Forze elastiche e Molla elicoidale versione 1.02 preliminare

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Forze elastiche e Molla elicoidale versione 1.02 preliminare"

Transcript

1 Forze elastiche e Molla elicoidale versione 1.02 preliminare MDV April 18, Elasticità L elasticità è la proprietà dei corpi soldi di tornare nella loro forma originale dopo avere subito una deformazione generata dall applicazione di una forza. Se la forza supera un certo valore, dipendente dal corpo, detto limite di elasticità la deformazione diviene permanente e si parla di deformazione plastica o addirittura di rottura. Un corpo solido si dice perfettamente elastico se torna nella sua forma originale una volta rimossa la forza che causa la deformazione restituendo tutta l energia spesa per provocare la deformazione. La legge fondamentale dell elasticità è la legge di Hooke: la deformazione (δ) generata da una forza (F ) applicata ad un corpo solido, una volta raggiunto l equilibrio, è proporzionale alla sua intensità: δ F (1) Il corpo perfettamente elastico è un idealizzazione che tuttavia descrive in modo sufficientemente accurato il comportamento di molti corpi solidi reali in un ampio intervallo di intensità di forze. Esistono vari tipi di elasticità dei corpi solidi in funzione di come è applicata la forza deformante: elasticità di trazione, di compressione e di scorrimento. Per una trattazione teorica approfondita della teoria dell elasticità si veda il testo [1]. Nel prossimo paragrafo descriveremo l elasticità di scorrimento. 2 Elasticità di scorrimento Se un solido di superficie S e altezza l è sottoposto a trazione con una forza F (vedi figura 1) si ottiene sperimentalmente x = 1 lf G S (2) La costante 1/G è detta coefficiente di scorrimento ed è una caratteristica del materiale 1

2 Figure 1: Elasticità di scorrimento con cui è fatto il corpo. Il suo inverso, G, è detto modulo di scorrimento e ha le dimensioni di una forza per unità di superficie. L angolo φ, la cui definizione è deducibile dalla figura 1, è dato da φ = 1 F G S = 1 M G ls Dove si è ipotizzato che φ sia sufficientemente piccolo da poter confondere la tangente con il suo angolo e si è introdotto il momento M della coppia delle forze F di braccio l. Nella tabella seguente sono riportati i valori del modulo di scorrimento (in inglese shear modulus) per alcuni materiali. 3 Elasticità di torsione Materiale Modulo di Scorrimento (GP a 10 9 N/m 2 ) Acciaio 79.3 Alluminio 25.5 Diamante 478 Gomma Polietilene Consideriamo un filo rettilineo omogeneo di sezione circolare fissato ad una estremità. Applichiamo all altra estremità un momento torcente M t, si osserva che il filo sarà torto, ovvero il cerchio delle base a cui è applicato il momento M t sarà ruotato di un angolo θ attorno all asse longitudinale del filo. Questa deformazione è detta torsione. (3) 2

3 Per una deformazione di torsione la legge di Hooke prende la forma M t = fθ (4) Il coefficiente f detto alle volte modulo di torsione dipende anche dalle caratteristiche geometriche del filo 1. L elasticità di torsione non rappresenta un nuovo tipo di elasticità ma può essere descritta attraverso il parametro che descrive l elasticità di scorrimento. Allo scopo, consideriamo un filo di raggio r e di lunghezza l tra le cui basi sia applicato un momento torcente M t come indicato in figura. Consideriamo, un parallelepipedo elementare di area di base ds = dρ ρdω ed altezza l prima dell applicazione del momento torcente. L applicazione del momento torcente per il parallelepipedo considerato è descrivibile con una deformazione di scorrimento per cui utilizzando la (3) possiamo scrivere: φ = 1 dγ (5) G l ds dove dγ è il momento torcente infinitesimo che agisce sull area elementare ds. La relazione precedente si può scrivere come: dγ = Gφ ρdρdω (6) dalla (6) è possibile ricavare l espressione della forza che agisce sulla superficie elementare ds: infatti dγ = l df con df forza elementare che agisce su ds; tenendo conto che φ = ρθ/l, la (6) diviene df = G θ l ρ2 dρdω (7) Il momento di questa forza elementare rispetto all asse passante per il centro del cilindro, è il momento torcente elementare, e vale: dm t = ρ df = G θ l ρ3 dρdω (8) Per ottenere il momento totale dovremo integrare la (8) sia in ω sia in ρ: M = 2π 0 dω r 0 dρ G θ l ρ3 = πgθ l Confrontando la relazione precedente con la (4) otteniamo per il modulo di torsione f = πg 2 Si noti che come detto all inizio del paragrafo, il parametro f dipende dalla geometria del filo: raggio e lunghezza. In particolare si deve notare la dipendenza dalla quarta potenza del raggio che permette di misurare forze dell ordine 2 di N. 1 I parametri associati all elasticità di trazione, di compressione e di scorrimento dipendono unicamente dalle caratteristiche del materiale di cui è costituito il corpo soggetto alla deformazione e non dalla forma geometrica del corpo. 2 La misura di queste debolissime forze tipicamente si affronta con la bilancia di torsione nella quale possono essere utilizzati fili del diametro di 1µm. r 4 l r 4 2 (9) 3

