Dipartimento di Biologia Animale Università degli Studi di Pavia

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dipartimento di Biologia Animale Università degli Studi di Pavia"

Transcript

1 Dipartimento di Biologia Animale Università degli Studi di Pavia INDAGINE SUI DANNEGGIAMENTI DA CINGHIALE (SUS SCROFA) NEL PARCO NAZIONALE DELL ARCIPELAGO TOSCANO E SULL EFFICACIA DEI METODI DI CONTROLLO DELLA POPOLAZIONE Glugno 2010

2 A CURA DI ALBERTO MERIGGI PIETRO MILANESI ANNA BRANGI PAOLO LAMBERTI Dipartimento di Biologia Animale Università di Pavia 1

3 INDAGINE SUI DANNEGGIAMENTI DA CINGHIALE (SUS SCROFA) NEL PARCO NAZIONALE DELL ARCIPELAGO TOSCANO E SULL EFFICACIA DEI METODI DI CONTROLLO DELLA POPOLAZIONE PREMESSA L incremento delle popolazioni di cinghiale in Italia ha innescato una serie di problemi derivanti, in particolar modo, dai danneggiamenti alle coltivazioni e ad altre destinazioni d uso dei suoli (p. es. orti familiari, giardini, ecc.) e dalla necessità di far fronte ai danni con compensazioni da parte degli Enti pubblici preposti alla gestione della fauna selvatica (Monaco et al. 2010). In alcune regioni e province italiane, l entità dei danni è tale da non essere economicamente sostenibile a lungo termine. Il cinghiale, però, è una specie di selvaggina di grande importanza economica e gestionale che assorbe l attenzione e l attività di un numero sempre più elevato di cacciatori, i quali hanno interesse a mantenere le popolazioni ad un livello numerico elevato, incompatibile con una limitazione rilevante dei danni. A questo si aggiunge l indotto economico, alquanto importante, dell attività venatoria al cinghiale (acquisto d armi, cani e attrezzature, vendita degli animali abbattuti, cessione di quote di prelievo) che funge, in parte, da contropartita ai danni e contribuisce a mantenere l interesse per il mantenimento di popolazioni ad alta densità. Dalla seconda metà degli anni 90 il problema dell incremento del cinghiale e, conseguentemente, dell intensificazione dei danni ha investito in modo sempre più preoccupante molti parchi nazionali e regionali e riserve naturali, dove è impensabile provvedere con un prelievo generalizzato e intenso e per i quali la riduzione consistente delle risorse finanziare rende sempre più difficile fronteggiare la situazione (Monaco et al. 2010). Nelle aree protette il problema dei danni da cinghiale viene usualmente affrontato secondo tre modalità tra loro complementari (Monaco et al. 2010): Compensazione del danno su denuncia da parte di proprietari e conduttori dei fondi, Prevenzione attraverso barriere, recinzioni elettrificate, foraggiamento dissuasivo, repellenti e dissuasori sonori, Controllo numerico della popolazione con catture e traslocazioni, prelievo selettivo, prelievo quantitativo. Come si è detto, la compensazione dei danni può essere economicamente sostenuta solo se gli importi sono limitati e se i danni non si verificano con regolarità, in caso contrario i danni possono arrivare ad essere insostenibili per le risorse finanziarie disponibili, o 2

4 comunque possono assorbire una parte consistente del bilancio di un parco o di una riserva naturale che potrebbe essere indirizzata altrimenti. La prevenzione, soprattutto con recinzioni (elettrificate o no) può essere molto efficace, ma è alquanto costosa, salvo che non sia mirata alle situazioni a rischio più elevato e prima che il danno si verifichi. Il controllo numerico è normalmente di scarsa efficacia perché le popolazioni di cinghiale rispondono rapidamente alle perdite aumentando il potenziale riproduttivo (p. es. diminuzione dell età del primo estro nelle femmine e aumento della sopravvivenza embrionale, della dimensione della cucciolata e della sopravvivenza giovanile) e, di conseguenza, la riduzione delle densità è solo temporanea. Un controllo numerico, per essere efficace, dovrebbe essere così intenso da diventare la principale attività di un area protetta. Il problema dei danni in un area protetta può essere risolto solamente agendo a più livelli e attraverso un approfondita conoscenza della popolazione sulla quale si deve operare. In questa relazione sono contenuti i primi risultati delle analisi effettuate sui dati pregressi in possesso del Parco Nazionale dell Arcipelago Toscano (PNAT) e riguardanti l isola d Elba. In particolare la relazione è formata da 7 parti: 1. Analisi ambientale del territorio, 2. Distribuzione e tendenza dei danni, 3. Modellizzazione del rischio di danneggiamento, 4. Prelievo e tendenza della popolazione 5. Stime della consistenza della popolazione, 6. Struttura della popolazione di cinghiale, 7. Demografia e modellizzazione della popolazione. 3

5 PARTE I ANALISI AMBIENTALE DEL TERRITORIO DELL ISOLA D ELBA 4

6 METODI Allo scopo di individuare le Unità di Paesaggio (UP) presenti nell isola d Elba è stata effettuata un analisi ambientale basata sulla Carta della Vegetazione in scala 1: Per questo scopo il territorio dell isola è stato suddiviso in celle di 100 ha mediante la sovrapposizione di una griglia di 1 km di lato. In ogni cella sono poi stati misurati i valori di 11 variabili relative alla vegetazione, mediante il software ArcView 3.0; quindi sono stati individuati i raggruppamenti di celle (Unità di Paesaggio) con valori simili delle variabili vegetazionali, mediante Analisi dei Cluster. Con questo metodo, il territorio dell isola è stato suddiviso, in modo oggettivo, in porzioni omogenee per caratteristiche ambientali che potranno essere zone di riferimento per gli interventi gestionali relativi alla popolazione di cinghiale. RISULTATI L analisi ambientale effettuata sul territorio dell isola d Elba ha individuato 8 Unità di Paesaggio (UP) con caratteristiche vegetazionali differenti (Fig. 1, Tab. 1). UP n. 1: Aree urbanizzate miste a macchia di sclerofille. Questa unità di paesaggio, costituita da 16 UC (1600 ha), è caratterizzata da aree urbanizzate frammiste a zone di macchia mediterranea. Questo tipo d ambiente è molto localizzato in alcuni tratti costieri dell isola e, per questo motivo, l UP risulta altamente frazionata. UP n. 2: Aree urbanizzate. L Unità di Paesaggio n. 2 è costituita per quasi il 90% da aree urbanizzate; le 10 UC che la compongono (1000 ha) sono localizzate in corrispondenza dei principali centri abitati costieri dell isola. UP n. 3: Aree boscate. Questa Unità di Paesaggio è costituita per oltre il 50% da boschi di latifoglie e, secondariamente, da zone a macchia mediterranea e da aree urbanizzate. Le 84 UC che la compongono (8400 ha) sono distribuite quasi totalmente nella porzione settentrionale dell isola, sui versanti con esposizione Nord. UP n. 4: Aree a macchia e boschi. Il tipo di vegetazione principale che caratterizza l Unità di Paesaggio n. 4 è la macchia mediterranea che in questa UP raggiunge quasi il 60%; di una certa importanza sono anche i boschi che coprono quasi il 15% del territorio. L UP è costituita da 90 UC per un totale di 9000 ha, collocati principalmente nella parte sudoccidentale dell isola. 5

