sono dotati dello stesso numero di morsetti, cosicché questi possono essere messi a due a due in corrispondenza;

Dettagli

Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici

Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Dr. Carlo Petrarca Dipartimento di Ingegneria Elettrica Università di Napoli FEDERICO II 1 Lezione

Dettagli

Lezione PSPICE n.1. Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici

Lezione PSPICE n.1. Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Lezione PSPICE n.1 Dr. Carlo Petrarca Dipartimento di Ingegneria Elettrica Università di Napoli

Dettagli

Esercitazione 6. Istruzioni trattate: size, find, diag, list.

Esercitazione 6. Istruzioni trattate: size, find, diag, list. Esercitazione 6 Istruzioni trattate: size, find, diag, list. Nella prima parte di questa esercitazione vedremo una realizzazione delle procedure SI, sostituzione all indietro ed SA, sostituzione in avanti.

Dettagli