4 Figure 2: Elasticità di torsione La relazione precedente può essere scritta evidenziando la deformazione subita dal filo in funzione del momento torcente applicato: 4 La Molla θ = 2 Ml πg r 4 (10) Una molla elicoidale per piccole deformazioni genera una forza di tipo elastico: F = k x (11) la costante di proporzionalità k tra l allungamento e la forza generata k è detta costante elastica della molla e si misura, nel SI, in N/m. Analizzando la modalità con cui la molla si deforma si comprende che la forza generata dall allungamento della molla è dovuta ad elasticità di torsione. Calcoliamo ora la relazione tra la costante k e il modulo di torsione f. Supponiamo di tagliare il filo con con cui è costruita la molla con un piano passante per l asse della molla e per un generico punto A della molla (vedi la figura 3). Sia F 1 la forza che la parte inferiore della molla esercita nel punto A sulla parte superiore. In condizioni statiche F 1 = F. Le due forze F 1 e F formano una coppia di momento 3 M = F R. Consideriamo il momento M come applicato al punto A (nell approssimazione di spira piana M è tangente alla spira), se consideriamo M come 3 Si è ipotizzato che l angolo formato dal piano della spira con l orizzontale sia piccolo. In altre parole le spire della molla sono considerate giacere su piano perpendicolare all asse della molla 4

5 momento torcente dell elemento di filo dx nel punto A potremo scrivere, a causa della (4), dφ = M/f 1, dove f 1 è il modulo di torsione dell elemento dx considerato. Indichiamo con f il modulo di torsione dell intero filo con cui è costruita la molla, poiché dalla (9) risulta che il modulo di torsione è inversamente proporzionale alla lunghezza del filo, potremo scrivere f = f 1 dx/l e quindi dφ = M fl dx A causa della torsione dell angolo dφ, l estremità del filo si abbassa di dx = Rdφ. Figure 3: Molla elicoidale. A sinistra lo schema che mette in evidenza la torsione del filo della molla Integrando si ottiene lo spostamento finito x L F R 2 x = dx = f 0 dx L = F R2 f Da questa relazione si può ottenere la costante elastica della molla con la dipendenza esplicita dal suo raggio: k = f R 2 Esercizio 1. Due molle 1 e 2 di costanti elastiche k 1 e k 2 sono collegate in serie. Si calcoli la costante elastica k eq della molla equivalente alle due collegate in serie. Soluzione. Se F è la forza applicata alle due molle collegate in serie, in condizioni statiche, F è la stessa forza applicata sia alla molla 1 sia alla 2, quindi F = k 2 x 2 = k 1 x 1 L allungamento totale è x = x 1 + x 2. Il k equivalente delle due molle in serie è quindi: k = F x = F = k 1k 2 x 1 + x 2 k 1 + k 2 5

6 oppure 1 k = k 1 k 2 Esercizio 2. Due molle 1 e 2 di costanti elastiche k 1 e k 2 sono collegate parallelo. Si calcoli la costante elastica k eq della molla equivalente alle due collegate in parallelo. 5 Moto di un grave connesso ad una molla Consideriamo una massa m (assimilabile ad un punto materiale) connessa ad una molla ideale di costante elastica k in un campo di gravità g. Indichiamo con x un asse parallelo all accelerazione di gravità e diretto verso l alto (in direzione opposta a g). Sia x o la coordinata del punto in cui si trova l estremità libera della molla quando è a riposo (con carico nullo). Con questa scelta la forza esercitata dalla molla si scrive k(x x o ). Trascurando gli attriti e supponendo che il moto sia monodimensionale, la legge del moto della massa m si scrive come: mẍ = k(x x o ) mg (12) Metodo statico. Iniziamo cercando la posizione di equilibrio statico della massa m definita da accelerazione e velocità nulle. Si ottiene immediatamente che la posizione di equilibrio si ha quando il grave si trova nella posizione: x e = mg/k + x o (13) La relazione (13) permette di determinare la costante della molla k con il cosiddetto metodo statico. Questo metodo consiste nella misurazione di un certo numero di posizioni di equilibrio x ei in corrispondenza del valore delle masse m i. L uso del metodo dei minimi quadrati con un fit lineare permette la determinazione di k e x o con relative incertezze. Metodo dinamico. La relazione (12) è un equazione differenziale del secondo ordine a coefficienti costanti, la cui soluzione (come per tutte le equazioni differenziali lineari) è data dalla soluzione dell equazione differenziale omogenea associata (quella che si ottiene ponendo a zero il termine noto) più una soluzione particolare. Riscriviamo la (12) isolando il termine noto, dividendo la relazione per m e definendo il parametro ωo 2 = k/m (le cui dimensioni fisiche sono [T ] 2 ): ẍ + ω 2 ox = ω 2 ox o g (14) Una soluzione particolare è data dalla funzione costante x = x o g/ωo, 2 che coincide con la posizione di equilibrio statico della massa m. Come è noto dalla teoria delle equazioni differenziali lineari a coefficienti costanti, la soluzione dell equazione omogenea associata è data da C 1 e s1t + C 2 e s 2t (15) 6

7 dove s 1 e s 2 sono le soluzioni dell equazione algebrica che si ottiene sostituendo alla funzione incognita x(t) la variabile di appoggio s elevata alla potenza pari al grado della derivata e C 1 e C 2 sono due costanti di integrazione. Per la (12) l equazione algebrica è s 2 + ω 2 = 0, le cui soluzioni sono: s 1,2 = ± k ω 2 = ±iω = ±i m In conclusione la soluzione cercata è: x(t) = C 1 e iωot + C 2 e iωot + x o g/ω 2 o Per semplificare la notazione trasliamo l origine dell asse x nel punto x o g/ω 2 o, ovvero x x (x o g/ω 2 o). Con questa posizione la relazione precedente diviene x(t) = C 1 e iωot + C 2 e iωot Per determinare le costanti C 1 e C 2 si devono imporre le condizioni iniziali, ad esempio che all istante scelto come iniziale t = 0 la massa m sia nel punto x = 0 e che la elongazione massima della molla sia A. Dalla prima condizione si ricava facilmente che C 1 = C 2, da cui, x(t) = C 1 (e iωot e iωot ) = C 1 (cos ω o t + i sin ω o t cos ω o t + i sin ω o t) = 2iC 1 sin ω o t dove, nella seconda uguaglianza, si è fatto uso della formula di Eulero. Per imporre la seconda condizione iniziale, notiamo che il valore massimo che può assumere la funzione seno è 1 per cui potremo scrivere A = 2iC 1 e C 1 = A/2i e infine la soluzione cercata è: x(t) = A sin ω o t (16) Questa soluzione descrive, come aspettato, un moto sinusoidale o armonico attorno alla posizione di equilibrio. Introducendo il periodo del moto sinusoidale T = 2π/ω o, la (16) può essere scritta come: x(t) = A sin 2π T t = A sin k m t ; m Periodo del moto T = 2π k (17) Moto armonico smorzato. In presenza di attriti viscosi, in prima approssimazione propozionali alla velocità, la legge del moto descritta nel paragrafo precedente (vedi la (12) ), diviene: mẍ = k(x x o ) mg βẋ (18) dove β è un coefficiente di dimensioni fisiche [M][T ] 1. Utilizzando la stessa traslazione dell origine di x fatta nel paragrafo precedente e introducendo i parametri ω o = k/m (pulsazione in assenza di attrito) e ζ = β/(2 mk) (parametro adimensionale che caratterizza l intensità della forza viscosa), la (18) diviene: ẍ + 2ζω o ẋ + ω 2 o = 0 (19) 7