7 UP n. 5: Aree a mosaico di macchia e boschi. Questa Unità di Paesaggio è caratterizzata principalmente da aree di macchia disposta a mosaico, da macchia estesa e da boschi di latifoglie. L UP è costituita da 15 UC (1500 ha) collocate soprattutto nelle parte nordorientale dell isola. UP n. 6: Aree a rimboschimenti di conifere e macchia. I rimboschimenti di conifere e la macchia mediterranea sono presenti in questa Unità di Paesaggio in modo equivalente, raggiungendo, insieme, oltre il 65% dell intera UP. Venticinque UC (2500 ha) compongono l unità con una presenza concentrata nella parte sud-orientale dell isola. UP n. 7: Aree coltivate con insediamenti urbani. Questa Unità di Paesaggio è caratterizzata principalmente da zone coltivate che raggiungono il 33% della superficie totale, e secondariamente da zone urbanizzate UP n. 8: Aree costiere rocciose. Oltre il 75% di questa Unità di Paesaggio è costituita da ambienti rupestri costieri; il secondo tipo di vegetazione per importanza sono i boschi di latifoglie che, però, non arrivano al 10%. L UP comprende 13 UC (1300 ha) distribuite in modo altamente frammentato lungo le coste dell isola. Fig. I.1 Unità di Paesaggio dell isola d Elba 6

8 Tab. I.1 Percentuali dei tipi di vegetazione e numero di UC nelle Unità di Paesaggio individuate sul territorio dell isola d Elba Unità di Paesaggio Vegetazione N=16 N=10 N=84 N=90 N=15 N=26 N=48 N=13 Urbanizzati 46,4 88,0 10,4 3,8 5,0 6,6 19,3 2,5 Colture agrarie 6,2 3,7 4,8 2,1 5,1 3,9 32,7 1,0 Rimboschimenti 4,7 4,2 5,1 3,4 7,3 35,6 5,4 4,3 Boschi 2,4 0,2 55,9 14,3 11,4 5,4 12,8 8,5 Boschi sclerofille 0,3 0,0 0,5 0,9 1,9 0,2 0,4 0,0 Macchia 26,4 0,9 12,2 57,0 22,3 30,9 17,5 2,5 Macchia mosaico 2,1 1,2 5,3 11,0 39,4 9,5 7,9 5,9 Affioramenti 0,0 0,0 0,7 2,3 4,2 0,2 0,4 0,0 Coste rocciose 11,3 1,7 5,0 5,1 3,4 7,8 3,7 75,4 Dune costiere 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 Aree salmastre 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 7

9 PARTE II DISTRIBUZIONE E TENDENZA DEI DANNI 8

10 METODI I danni provocati dai cinghiali all interno del PNAT a coltivazioni, orti, giardini e manufatti, dal 1999 al 2009, sono stati catalogati e georeferenziati con il software ArcGis 9.3. I danni sono stati suddivisi per tipo, in base alle differenti coltivazioni danneggiate e sono state valutate le differenze tra gli anni della ricorrenza dei danni totali e per ciascun tipo. Inoltre è stata valutata l entità dei rimborsi erogati dal PNAT per ogni anno e per ogni tipo. Per il numero di eventi di danneggiamento totali e per ogni tipo e per l entità dei rimborsi, è stata valutata la tendenza nel periodo di studio mediante analisi di regressione con stima di curve, ponendo le variabili dei danni come variabili dipendenti e la variabile tempo come indipendente. Inoltre sono state analizzate le relazioni tra le variabili dei danni mediante analisi di correlazione e la dipendenza del numero totale di eventi e dei rimborsi dai diversi tipi di danno mediante Analisi di Regressione Multipla (ARM). Infine sono state analizzate le relazioni esistenti tra l entità dei danni, sia come numero di eventi, sia come rimborsi, e il prelievo effettuato dentro e fuori Parco; anche per questo scopo sono state utilizzate analisi di correlazione e di regressione. RISULTATI I danni da cinghiale nel territorio a PNAT dell isola d Elba sono aumentati dal 1999 (39 eventi) al 2001 (43 eventi), per poi subire un progressivo decremento fino al 2004 (8 eventi); nei tre anni successivi si è assistito ad un ulteriore aumento dei danni, fino a 29 eventi nel 2007 ed un nuovo decremento nel 2008, quando è stato raggiunto il minimo di 6 eventi. Lo stesso andamento è risultato per i rimborsi erogati dall Ente PNAT (Fig. II.1). Considerando gli anni cumulati, il tipo di danno più frequente è stato quello ai vigneti, seguito dai danni alle opere o manufatti; i danni ai frutteti, ai prati e agli orti hanno rappresentato insieme il 27% del totale (Fig. II.2). 9

11 Fig. II.1 Variazioni annuali del numero di eventi di danneggiamento e dei rimborsi erogati dal PNAT Fig. II.2 Percentuali dei tipi di danno da cinghiale verificatisi dal 1999 al

12 Dal 1999 al 2003 la maggior parte dei danni è stata a carico dei vigneti per i quali è stato raggiunto un massimo superiore al 60% nel 2001, negli anni successivi i danni a questo tipo di coltivazione hanno avuto un decremento, scendendo al di sotto del 50% dal 2004 al I danni alle opere sono regrediti dal 1999 al 2003, per poi aumentare e raggiungere un massimo nel I frutteti sono stati colpiti in tutti gli anni tranne che nel 2004, con una tendenza all aumento dei danni fino al 2003 e successivamente una diminuzione. Decisamente limitati e occasionali sono stati i danni agli ortaggi, come quelli ai prati che in alcuni anni, però, hanno superato il 30% (Fig. II.3). Fig. II.3 Variazioni annuali delle proporzioni dei tipi di danno da cinghiale Le analisi di tendenza hanno evidenziato trend negativi e significativi per il numero di eventi totali, per i rimborsi totali e per il numero di eventi a carico dei vigneti, mentre per gli altri tipi di danno non è risultata nessuna tendenza significativa (Figg. II.4, II.5 e II.6). 11