8 questa relazione, come la (14), è un equazione differenziale a coefficienti costanti del secondo ordine, il cui polinomio associato: s 2 + 2ζω o s + ωo 2 si annulla per ( s 1,2 = ω o ζ ± i ) 1 ζ 2 Procedendo in modo analogo al caso precedente otteniamo la soluzione cercata: x(t) = e ωoζt ( C 1 e ωo 1 ζ 2 t + C 2 e ωo 1 ζ 2 t ) Imponendo le condizioni iniziali, ad esempio come quelle nel caso privo di attrito (x(0) = 0 e amp[iezza massima pari ad A), otteniamo x(t) = Ae ωoζt sin ω o 1 ζ 2 t (20) La (20) descrive il moto di un grave soggetto ad una forza elastica in presenza di attrito viscoso le cui caratteristiche principali sono Il moto è di tipo oscillatorio modulato da un esponenziale decrescente. La frequenza con cui il grave oscilla dipende dal parametro ζ e in particolare m T = 2π k(1 ζ 2 ) = 2π 1 ω = T o (21) o 1 ζ 2 1 ζ 2 il valore del parametro ζ in molti casi genera correzioni trascurabili al periodo di oscillazione (vedi esempio numerico nel seguito) 6 Costante della Molla Esperimento La misurazione della costante elastica di una molla k può essere affrontato in due modi che brevemente indichiamo con modo statico che sfrutta la relazione F = k x e con modo dinamico che sfrutta la relazione T = 2π m/k. 6.1 Modo statico. La molla viene caricata con diverse masse di valore noto e in corrispondenza di ogni massa si misura la posizione della stessa rispetto ad un asse parallelo all asse della molla e solidale con il punto di sospensione della molla. Si noti che se le spire della molla a riposo sono a contatto tra di loro, la misura di questa posizione è affetta da un errore sistematico che si annulla appena le spire iniziano a separarsi. Analisi dati. Il fit dei dati sperimentali con una retta permette di ricavare sia k sia lo zero, ovvero la posizione virtuale assunta dalla molla scarica. 8

9 6.2 Modo dinamico La molla caricata con una massa m i viene messa in oscillazione, si attende che le componenti non verticali del moto si attenuino e quindi si misura il corrispondente periodo di oscillazione T i. Analisi dati. In questo caso un esame più accurato del fenomeno mette in evidenza la presenza di alcuni effetti sistematici che possono influenzare la misurazione. In dettaglio: A La massa oscillante muovendosi nell aria subisce un attrito viscoso per cui il moto non è unicamente sinusoidale ma i) la sua ampiezza diminuisce nel tempo e ii) il periodo di oscillazione dipende anche dal valore della massa oscillante come mostrato dalla relazione (21). B La massa 4 della molla del materiale con cui è fatta la molla partecipa, in modo diseguale, al moto. Infatti, l elemento di molla prossimo al punto di sospensione della massa oscilla come la massa mentre l elemento di molla prossimo al punto di sospensione è fermo. Effetto A. In molte circostanze l effetto sistematico A è trascurabile come accade ad esempio se l ampiezza delle oscillazione si riduce di un fattore 1/e (e costante di Nepero) dopo un numero di oscillazioni dell ordine di 10 2 con un valore del periodo dell ordine di 1 s, da cui si ricava ζ Dalla (21) si valuta un effetto sistematico sul valore del Figure 4: Valutazione dell energia cinetica della molla periodo di oscillazione del periodo dell ordine di 3 parti per milione. Effetto B. Per valutare quale frazione della massa della molla partecipi al moto oscillatorio calcoliamo quando vale l energia cinetica di una molla massiva di massa m m. Come ipotesi semplificativa supponiamo la molla come un corpo omogeneo 5 di densità 4 Si noti che la massa coinvolta in questa analisi è la massa inerziale della molla. Si dimostra facilmente che la massa gravitazionale della molla non influenza il moto se non per la traslazione del punto di equilibrio. 5 L allungamento della molla si distribuisce uniformemente lungo tutta la molla 9