13 Fig. II.4 Tendenza del numero di eventi totali di danno da cinghiali dal 1999 al 2009 nel PNAT (R 2 =0,462; F=9,57; P=0,013; y = 43,2 12,5 ln(t)) Fig. II.5 Tendenza dei rimborsi per danni da cinghiali dal 1999 al 2009 nel PNAT (R 2 =0,447; F=9,09; P=0,015; y = 19,5 6,4 ln(t)) 12

14 Fig. II.6 Tendenza dei danni da cinghiali ai vigneti dal 1999 al 2009 nel PNAT (R 2 =0,692; F=23,50; P=0,001; y = 32,9 12,2 ln(t)) Il numero di eventi totali è risultato correlato positivamente e significativamente con i danni ai vigneti (r=0,934; n=11; P<0,0001) e con quelli alle opere o manufatti (r=0,823; n=11; P=0,002). Correlazioni positive e significative sono emerse anche per i rimborsi con il numero di eventi totali (r=0,918; n=11; P<0,0001), con i danni ai vigneti (r=0,952; n=11; P<0,0001) e con quelli alle opere (r=0,677; n=11; P=0,022). Le analisi di regressione multipla hanno evidenziato come il numero di eventi totali dipenda fortemente dai danni ai vigneti, alle opere e ai prati; il modello ha spiegato complessivamente il 98,5% della varianza del numero di eventi totali (Tab. II.1). Tab. II.1 Risultati dell Analisi di Regressione Multipla tra il numero di eventi totali di danneggiamento e i diversi tipi di danno ( , PNAT) Tipi di danno B (ES) β t P R 2 Vigneti 0,9 (0,07) 0,77 13,96 <0,0001 0,859 Opere 0,8 (0,14) 0,31 5,64 0,001 0,965 Prati 0,5 (0,13) 0,15 3,37 0,012 0,985 Costante=3,5 ESS=1,60 F=216,79 P<0,

15 Per quanto riguarda i rimborsi erogati dal Parco per i danni da cinghiale, l ARM ha formulato un modello in cui è entrata una sola variabile, i danni ai vigneti, e che ha spiegato l 89,6% della varianza della variabile dipendente (Tab. II.2). Tab. II.2 Risultati dell Analisi di Regressione Multipla tra i rimborsi per danni da cinghiale e i diversi tipi di danno ( , PNAT) Tipi di danno B (ES) β t P R 2 Vigneti 0,6 (0,06) 0,95 9,33 <0,0001 0,896 Costante=1,3 ESS=2,17 F=89,98 P<0,0001 Dalle analisi di correlazione tra entità dei danni e prelievo realizzato sono emerse relazioni negative ma non significative sia considerando il prelievo dentro il Parco sia il prelievo cumulato dentro e fuori Parco (Tab. II.3 e II.4). Tab. II.3 Risultati delle analisi di correlazione tra numero di eventi di danneggiamento totali e il prelievo ( , PNAT) Prelievo r P Catture -0,142 0,678 Totale dentro PNAT -0,173 0,610 Totale dentro e fuori PNAT 0,226 0,504 Catture anno precedente -0,382 0,246 Tot. dentro PNAT anno prec. -0,456 0,158 Tot. dentro e fuori PNAT anno prec. -0,527 0,096 14

16 Tab. II.4 Risultati delle analisi di correlazione tra i rimborsi per danni da cinghiali e il prelievo ( , PNAT) Prelievo r P Catture -0,105 0,758 Totale dentro PNAT -0,168 0,621 Totale dentro e fuori PNAT 0,217 0,522 Catture anno precedente -0,189 0,578 Tot. dentro PNAT anno prec. -0,293 0,382 Tot. dentro e fuori PNAT anno prec. -0,417 0,202 15

17 PARTE III MODELLIZZAZIONE DEL RISCHIO DI DANNEGGIAMENTO 16

18 METODI Con il termine modello si indica una semplificazione di un sistema complesso. In ambito ecologico il modello è principalmente di tipo matematico. Quando si basa su ipotesi formulate a priori, da informazioni bibliografiche o derivanti dall esperienza personale, si parla di modello teorico oppure, nel caso di dati ricavati dal mondo reale, si parla di modello empirico. I modelli possono poi essere stocastici, se costituiti da un insieme finito di variabili che dipendono da un parametro e dai valori che le singole variabili assumono, cioè con base statistica, oppure deterministici, fisico-matematici che tentano di prevedere numericamente l'evoluzione del sistema, attraverso la soluzione approssimata (non analitica) del sistema di equazioni matematiche che descrivono il sistema. Nel modello stocastico l'inizializzazione delle variabili avviene mediante l'identificazione della distribuzione di probabilità che caratterizza ogni singola variabile, attraverso l'analisi statistica, che rappresenta lo spazio probabilistico dei valori che la variabile può assumere, così che, ricostruita la distribuzione di probabilità delle singole variabili, è possibile simulare, attraverso il modello stocastico, la variazione della distribuzione di probabilità delle variabili, ottenendo come risultato un nuovo spazio probabilistico di valori per ogni variabile casuale. Per il modello deterministico invece, è necessaria la conoscenza dello stato di partenza (le condizioni iniziali) attraverso il quale è possibile fornire i valori di inizializzazione delle variabili indipendenti del sistema di equazioni di cui è composto il modello stesso al di fine di ottenere un risultato unico, numerico, per ogni punto nello spazio. I più utilizzati in ambito ecologico sono i modelli empirico-stocastici in quanto, a parità di conoscenza della biologia della specie e delle dinamiche del sistema, sono quelli che meglio sintetizzano le relazioni tra l ambiente e la popolazione animale in esame (Massolo e Meriggi 1995). Un modello può avere funzione predittiva (forecasting), diretta ad individuare quegli ambienti a più alta vocazione per la specie, o esplicativa (hindcasting), finalizzata invece a mettere in evidenza le caratteristiche dell ambiente che determinano la presenza della specie. La formulazione di un modello si basa sull utilizzo congiunto di Sistemi Informativi Territoriali (GIS Geographical Information System) e analisi statistiche multivariate. I principi fondamentali delle analisi multivariate, tra cui alcune delle più frequentemente utilizzate sono la regressione logistica e l analisi di funzione discriminante, sono sostanzialmente quattro (Hirzel et al. 2002): l area di studio è configurata come una mappa raster composta da n celle isometriche adiacenti, 17