10 lineare di massa λ(l) = m m /L, dove L è la lunghezza della molla (variabile nel tempo). Se V è la velocità della massa collegata alla molla, nell ipotesi di allungamento uniforme, la velocità v m (x) dell elemento di massa della molla dm = λdx = (m m /L)dx, che si trovi ad una distanza x dal punto di sospensione è v m (x) = V x/l. L energia cinetica elementare dell elemento di massa dm è quindi dk m = (1/2) dm v 2 m(x): K m = dk m = mm 0 1 L 1 V 2 2 v2 m(x) dm = m 0 2 L 2 x2 m L dx = 1 m m 2 3 V 2 (22) Questo calcolo mostra che, nelle approssimazioni fatte, la molla partecipa al moto del sistema massa più molla con una massa equivalente m eq pari a 1/3 della massa della molla. Per tenere conto di questo effetto bisogna aggiungere alla massa m, che compare nella relazione (17), il contributo m eq dovuto alla massa della molla. La relazione che può essere usata nel fit dei dati sperimentali è quindi: T 2 = 4π2 k (m + m eq) (23) dove i parametri da stimare sperimentalmente sono sia k sia m e q, quest ultimo da confrontare con il valore m m /3 ottenuto dal calcolo. Riferimenti bibliografici [1] Lev D. Landau, Evgenij M. Lifsits Teoria dell elasticità Editori Riuniti 10

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Proprietà elastiche dei corpi

Proprietà elastiche dei corpi Proprietà elastiche dei corpi I corpi solidi di norma hanno una forma ed un volume non facilmente modificabili, da qui deriva la nozioni di corpo rigido come corpo ideale non deformabile. In realtà tutti

Dettagli

Tonzig Fondamenti di Meccanica classica

Tonzig Fondamenti di Meccanica classica 224 Tonzig Fondamenti di Meccanica classica ). Quando il signor Rossi si sposta verso A, la tavola si sposta in direzione opposta in modo che il CM del sistema resti immobile (come richiesto dal fatto

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problema n. 1: Un corpo puntiforme di massa m = 2.5 kg pende verticalmente dal soffitto di una stanza essendo

Dettagli

Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile

Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile Anno Accademico 2015-2016 A. Ponno (aggiornato al 19 gennaio 2016) 2 Ottobre 2015 5/10/15 Benvenuto, presentazione

Dettagli

Consideriamo una forza di tipo elastico che segue la legge di Hooke: F x = kx, (1)

Consideriamo una forza di tipo elastico che segue la legge di Hooke: F x = kx, (1) 1 L Oscillatore armonico L oscillatore armonico è un interessante modello fisico che permette lo studio di fondamentali grandezze meccaniche sia da un punto di vista teorico che sperimentale. Le condizioni

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

F 2 F 1. r R F A. fig.1. fig.2

F 2 F 1. r R F A. fig.1. fig.2 N.1 Un cilindro di raggio R = 10 cm e massa M = 5 kg è posto su un piano orizzontale scabro (fig.1). In corrispondenza del centro del cilindro è scavata una sottilissima fenditura in modo tale da ridurre

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie Forze, leggi della dinamica, diagramma del corpo libero 1 FORZE Grandezza fisica definibile come l' agente in grado di modificare lo stato di quiete o di moto di un corpo. Ci troviamo di fronte ad una

Dettagli

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione

Dettagli

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA Dinamica: studio delle forze che causano il moto dei corpi 1 Forza Si definisce forza una qualunque causa esterna che produce una variazione dello stato

Dettagli

pure rivolta verso sinistra (se l accelerazione è positiva). Per l equilibrio dinamico del corpo la somma di tali forze deve essere nulla:

pure rivolta verso sinistra (se l accelerazione è positiva). Per l equilibrio dinamico del corpo la somma di tali forze deve essere nulla: Oscillatore semplice Vibrazioni armoniche libere o naturali k m 0 x Se il corpo di massa m è spostato di x verso destra rispetto alla posizione di riposo, è soggetto alla forza elastica di richiamo della

Dettagli

CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini

CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini Introduzione. Il metodo scientifico. Principi e leggi della Fisica. I modelli

Dettagli

- Onde corpuscolari (di materia) che descrivano il comportamento ondulatorio delle particelle.

- Onde corpuscolari (di materia) che descrivano il comportamento ondulatorio delle particelle. Richiami di onde Durante il corso di fisica avete visto che le onde possono dividersi in - Onde meccaniche (come quelle del mare, le onde sismiche, le onde sonore) caratterizzate dalla necessità di un

Dettagli

Modulo di Meccanica e Termodinamica

Modulo di Meccanica e Termodinamica Modulo di Meccanica e Termodinamica 1) Misure e unita di misura 2) Cinematica: + Moto Rettilineo + Moto Uniformemente Accelerato [+ Vettori e Calcolo Vettoriale] + Moti Relativi 3) Dinamica: + Forza e

Dettagli

Dinamica: Forze e Moto, Leggi di Newton

Dinamica: Forze e Moto, Leggi di Newton Dinamica: Forze e Moto, Leggi di Newton La Dinamica studia il moto dei corpi in relazione il moto con le sue cause: perché e come gli oggetti si muovono. La causa del moto è individuata nella presenza

Dettagli

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto.

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto. Esercizio 1 Una pietra viene lanciata con una velocità iniziale di 20.0 m/s contro una pigna all'altezza di 5.0 m rispetto al punto di lancio. Trascurando ogni resistenza, calcolare la velocità della pietra

Dettagli

LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO. Esercizio.

LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO. Esercizio. LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO Esercizio Esercizio Esercizio Dati esercizio: I 1 =5,0 Kg m 2 I 2 =10 Kg m 2 ω i =10giri/sec

Dettagli

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15 Materia: FISICA 1) INTRODUZIONE ALLA SCIENZA E AL METODO SCIENTIFICO La Scienza moderna. Galileo ed il metodo sperimentale. Grandezze

Dettagli

Oscillazioni: il pendolo semplice

Oscillazioni: il pendolo semplice Oscillazioni: il pendolo semplice Consideriamo il pendolo semplice qui a fianco. La cordicella alla quale è appeso il corpo (puntiforme) di massa m si suppone inestensibile e di massa trascurabile. Per

Dettagli

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d Esercizio 1 Un automobile viaggia a velocità v 0 su una strada inclinata di un angolo θ rispetto alla superficie terrestre, e deve superare un burrone largo d (si veda la figura, in cui è indicato anche

Dettagli

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 28360 - FISICA MATEMATICA A.A. 204/5 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Energia potenziale Problema 26 Una molla ha una costante elastica k uguale a 440 N/m. Di quanto

Dettagli

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti];

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti]; 1 Esercizio Una ruota di raggio R = 15 cm e di massa M = 8 Kg può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2 = 30 0, ed è collegato tramite un filo inestensibile ad un blocco di

Dettagli

Note sull uso della carta (bi)logaritmica. Luca Baldini, INFN - Pisa versione 1.1

Note sull uso della carta (bi)logaritmica. Luca Baldini, INFN - Pisa versione 1.1 Note sull uso della carta (bi)logaritmica Luca Baldini, INFN - Pisa versione 1.1 23 dicembre 2003 Indice Introduzione 2 Indice delle versioni............................ 2 1 Le leggi di potenza e la carta

Dettagli

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA 1. La Legge di Coulomb Esercizio 1. Durante la scarica a terra di un fulmine scorre una corrente di.5 10 4 A per

Dettagli

LA FORZA. Il movimento: dal come al perché

LA FORZA. Il movimento: dal come al perché LA FORZA Concetto di forza Principi della Dinamica: 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale e forza peso Accelerazione di gravità Massa, peso, densità pag.1

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

n matr.145817 23. 01. 2003 ore 8:30-10:30

n matr.145817 23. 01. 2003 ore 8:30-10:30 Matteo Vecchi Lezione del n matr.145817 23. 01. 2003 ore 8:30-10:30 Il Moto Esterno Con il termine moto esterno intendiamo quella branca della fluidodinamica che studia il moto dei fluidi attorno ad un

Dettagli

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella Equazione di Ohm nel dominio fasoriale: Legge di Ohm:. Dalla definizione di operatore di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, dove Adesso sostituiamo nella

Dettagli

Forze elastiche e Molla elicoidale

Forze elastiche e Molla elicoidale Forze elastiche e Molla elicoidale May 10, 2016 1 Elasticità L elasticità è la proprietà dei corpi soldi di tornare nella loro forma originale dopo avere subito una deformazione generata dall applicazione

Dettagli

Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013.

Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013. Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013. FISICA NEVIO FORINI PROGRAMMA 11 LEZIONI DI 2 ORE + VERIFICA :

Dettagli

ESAME DI STATO 2009/10 INDIRIZZO MECCANICA TEMA DI : MECCANICA APPLICATA E MACCHINE A FLUIDO

ESAME DI STATO 2009/10 INDIRIZZO MECCANICA TEMA DI : MECCANICA APPLICATA E MACCHINE A FLUIDO ESAME DI STATO 2009/10 INDIRIZZO MECCANICA TEMA DI : MECCANICA APPLICATA E MACCHINE A FLUIDO Lo studio delle frizioni coniche si effettua distinguendo il caso in cui le manovre di innesto e disinnesto

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Statica e dinamica dei fluidi. A. Palano

Statica e dinamica dei fluidi. A. Palano Statica e dinamica dei fluidi A. Palano Fluidi perfetti Un fluido perfetto e incomprimibile e indilatabile e non possiede attrito interno. Forza di pressione come la somma di tutte le forze di interazione

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Programmazione modulare 2015-16

Programmazione modulare 2015-16 Programmazione modulare 2015-16 ndirizzo: BEO Disciplina: FS lasse: Prime 1 1B 1 1G Ore settimanali previste: 3 (2 ore eoria - 1 ora Laboratorio) OPEEZE itolo odulo POLO Ore previste per modulo Periodo

Dettagli

Lo studio del campo di tensione e di deformazione esistente in una qualsiasi struttura, in conseguenza dell applicazione di sollecitazioni esterne, è

Lo studio del campo di tensione e di deformazione esistente in una qualsiasi struttura, in conseguenza dell applicazione di sollecitazioni esterne, è Lo studio del campo di tensione e di deformazione esistente in una qualsiasi struttura, in conseguenza dell applicazione di sollecitazioni esterne, è di fondamentale importanza per poterne definire il

Dettagli

Dimensionamento delle strutture

Dimensionamento delle strutture Dimensionamento delle strutture Prof. Fabio Fossati Department of Mechanics Politecnico di Milano Lo stato di tensione o di sforzo Allo scopo di caratterizzare in maniera puntuale la distribuzione delle

Dettagli

Laboratorio di Fisica Sperimentale

Laboratorio di Fisica Sperimentale Università degli Studi Roma La Sapienza DIPARTIMENTO DI FISICA Laboratorio di Fisica Sperimentale Corso di Laurea in Ingegneria Meccanica Anno Accademico 4/5 1 a Esperienza di Laboratorio 19/5/5 Nome e

Dettagli

2 R = mgr + 1 2 mv2 0 = E f

2 R = mgr + 1 2 mv2 0 = E f Esercizio 1 Un corpo puntiforme di massa m scivola lungo la pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. Calcolare: a) Il valore

Dettagli

Lo spazio percorso in 45 secondi da un treno in moto con velocità costante di 130 km/h è: a) 2.04 km b) 6.31 km c) 428 m d) 1.

Lo spazio percorso in 45 secondi da un treno in moto con velocità costante di 130 km/h è: a) 2.04 km b) 6.31 km c) 428 m d) 1. L accelerazione iniziale di un ascensore in salita è 5.3 m/s 2. La forza di contatto normale del pavimento su un individuo di massa 68 kg è: a) 2.11 10 4 N b) 150 N c) 1.03 10 3 N Un proiettile viene lanciato

Dettagli

DINAMICA. 1. La macchina di Atwood è composta da due masse m

DINAMICA. 1. La macchina di Atwood è composta da due masse m DINAMICA. La macchina di Atwood è composta da due masse m e m sospese verticalmente su di una puleggia liscia e di massa trascurabile. i calcolino: a. l accelerazione del sistema; b. la tensione della

Dettagli

Usando il pendolo reversibile di Kater

Usando il pendolo reversibile di Kater Usando il pendolo reversibile di Kater Scopo dell esperienza è la misurazione dell accelerazione di gravità g attraverso il periodo di oscillazione di un pendolo reversibile L accelerazione di gravità

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 29/01/2013.

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 29/01/2013. Fisica Generale per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 20/2 Appello del 29/0/203. Tempo a disposizione: 2h30. Scrivere solamente su fogli forniti Modalità di risposta: spiegare sempre il procedimento

Dettagli

Misura di e/m. Marilena Teri, Valerio Toso & Ettore Zaffaroni (gruppo Lu4)

Misura di e/m. Marilena Teri, Valerio Toso & Ettore Zaffaroni (gruppo Lu4) Misura di e/m Marilena Teri, Valerio Toso & Ettore Zaffaroni (gruppo Lu4) 1 Introduzione 1.1 Introduzione ai fenomeni in esame Un elettrone all interno di un campo elettrico risente della forza elettrica

Dettagli

Dinamica II Lavoro di una forza costante

Dinamica II Lavoro di una forza costante Dinamica II Lavoro di una forza costante Se il punto di applicazione di una forza subisce uno spostamento ed esiste una componente della forza che sia parallela allo spostamento, la forza compie un lavoro.

Dettagli

Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013

Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013 Fisica Generale I (primo modulo) A.A. 203-204, 9 Novembre 203 Esercizio I. m m 2 α α Due corpi, di massa m = kg ed m 2 =.5 kg, sono poggiati su un cuneo di massa M m 2 e sono connessi mediante una carrucola

Dettagli

DIMENSIONAMENTO DEL MARTINETTO PER RICIRCOLO DI SFERE

DIMENSIONAMENTO DEL MARTINETTO PER RICIRCOLO DI SFERE DIMENSIONAMENTO DEL MARTINETTO PER RICIRCOLO DI SFERE Per un corretto dimensionamento del martinetto a ricircolo di sfere è necessario operare come segue: definizione dei dati del dell applicazione (A)

Dettagli

1) IL MOMENTO DI UNA FORZA

1) IL MOMENTO DI UNA FORZA 1) IL MOMENTO DI UNA FORZA Nell ambito dello studio dei sistemi di forze, diamo una definizione di momento: il momento è un ente statico che provoca la rotazione dei corpi. Le forze producono momenti se

Dettagli

a t Esercizio (tratto dal problema 5.10 del Mazzoldi)

a t Esercizio (tratto dal problema 5.10 del Mazzoldi) 1 Esercizio (tratto dal problema 5.10 del Mazzoldi) Una guida semicircolare liscia verticale di raggio = 40 cm è vincolata ad una piattaforma orizzontale che si muove con accelerazione costante a t = 2

Dettagli

Suggerimenti per evitare errori frequenti nello scritto di fisica

Suggerimenti per evitare errori frequenti nello scritto di fisica Suggerimenti per evitare errori frequenti nello scritto di fisica Quelli che seguono sono osservazioni utili ad evitare alcuni degli errori piu frequenti registrati durante gli scritti di fisica. L elenco

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

CdL Professioni Sanitarie A.A. 2012/2013. Unità 3 (4 ore)

CdL Professioni Sanitarie A.A. 2012/2013. Unità 3 (4 ore) L. Zampieri Fisica per CdL Professioni Sanitarie A.A. 12/13 CdL Professioni Sanitarie A.A. 2012/2013 Statica del Corpo Rigido Momento di una forza Unità 3 (4 ore) Condizione di equilibrio statico: leve

Dettagli

Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo.

Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo. Lavoro ed energia 1. Forze conservative 2. Energia potenziale 3. Conservazione dell energia meccanica 4. Conservazione dell energia nel moto del pendolo 5. Esempio: energia potenziale gravitazionale 6.

Dettagli

LICEO ARTISTICO BOCCIONI A.S. 2013-2014. Programma di MATEMATICA svolto nella Classe Prima L

LICEO ARTISTICO BOCCIONI A.S. 2013-2014. Programma di MATEMATICA svolto nella Classe Prima L LICEO ARTISTICO BOCCIONI A.S. 2013-2014 Programma di MATEMATICA svolto nella Classe Prima L I numeri naturali e i numeri interi Che cosa sono i numeri naturali. L insieme dei numeri naturali N. Le quattro

Dettagli

DINAMICA, LAVORO, ENERGIA. G. Roberti

DINAMICA, LAVORO, ENERGIA. G. Roberti DINAMICA, LAVORO, ENERGIA G. Roberti 124. Qual è il valore dell'angolo che la direzione di una forza applicata ad un corpo deve formare con lo spostamento affinché la sua azione sia frenante? A) 0 B) 90

Dettagli

MECCANICA. 2. Un sasso cade da fermo da un grattacielo alto 100 m. Che distanza ha percorso dopo 2 secondi?