19 la variabile dipendente è sottoforma di dati di presenza-assenza della specie in esame all interno di un insieme di stazioni di campionamento, le variabili indipendenti sono di tipo ecogeografico (ambientale) e descrivono quantitativamente alcune caratteristiche per ogni cella. Possono essere dati topografici (ad es. altitudine o pendenza), ecologici (ad es. la percentuale di boschi o la concentrazione di nitrati), o di antropizzazione (ad es. la densità di strade o la distanza dalla città più vicina), viene calibrata una funzione in grado di classificare nel modo più corretto possibile le celle come idonee o non idonee per la specie, i dettagli sulle funzioni e la loro calibrazione dipendono dal tipo di analisi effettuata. In questo tipo di analisi la raccolta dei dati di presenza-assenza è una parte essenziale per la formulazione del modello. Il campionamento non deve essere viziato per essere rappresentativo della popolazione e i dati d assenza in particolare sono difficili da rilevare in modo accurato. Una stazione di campionamento può essere classificata come assenza principalmente per tre motivi (Hirzel et al. 2002): la specie non viene rilevata anche se è effettivamente presente ( falsa assenza ), per ragioni storiche la specie è assente anche se l habitat sarebbe idoneo (possibile falsa assenza ) l habitat è realmente non idoneo per la specie (unico caso in cui il dato di assenza è valido). Lo scopo di questa parte dello studio è stato produrre una mappa spazialmente esplicita del rischio di danni da cinghiale, confrontando l efficienza predittiva di modelli basati su soli dati di presenza con quelli basati su dati di presenza-assenza. I dati utilizzati per la formulazione dei modelli sono stati quelli relativi ai danni da cinghiale dall anno 1999 al 2007, mentre per la verifica sono stati utilizzati i danni registrati nel 2008 e nel Tutti i dati raccolti sono stati innanzitutto digitalizzati, poi elaborati e analizzati, mediante l'utilizzo di software appropriati alla loro trattazione. I software utilizzati per l elaborazione e l'analisi dei dati sono stati: ArcGIS 9.3: programma che consente di georeferenziare i dati provenienti da un database per visualizzarli e localizzarli nello spazio. Microsoft Excel XP: è un applicazione per la creazione e gestione di fogli elettronici che permette di impostare rapidamente delle tabelle numeriche sulla 18

20 base delle quali si possono eseguire calcoli di diversa natura (matematici, statistici, finanziari, ecc.) e realizzare grafici. SPSS 18.0: software per l'analisi statistica dei dati. R : software per l'analisi statistica dei dati e per la realizzazione di modelli, basato sull integrazione di strumenti GIS. Maxent 3.3.1: software per la realizzazione di modelli e mappe di idoneità/rischio ambientale per popolazioni animali e vegetali, basato sull integrazione di strumenti GIS. I dati relativi alle variabili ambientali nell area di studio sono stati ottenuti, utilizzando il software ArcGIS 9.3, da: Carta della Vegetazione, per quanto riguarda le variabili dell uso del suolo Digital Terrain Model (DTM, risoluzione 75 m), per quanto riguarda le variabili relative a altitudine, esposizione e pendenza. Il metodo rappresentativo dei procedimenti statistici basati su soli dati di presenza è stato l Algoritmo della Massima Entropia (MAXENT). Gli indici di nicchia ecologica, paragonabili a MAXENT, in quanto a presupposti statistici ma di carattere sintetico, sono stati associati alle seguenti analisi univariate e multivariate, per meglio esaminare le dinamiche determinanti i valori degli indici, e come metodi rappresentativi dei procedimenti statistici basati su dati di tipo presenza-assenza : Analisi uni variata della varianza one-way ANOVA. Analisi di Funzione Discriminante. Analisi di Regressione Logistica Binaria. Criterio di informazione di Akaike con Inferenza multi-modello. I dati sono stati analizzati per ottenere una stima delle principali caratteristiche delle nicchie e le mappe di rischio. Per individuare le variabili che influenzano il danno da cinghiale, l area di studio è stata suddivisa in 302 celle o Unità Campione (UC) di 1 km 2, attraverso una griglia a maglie quadrate di 100 x100 m. All interno di ogni UC sono state misurate le proporzioni delle variabili ambientali relative a: Tipi vegetazionali (24 variabili ottenute accorpando le categorie della Carta della Vegetazione in scala 1:25.000), Altimetria (12 variabili corrispondenti ad altrettante fasce altitudinali di 100 m ciascuna) 19

21 Esposizione (9 variabili, corrispondenti alle 8 esposizioni principali, più l esposizione nulla) Pendenza (7 variabili corrispondenti ad altrettante classi di 10 ciascuna) Alle UC è stato successivamente attribuito un codice binario 0/1; con 1 sono state indicate le UC all interno delle quali si sono verificati danni, con 0 tutte le altre (che possono essere UC di assenza accertata o UC dove non è stato effettuato il campionamento). In questo modo sono state individuate 56 UC di presenza, che sono state poi confrontate con altrettante UC di controllo, scelte in modo casuale tra quelle dove non è stata accertata la presenza di danno. Il confronto tra le UC è stato condotto attraverso l Analisi della Varianza (one way ANOVA), che ha permesso di verificare l esistenza di differenze significative tra i valori delle variabili nelle UC di presenza e nelle UC di controllo. È stata eseguita anche l Analisi della Funzione Discriminante (AFD): grazie a questa analisi è stato possibile individuare le variabili ambientali più efficaci nel separare le UC di presenza di danno da quelle scelte casualmente. Essa è rappresentata dall equazione: FD = β 0 + β 1x β nx n dove FD è la funzione discriminante, x sono le variabili indipendenti e β i coefficienti standardizzati delle variabili indipendenti. L'apporto di ogni variabile alla funzione discriminante è espresso dal valore assoluto di β, che indica in quale misura la variabile entrata nel modello contribuisce alla discriminazione tra i gruppi individuati sulla base dei valori assunti dalla variabile dipendente, e dal coefficiente di correlazione tra la stessa variabile e la FD. L AFD è stata condotta con la procedura forward stepwise (che comporta l aggiunta sequenziale di ciascuna variabile ambientale). La bontà della classificazione della Funzione Discriminante è stata valutata utilizzando 4 indicatori: Lambda di Wilks (e sua trasformazione in Chi-quadrato): dato dal rapporto tra matrice di devianza codevianza entro gruppi e la devianza totale; Autovalore: misura la varianza totale della variabile dipendente espressa nelle variabili selezionate, dando un'indicazione dell'importanza relativa della FD; Correlazione canonica: misura il grado di associazione tra la FD e la variabile dipendente (nel nostro caso, la presenza/assenza di danno); 20

22 Percentuale di casi classificati correttamente: casi osservati inizialmente in un gruppo che vengono riclassificati dalla funzione nello stesso gruppo. Una funzione discriminante è tanto migliore quanto più massimizza l'autovalore, la correlazione canonica e la percentuale di casi classificati correttamente e quanto più minimizza il valore di lambda di Wilks. In questo caso la variabile dipendente è binaria (può assumere infatti solo 2 valori: 0 e 1), quindi è stata ottenuta una sola funzione discriminante. Inoltre è stato formulato un modello predittivo della probabilità di presenza di danni da cinghiale nell area di studio, attraverso un Analisi di Regressione Logistica Binaria (ARLB). L equazione del modello logistico è: dove Y è la probabilità che l evento accada e z è l equazione caratteristica della regressione multipla lineare: z = β 0 + β 1 x β n x n dove x n è la n-esima variabile indipendente e β n è il coefficiente standardizzato delle variabili indipendenti. Tramite l ARLB è possibile stimare, per ogni UC, la probabilità che i danni si verifichino. Questo modello ha il vantaggio di includere un numero di variabili molto ridotto rispetto a quello di una funzione discriminante formulata sugli stessi casi. Secondo Meriggi e Massolo (1995), se non si vuole perdere stabilità nelle classificazioni, il numero di variabili che entrano nel modello non dovrebbe superare un quinto dei casi in cui l evento accade (presenza della specie). Per selezionare le variabili che contribuiscono all equazione del modello logistico, è stata utilizzata la procedura forward stepwise, che comporta, dato un insieme di n variabili indipendenti (variabili ambientali), l aggiunta successiva e sequenziale di ciascuna variabile al modello, in una serie di passaggi iterativi. Il risultato ottenuto mediante ciascun passaggio viene saggiato con i test della massima verosimiglianza, del - 2 Log Likelihood ( 2LL) e dello Z 2 (Adattamento o Goodness of Fit Statistic). La varianza della variabile dipendente spiegata dal modello è quantificata dal valore di R 2 corretto di Nagelkerke, che può assumere valori compresi tra 0 e 1. La stima del contributo di ciascuna variabile nella determinazione della probabilità di danni è data 21

23 dal valore della correlazione parziale (esprimibile con R, R 2 o Rho) tra la variabile in questione e la variabile dipendente, e dal rapporto tra la probabilità che l evento accada e la probabilità complementare che l evento non accada, denominata Esp (B). Un valore di R positivo indica che valori crescenti di quella variabile aumentano la probabilità che l evento accada, un valore di R negativo indica che valori crescenti di quella variabile diminuiscono tale probabilità. Il valore assoluto di R indica pertanto il contributo parziale dato al modello da ogni variabile dipendente. Se Esp(B) è maggiore di 1, la probabilità che l evento accada aumenta, se invece è minore di 1 diminuisce. Come ulteriore stima della predittività del modello di regressione logistica, viene solitamente usata la percentuale di casi classificati correttamente dal modello stesso, cioè dei punti analizzati in cui la presenza osservata coincide con quella prevista dal modello. È stata inoltre effettuata un analisi mediante curva ROC (Receiver Operator Characteristics); essa permette di valutare lo scostamento del modello ottenuto da uno che classifica i casi casualmente (Massolo e Meriggi 2007). La curva ROC viene costruita mettendo in relazione la sensibilità del modello (proporzione di casi positivi classificati correttamente) con il reciproco della sua specificità (proporzione di casi negativi classificati correttamente). Il modello logistico costituisce uno dei metodi più utilizzati per produrre una Funzione di Selezione delle Risorse, cioè un espressione matematica in grado di sintetizzare il processo di selezione dell habitat di una specie per prevederne la distribuzione (Boyce & McDonald 1999, Manly et al. 2003). Nel nostro caso è stata usata per prevedere la probabilità del verificarsi di danni. Poiché usando la procedura stepwise nel modello logistico spesso entrano variabili correlate tra loro, sono stati individuati, grazie alla matrice di correlazione di Pearson, sottogruppi di variabili non correlate (P > 0,05). In seguito, per ognuno di questi sottogruppi è stata effettuata una ARLB con la procedura enter, che aggiunge al modello tutte le variabili simultaneamente. L inferenza sui modelli ottenuti con i sottogruppi di variabili non correlate è stata effettuata seguendo l Information-Theoretic Approach (Anderson et al., 2000, 2001; Anderson e Burnham, 2002). In una prima fase è stato calcolato il logaritmo della massima verosimiglianza (MLL, Maximized Log-likelihood), secondo la formula: MLL = dove n è la dimensione del campione e σ 2 è il rapporto tra la somma dei quadrati dei residui (RSS, Residual Sum of Squares) e n. 22

24 Le performance dei vari modelli sono state confrontate utilizzando il criterio di Akaike (AIC, Akaike Information Criterion; Akaike, 1973). AIC = n ln (σ 2 ) + 2k Nel nostro caso è stato calcolato l AIC corretto (AIC c ), il cui uso è consigliato nel caso la numerosità sia n/k < 40 (dove k è il numero di parametri del modello) (Massolo e Meriggi, 2007). AIC c = n ln (σ 2 ) + 2k + Il modello per il quale l AIC c è minimo viene selezionato come modello migliore e, per ordinare i modelli successivi, si calcola la differenza tra l AIC c del modello migliore e gli AIC c degli altri: i = AIC ci min (AIC c ) Sempre per ordinare i modelli in base al rango, è stato poi calcolato per ognuno il peso w i, Akaike weight, il cui valore può essere interpretato come la probabilità di un dato modello di essere il migliore tra tutti quelli considerati (Merli e Meriggi, 2006; Jedrzejewski et al., 2008). La formula usata è stata la seguente: L importanza relativa delle variabili predittive (variabili ambientali) è stata valutata in base ai seguenti criteri: - numero di modelli in cui compare ogni variabile; - varianza spiegata (R 2 ) dei modelli in cui compare la variabile; - valore del coefficiente parziale di regressione standardizzato in ogni modello; - somma dei pesi (w i ) dei modelli in cui entra la variabile; - media pesata dei coefficienti parziali di regressione standardizzati dei modelli in cui entra la variabile: β = R i = 1 w i β i 23