MECCANICA. 2. Un sasso cade da fermo da un grattacielo alto 100 m. Che distanza ha percorso dopo 2 secondi? MECCANICA Cinematica 1. Un oggetto che si muove di moto circolare uniforme, descrive una circonferenza di 20 cm di diametro e compie 2 giri al secondo. Qual è la sua accelerazione? 2. Un sasso cade da

Dettagli

ESEMPI DI TEST DI INGRESSO FISICA 2010 G. Selvaggi, R. Stella Dipartimento Interateneo di fisica di Fisica 3 marzo 2010

ESEMPI DI TEST DI INGRESSO FISICA 2010 G. Selvaggi, R. Stella Dipartimento Interateneo di fisica di Fisica 3 marzo 2010 ESEMPI DI TEST DI INGRESSO FISICA 2010 G. Selvaggi, R. Stella Dipartimento Interateneo di fisica di Fisica 3 marzo 2010 1 Fisica 1. Un ciclista percorre 14.4km in mezz ora. La sua velocità media è a. 3.6

Dettagli

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi

Dettagli

Energia potenziale L. P. Maggio 2007. 1. Campo di forze

Energia potenziale L. P. Maggio 2007. 1. Campo di forze Energia potenziale L. P. Maggio 2007 1. Campo di forze Consideriamo un punto materiale di massa m che si muove in una certa regione dello spazio. Si dice che esso è soggetto a un campo di forze, se ad

Dettagli

5. LE RAPPRESENTAZIONI CARTOGRAFICHE vers 100609

5. LE RAPPRESENTAZIONI CARTOGRAFICHE vers 100609 5. LE RAPPRESENTAZIONI CARTOGRAFICHE vers 100609 sostituscono le pagg. 50-58 (fino alle eq. 5.28) Come già visto è stato scelto l'ellissoide come riferimento planimetrico sul quale proiettare tutti i punti

Dettagli

TRAVE SU SUOLO ELASTICO

TRAVE SU SUOLO ELASTICO Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine

Dettagli

FACSIMILE prova scritta intercorso 1 (per allenamento)

FACSIMILE prova scritta intercorso 1 (per allenamento) FACSIMILE prova scritta intercorso 1 (per allenamento) Laurea in Scienza e Ingegneria dei Materiali anno accademico -3 Istituzioni di Fisica della Materia - Prof. Lorenzo Marrucci Tempo a disposizione:

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ E DELLA RICERCA UFFICIO SCOLASTICO REGIONALE PER IL LAZIO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ E DELLA RICERCA UFFICIO SCOLASTICO REGIONALE PER IL LAZIO MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ E DELLA RICERCA UFFICIO SCOLASTICO REGIONALE PER IL LAZIO Liceo Scientifico statale Innocenzo XII Anzio (Roma) PROGRAMMA SVOLTO (a.s. 2013/14) Classe PRIMA sez

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

Esercitazione 5 Dinamica del punto materiale

Esercitazione 5 Dinamica del punto materiale Problema 1 Un corpo puntiforme di massa m = 1.0 kg viene lanciato lungo la superficie di un cuneo avente un inclinazione θ = 40 rispetto all orizzontale e altezza h = 80 cm. Il corpo viene lanciato dal

Dettagli

2. L ENERGIA MECCANICA

2. L ENERGIA MECCANICA . L ENERGIA MECCANICA.1 Il concetto di forza La forza può essere definita come «azione reciproca tra corpi che ne altera lo stato di moto o li deforma: essa é caratterizzata da intensità direzione e verso».

Dettagli

Proprieta meccaniche dei fluidi

Proprieta meccaniche dei fluidi Proprieta meccaniche dei fluidi 1. Definizione di fluido: liquido o gas 2. La pressione in un fluido 3. Equilibrio nei fluidi: legge di Stevino 4. Il Principio di Pascal 5. Il barometro di Torricelli 6.

Dettagli

IL MODELLO DI MICHAELIS E MENTEN PER LA CINETICA ENZIMATICA.

IL MODELLO DI MICHAELIS E MENTEN PER LA CINETICA ENZIMATICA. CORSO DI CHIMICA E PROPEDEUTICA BIOCHIMICA FACOLTA DI MEDICINA E CHIRURGIA. IL MODELLO DI MICHAELIS E MENTEN PER LA CINETICA ENZIMATICA. Un enzima è una proteina capace di catalizzare una specifica reazione

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

Per ripassare gli argomenti di fisica classe 3^ ( e preparare il test d ingresso di settembre)

Per ripassare gli argomenti di fisica classe 3^ ( e preparare il test d ingresso di settembre) Per ripassare gli argomenti di fisica classe 3^ ( e preparare il test d ingresso di settembre) Un corpo viene lasciato cadere da un altezza di 30 m. dal suolo. In che posizione e che velocità possiede

Dettagli

LA LEGGE DI GRAVITAZIONE UNIVERSALE

LA LEGGE DI GRAVITAZIONE UNIVERSALE GRAVIMETRIA LA LEGGE DI GRAVITAZIONE UNIVERSALE r La legge di gravitazione universale, formulata da Isaac Newton nel 1666 e pubblicata nel 1684, afferma che l'attrazione gravitazionale tra due corpi è

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

Studio sperimentale della propagazione di un onda meccanica in una corda

Studio sperimentale della propagazione di un onda meccanica in una corda Studio sperimentale della propagazione di un onda meccanica in una corda Figura 1: Foto dell apparato sperimentale. 1 Premessa 1.1 Velocità delle onde trasversali in una corda E esperienza comune che quando

Dettagli

Generalità e note di teoria

Generalità e note di teoria Capitolo 1 Generalità e note di teoria In questo capitolo sono riportate alcune note delle teorie utilizzate, riguardanti: Verifiche di resistenza. Dati del problema e convenzioni. Ipotesi fondamentali.