General Linear Model. Esercizio

General Linear Model. Esercizio Esercizio General Linear Model Una delle molteplici applicazioni del General Linear Model è la Trend Surface Analysis. Questa tecnica cerca di individuare, in un modello di superficie, quale tendenza segue

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA)

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) 4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) L analisi della varianza è un metodo sviluppato da Fisher, che è fondamentale per l interpretazione statistica di molti dati biologici ed è alla

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

La Banca Dati georeferenziata del Progetto Regionale Il lupo in Liguria

La Banca Dati georeferenziata del Progetto Regionale Il lupo in Liguria REGIONE LIGURIA Dipartimento Pianificazione Territoriale Giovanni Diviacco e Piero Ferrari La Banca Dati georeferenziata del Progetto Regionale Il lupo in Liguria Genova, Marzo 2009 SETTORE VALUTAZIONE

Dettagli

Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto

Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto Il presente capitolo continua nell esposizione di alcune basi teoriche della manutenzione. In particolare si tratteranno

Dettagli

STUDIO DI SETTORE SM43U

STUDIO DI SETTORE SM43U ALLEGATO 3 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE SM43U NOTA TECNICA E METODOLOGICA CRITERI PER LA COSTRUZIONE DELLO STUDIO DI SETTORE Di seguito vengono esposti i criteri seguiti per la costruzione

Dettagli

III.8.2 Elementi per il bilancio idrico del lago di Bracciano

III.8.2 Elementi per il bilancio idrico del lago di Bracciano III.8.2 Elementi per il bilancio idrico del lago di Bracciano (Fabio Musmeci, Angelo Correnti - ENEA) Il lago di Bracciano è un importante elemento del comprensorio della Tuscia Romana che non può non

Dettagli

C M Y K C M Y K. 5. La normativa

C M Y K C M Y K. 5. La normativa 5. La normativa 5.1 Il quadro normativo Numerose sono le norme di riferimento per la pianificazione e la progettazione delle strade. Vengono sinteticamente enunciate quelle che riguardano la regolazione

Dettagli

NUOVI STRUMENTI OTTICI PER IL CONTROLLO DI LABORATORIO E DI PROCESSO

NUOVI STRUMENTI OTTICI PER IL CONTROLLO DI LABORATORIO E DI PROCESSO NUOVI STRUMENTI OTTICI PER IL CONTROLLO DI LABORATORIO E DI PROCESSO Mariano Paganelli Expert System Solutions S.r.l. L'Expert System Solutions ha recentemente sviluppato nuove tecniche di laboratorio

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

LA CORRELAZIONE LINEARE

LA CORRELAZIONE LINEARE LA CORRELAZIONE LINEARE La correlazione indica la tendenza che hanno due variabili (X e Y) a variare insieme, ovvero, a covariare. Ad esempio, si può supporre che vi sia una relazione tra l insoddisfazione

Dettagli

Introduzione al GIS (Geographic Information System)

Introduzione al GIS (Geographic Information System) Introduzione al GIS (Geographic Information System) Sommario 1. COS E IL GIS?... 3 2. CARATTERISTICHE DI UN GIS... 3 3. COMPONENTI DI UN GIS... 4 4. CONTENUTI DI UN GIS... 5 5. FASI OPERATIVE CARATTERIZZANTI

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

2.1 DATI NAZIONALI E TERRITORIALI (AREE E Regioni)

2.1 DATI NAZIONALI E TERRITORIALI (AREE E Regioni) ANALISI TERRITORIALE DEL VALORE DEL PATRIMONIO ABITATIVO Gli immobili in Italia - 2015 ANALISI TERRITORIALE DEL VALORE DEL PATRIMONIO ABITATIVO Nel presente capitolo è analizzata la distribuzione territoriale

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1 Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 Capitolo 3. L'analisi della varianza. Il problema dei confronti multipli. La soluzione drastica di Bonferroni ed il test

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

Cartografia di base per i territori

Cartografia di base per i territori Cartografia di base per i territori L INFORMAZIONE GEOGRAFICA I dati dell informazione geografica L Amministrazione Regionale, nell ambito delle attività di competenza del Servizio sistema informativo

Dettagli

Valutazione modellistica ricaduta al suolo delle emissioni dell impianto Rena Energia srl

Valutazione modellistica ricaduta al suolo delle emissioni dell impianto Rena Energia srl Valutazione modellistica ricaduta al suolo delle emissioni dell impianto Rena Energia srl Studio Settembre 2014 1 Pag / indice 3 / Premessa 4 / Descrizione della catena modellistica 6 / Lo scenario simulato

Dettagli

Carta dei tipi forestali della Regione Lombardia LA BANCA DATI FORESTALE. Relatore: Michele Carta

Carta dei tipi forestali della Regione Lombardia LA BANCA DATI FORESTALE. Relatore: Michele Carta Carta dei tipi forestali della Regione Lombardia LA BANCA DATI FORESTALE Relatore: Michele Carta LA BANCA DATI Insieme di cartografie e dati descrittivi, gestite tramite GIS, di supporto alla modellizzazione

Dettagli

UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA

UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA SVILUPPO DI METODI DECONVOLUTIVI PER L INDIVIDUAZIONE DI SORGENTI INDIPENDENTI

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t),

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t), SINTESI. Una classe importante di problemi probabilistici e statistici é quella della stima di caratteristiche relative ad un certo processo aleatorio. Esistono svariate tecniche di stima dei parametri

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

Istituto per l Energia Rinnovabile. Autori: David Moser, PhD; Daniele Vettorato, PhD. Bolzano, Gennaio 2013

Istituto per l Energia Rinnovabile. Autori: David Moser, PhD; Daniele Vettorato, PhD. Bolzano, Gennaio 2013 Istituto per l Energia Rinnovabile Catasto Solare Alta Val di Non Relazione Versione: 2.0 Autori: David Moser, PhD; Daniele Vettorato, PhD. Coordinamento e Revisione: dott. Daniele Vettorato, PhD (daniele.vettorato@eurac.edu)

Dettagli

Formazione a distanza nell Educazione Continua in Medicina

Formazione a distanza nell Educazione Continua in Medicina Formazione a distanza nell Educazione Continua in Medicina UN ESPERIENZA Dott.ssa Stefania Bracci Datré S.r.l via di Vorno 9A/4 Guamo (Lucca) s.bracci@datre.it Sommario In questo contributo presentiamo

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Indagine conoscitiva sul sistema dei fontanili del Parco Agricolo Sud Milano

Indagine conoscitiva sul sistema dei fontanili del Parco Agricolo Sud Milano Altri studi condotti dal Parco integrati con il Sitpas U. Ceriani - Direttore del Parco Agricolo Sud Milano, Provincia di Milano M. Cont - Funzionario Agronomo del Parco Agricolo Sud Milano, Provincia

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

e r r e 3 s t u d i o t e c n i c o a s s o c i a t o a r c h. c r i s t i n a r o s t a g n o t t o

e r r e 3 s t u d i o t e c n i c o a s s o c i a t o a r c h. c r i s t i n a r o s t a g n o t t o Come disposto nelle norme di attuazione, artt. 15, 16, 17 e dall Allegato 5 alle NTA del PTC2 gli strumenti urbanistici generali e le relative varianti assumono l obbiettivo strategico e generale del contenimento

Dettagli

Gli uni e gli altri. Strategie in contesti di massa

Gli uni e gli altri. Strategie in contesti di massa Gli uni e gli altri. Strategie in contesti di massa Alessio Porretta Universita di Roma Tor Vergata Gli elementi tipici di un gioco: -un numero di agenti (o giocatori): 1,..., N -Un insieme di strategie

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

Le spiagge e i banchi sabbiosi della laguna di Marano e Grado

Le spiagge e i banchi sabbiosi della laguna di Marano e Grado DIREZIONE CENTRALE INFRASTRUTTURE, MOBILITÀ, PIANIFICAZIONE TERRITORIALE, LAVORI PUBBLICI, UNIVERSITÀ SERVIZIO TUTELA DEL PAESAGGIO E BIODIVERSITÀ CON LA COLLABORAZIONE DEL SERVIZIO CACCIA E RISORSE ITTICHE

Dettagli

ANALISI DEI DATI CON SPSS

ANALISI DEI DATI CON SPSS STRUMENTI E METODI PER LE SCIENZE SOCIALI Claudio Barbaranelli ANALISI DEI DATI CON SPSS II. LE ANALISI MULTIVARIATE ISBN 978-88-7916-315-9 Copyright 2006 Via Cervignano 4-20137 Milano Catalogo: www.lededizioni.com

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

Nunatak isola di rifugio - Nunatak isola di rifugio - Nunatak isola di rifugio Nunatak

Nunatak isola di rifugio - Nunatak isola di rifugio - Nunatak isola di rifugio Nunatak Dipartimento di Biologia Animale Università di Pavia, Piazza Botta, 9, I-27100, Pavia, Italy. I MODELLI DI VALUTAZIONE AMBIENTALE PER LE POTENZIALITA FAUNISTICHE: ASPETTI METODOLOGICI E STATO IN ITALIA

Dettagli

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Come evidenziare l informazione contenuta nei dati S. Marsili-Libelli: Calibrazione di Modelli Dinamici pag. Perche PCA? E un semplice metodo non-parametrico per estrarre

Dettagli

Appendice III. Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi

Appendice III. Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi Appendice III (articolo 5, comma 1 e art. 22 commi 5 e 7) Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi 1. Tecniche di modellizzazione 1.1 Introduzione. In generale,

Dettagli

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina Cosa è il DSS L elevato sviluppo dei personal computer, delle reti di calcolatori, dei sistemi database di grandi dimensioni, e la forte espansione di modelli basati sui calcolatori rappresentano gli sviluppi

Dettagli

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza Titolo della lezione Analisi dell associazione tra due caratteri: indipendenza e dipendenza Introduzione Analisi univariata, bivariata, multivariata Analizzare le relazioni tra i caratteri, per cercare

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

La ricerca non sperimentale

La ricerca non sperimentale La ricerca non sperimentale Definizione Ricerca osservazionale: : 1. naturalistica Ricerca osservazionale: : 2. osservatori partecipanti Ricerca d archiviod Casi singoli Sviluppo di teorie e verifica empirica

Dettagli

Rapporto CESI. Cliente: Oggetto: Ordine: Contratto CESI n. 71/00056. Note: N. pagine: 13 N. pagine fuori testo: Data: 30.05.2000.

Rapporto CESI. Cliente: Oggetto: Ordine: Contratto CESI n. 71/00056. Note: N. pagine: 13 N. pagine fuori testo: Data: 30.05.2000. A0/010226 Pag.1/13 Cliente: Ricerca di Sistema Oggetto: Determinazione della tenacità di acciai eserciti - Correlazioni per stime di FATT da prove Small Punch Ordine: Contratto CESI n. 71/00056 Note: DEGRADO/GEN04/003

Dettagli

Effetti dell incendio sull ambiente

Effetti dell incendio sull ambiente Effetti dell incendio sull ambiente Dott. For. Antonio Brunori Effetti del fuoco Il fuoco danneggia e spesso distrugge il bosco, per valutare le effettive conseguenze di un incendio su un ecosistema forestale

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2)

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2) I n d i c e 9 Introduzione 11 CAP. 1 I test di intelligenza potenziale 17 CAP. 2 La misura dell intelligenza potenziale nella scuola dell infanzia 31 CAP. 3 La misura dell intelligenza potenziale nella

Dettagli

Erwin Schrödinger Che cos è la vita? La cellula vivente dal punto di vista fisico tr. it. a cura di M. Ageno, Adelphi, Milano 2008, pp.

Erwin Schrödinger Che cos è la vita? La cellula vivente dal punto di vista fisico tr. it. a cura di M. Ageno, Adelphi, Milano 2008, pp. RECENSIONI&REPORTS recensione Erwin Schrödinger Che cos è la vita? La cellula vivente dal punto di vista fisico tr. it. a cura di M. Ageno, Adelphi, Milano 2008, pp. 154, 12 «Il vasto e importante e molto

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA Pag 1 di 92 Francesco Sardo ELEMENTI DI STATISTICA PER VALUTATORI DI SISTEMI QUALITA AMBIENTE - SICUREZZA REV. 11 16/08/2009 Pag 2 di 92 Pag 3 di 92 0 Introduzione PARTE I 1 Statistica descrittiva 1.1

Dettagli

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

Indice degli elaborati del PdG PIANO DI GESTIONE. Ambito territoriale dei Monti di Trapani. versione conforme al DDG ARTA n 588 del 25/06/09

Indice degli elaborati del PdG PIANO DI GESTIONE. Ambito territoriale dei Monti di Trapani. versione conforme al DDG ARTA n 588 del 25/06/09 Unione Europea Regione Siciliana Dipartimento Regionale Azienda Foreste Demaniali Codice POR: 1999.IT.16.1.PO.011/1.11/11.2.9/0334 Ambito territoriale dei Monti di Trapani PIANO DI GESTIONE versione conforme

Dettagli

Deviazione standard delle misure : dove è la varianza e sono gli scarti quadratici

Deviazione standard delle misure : dove è la varianza e sono gli scarti quadratici ELEMENTI DI PROBABILITA Media : migliore stima del valore vero in assenza di altre info. Aumentare il numero di misure permette di approssimare meglio il valor medio e quindi ridurre l influenza degli

Dettagli

Business Intelligence. Il data mining in

Business Intelligence. Il data mining in Business Intelligence Il data mining in L'analisi matematica per dedurre schemi e tendenze dai dati storici esistenti. Revenue Management. Previsioni di occupazione. Marketing. Mail diretto a clienti specifici.