Dettagli

FAM. 1. Sistema composto da quattro PM come nella tabella seguente

FAM. 1. Sistema composto da quattro PM come nella tabella seguente Serie 11: Meccanica IV FAM C. Ferrari Esercizio 1 Centro di massa: sistemi discreti Determina il centro di massa dei seguenti sistemi discreti. 1. Sistema composto da quattro PM come nella tabella seguente

Dettagli

Leggi di Newton ed esempi

Leggi di Newton ed esempi Leggi di Newton ed esempi 1 Leggi di Newton Lo spazio delle fasi. Il moto di un punto materiale nello spazio è descritto dalla dipendenza temporale delle sue grandezze cinematiche, posizione, velocità

Dettagli

IL FORMULARIO DI FISICA PER LE CLASSI DI 3 E 4 LICEO SCIENTIFICO Di Pietro Aceti

IL FORMULARIO DI FISICA PER LE CLASSI DI 3 E 4 LICEO SCIENTIFICO Di Pietro Aceti IL FORMULARIO DI FISICA PER LE CLASSI DI 3 E 4 LICEO SCIENTIFICO Di Pietro Aceti ATTENZIONE Quest opera è stata scritta con l intenzione di essere un comodo strumento di ripasso, essa non dà informazioni

Dettagli

RISONANZA. Introduzione. Risonanza Serie.

RISONANZA. Introduzione. Risonanza Serie. RISONANZA Introduzione. Sia data una rete elettrica passiva, con elementi resistivi e reattivi, alimentata con un generatore di tensione sinusoidale a frequenza variabile. La tensione di alimentazione

Dettagli

BILANCIAMENTO. 8-1 Bilanciamento statico di un rotore

BILANCIAMENTO. 8-1 Bilanciamento statico di un rotore 8 BILANCIAMENTO Come si è visto al capitolo 7-3.3, quando il baricentro di un rotore non coincide con l asse di rotazione possono insorgere fenomeni vibratori di entità rilevante, talvolta tali, in condizioni

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Dinamica del corpo rigido: Appunti.

Dinamica del corpo rigido: Appunti. Dinamica del corpo rigido: Appunti. I corpi rigidi sono sistemi di punti materiali, discreti o continui, che hanno come proprietà peculiare quella di conservare la loro forma, oltre che il loro volume,

Dettagli

Esperienze del primo semestre del Laboratorio di Fisica I

Esperienze del primo semestre del Laboratorio di Fisica I Esperienze del primo semestre del Laboratorio di Fisica I 25 settembre 2003 Meccanica Pendolo semplice Il pendolo semplice, che trovate montato a fianco del tavolo, è costituito da una piccola massa (intercambiabile)

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

Condizioni ambientali per le le macchine utensili. Ing. Gianfranco Malagola Alesamonti Barasso (VA)

Condizioni ambientali per le le macchine utensili. Ing. Gianfranco Malagola Alesamonti Barasso (VA) 1 Condizioni ambientali per le le macchine utensili Ing. Gianfranco Malagola Alesamonti Barasso (VA) Condizioni ambientali 2 Per garantire le migliori prestazioni della macchina utensile è necessario mantenere

Dettagli

Le forze. Capitolo 8. 8.1 Forza peso e massa

Le forze. Capitolo 8. 8.1 Forza peso e massa Capitolo 8 Le forze 8.1 Forza peso e massa Abbiamo definito la massa inerziale, in precedenza, come la quantità di materia che compone un corpo, ed abbiamo precisato questa definizione introducendo il

Dettagli

Politecnico di Torino Dip. di Ingegneria Strutturale e Geotecnica. Centro sui Rischi nelle Costruzioni

Politecnico di Torino Dip. di Ingegneria Strutturale e Geotecnica. Centro sui Rischi nelle Costruzioni Politecnico di Torino Dip. di Ingegneria Strutturale e Geotecnica Centro sui Rischi nelle Costruzioni INDICE DELLA PRESENTAZIONE - Concetti base di dinamica dei sistemi discreti oscillazioni libere e smorzamento

Dettagli

Test di autovalutazione Corso di Laurea in Tossicologia dell ambiente e degli alimenti

Test di autovalutazione Corso di Laurea in Tossicologia dell ambiente e degli alimenti Test di autovalutazione Corso di Laurea in Tossicologia dell ambiente e degli alimenti Quesito 1 Un punto materiale di massa 5 kg si muove di moto circolare uniforme con velocità tangenziale 1 m/s. Quanto

Dettagli

Lezione. Tecnica delle Costruzioni

Lezione. Tecnica delle Costruzioni Lezione Tecnica delle Costruzioni 1 Flessione composta tensoflessione Risposta della sezione Campo elastico σ + A I Risposta della sezione Al limite elastico el, Per calcolare el, : σ A + el, I f f + el,

Dettagli

MISURA DELL ACCELERAZIONE DI GRAVITA TERRESTRE

MISURA DELL ACCELERAZIONE DI GRAVITA TERRESTRE Elisa Bielli & Viviana Bosello 3 G 9/11/2015 Laboratorio di fisica 1 MISURA DELL ACCELERAZIONE DI GRAVITA TERRESTRE SCOPO: Misurare strumentalmente l accelerazione di gravità terrestre mediante l uso di

Dettagli

FISICA (modulo 1) PROVA SCRITTA 10/02/2014

FISICA (modulo 1) PROVA SCRITTA 10/02/2014 FISICA (modulo 1) PROVA SCRITTA 10/02/2014 ESERCIZI E1. Un proiettile del peso di m = 10 g viene sparato orizzontalmente con velocità v i contro un blocco di legno di massa M = 0.5 Kg, fermo su una superficie

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino Lunedì 20 dicembre 2010 Docente del corso: prof. V. Maiorino Se la Terra si spostasse all improvviso su un orbita dieci volte più lontana dal Sole rispetto all attuale, di quanto dovrebbe variare la massa

Dettagli

CdL in Biotecnologie Biomolecolari e Industriali

CdL in Biotecnologie Biomolecolari e Industriali CdL in Biotecnologie Biomolecolari e Industriali Corso di Matematica e Fisica recupero II prova in itinere di Fisica (9-1-2008) 1) Un sasso di 100 g viene lanciato verso l alto con una velocità iniziale

Dettagli

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Attilio Piana, Andrea Ziggioto 1 egime variabile in un circuito elettrico. Circuito C. 1.1 Carica del condensatore

Dettagli