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 4. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 4. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 4 Materiale di supporto per le lezioni. Non sostituisce il libro di testo Dipendenza di un carattere QUANTITATIVO da un carattere QUALITATIVO

Dettagli

Equilibrio Termico tra Due Corpi

Equilibrio Termico tra Due Corpi Equilibrio Termico tra Due Corpi www.lepla.eu OBIETTIVO L attività ha l obiettivo di fare acquisire allo sperimentatore la consapevolezza che: 1 il raggiungimento dell'equilibrio termico non è istantaneo

Dettagli

Curve di risonanza di un circuito

Curve di risonanza di un circuito Zuccarello Francesco Laboratorio di Fisica II Curve di risonanza di un circuito I [ma] 9 8 7 6 5 4 3 0 C = 00 nf 0 5 0 5 w [KHz] RLC - Serie A.A.003-004 Indice Introduzione pag. 3 Presupposti Teorici 5

Dettagli

AMBIENTE SIA PER IL COLLEGAMENTO A23-A28 IN FRIULI

AMBIENTE SIA PER IL COLLEGAMENTO A23-A28 IN FRIULI DESCRIZIONE DEL PROGETTO Data: Agosto 2010 Oggetto: Affidamento concessione avente con ad procedura oggetto la aperta della progettazione, costruzione e gestione del raccordo Autostradale A23-A28 Cimpello

Dettagli

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE La presentazione dei dati per molte ricerche mediche fa comunemente riferimento a frequenze, assolute o percentuali. Osservazioni cliniche conducono sovente

Dettagli

R I S K M A N A G E M E N T & F I N A N C E

R I S K M A N A G E M E N T & F I N A N C E R I S K M A N A G E M E N T & F I N A N C E 2010 Redexe S.u.r.l., Tutti i diritti sono riservati REDEXE S.r.l., Società a Socio Unico Sede Legale: 36100 Vicenza, Viale Riviera Berica 31 ISCRITTA ALLA CCIAA

Dettagli

I TRASFERIMENTI REGIONALI ALLE PROVINCE PIEMONTESI L ANALISI DEI DATI DELL ANNO 2009 IN RAPPORTO A QUELLI DEGLI ANNI PRECEDENTI

I TRASFERIMENTI REGIONALI ALLE PROVINCE PIEMONTESI L ANALISI DEI DATI DELL ANNO 2009 IN RAPPORTO A QUELLI DEGLI ANNI PRECEDENTI I TRASFERIMENTI REGIONALI ALLE PROVINCE PIEMONTESI L ANALISI DEI DATI DELL ANNO 2009 IN RAPPORTO A QUELLI DEGLI ANNI PRECEDENTI Dall anno 2003 l Unione Province Piemontesi raccoglie, con la collaborazione

Dettagli

Dai rapporti temporanei all occupazione stabile: un percorso sempre più incerto?

Dai rapporti temporanei all occupazione stabile: un percorso sempre più incerto? Dai rapporti temporanei all occupazione stabile: un percorso sempre più incerto? di Anna de Angelini La maggior flessibilità in entrata introdotta dalla normativa sui rapporti di lavoro a partire seconda

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

La Termodinamica ed I principi della Termodinamica

La Termodinamica ed I principi della Termodinamica La Termodinamica ed I principi della Termodinamica La termodinamica è quella branca della fisica che descrive le trasformazioni subite da un sistema (sia esso naturale o costruito dall uomo), in seguito

Dettagli

ENERGIA. Massimo Telesca ARPA FVG Indirizzo tecnicoscientifico. e coordinamento dei Dipartimenti provinciali

ENERGIA. Massimo Telesca ARPA FVG Indirizzo tecnicoscientifico. e coordinamento dei Dipartimenti provinciali ENERGIA 269 ENERGIA Il ricorso all utilizzo di fonti rinnovabili sovvenzionate comporta dei potenziali impatti ambientali. Fra questi, vi sono l alterazione dei corsi d acqua a causa delle derivazioni

Dettagli

ESTIMO GENERALE. 1) Che cos è l estimo?

ESTIMO GENERALE. 1) Che cos è l estimo? ESTIMO GENERALE 1) Che cos è l estimo? L estimo è una disciplina che ha la finalità di fornire gli strumenti metodologici per la valutazione di beni economici, privati o pubblici. Stimare infatti significa

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Dar da mangiare agli affamati. Le eccedenze alimentari come opportunità

Dar da mangiare agli affamati. Le eccedenze alimentari come opportunità Dar da mangiare agli affamati. Le eccedenze alimentari come opportunità Paola Garrone, Marco Melacini e Alessandro Perego Politecnico di Milano Indagine realizzata da Fondazione per la Sussidiarietà e

Dettagli

Urban Sprawl e Adattamento al Cambiamento Climatico: il caso di Dar es Salaam

Urban Sprawl e Adattamento al Cambiamento Climatico: il caso di Dar es Salaam XVI CONFERENZA NAZIONALE SOCIETÀ ITALIANA DEGLI URBANISTI 9 Maggio 2013 Luca Congedo 1, Silvia Macchi 1, Liana Ricci 1, Giuseppe Faldi 2 1 DICEA - Dipartimento di Ingegneria Civile, Edile e Ambientale,

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

4. Confronto tra medie di tre o più campioni indipendenti

4. Confronto tra medie di tre o più campioni indipendenti BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

p o : E o = p e : E e da cui p o = p e * E o E e

p o : E o = p e : E e da cui p o = p e * E o E e "Il cambiamento è inevitabile, la crescita personale è una scelta" Bob Proctor (Fondatore e Presidente di Life Success Productions) STANDARDS INTERNAZIONALI DI VALUTAZIONE IL COST APPROACH Il Cost Approach

Dettagli

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014)

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) Le grandezze fisiche. Metodo sperimentale di Galilei. Concetto di grandezza fisica e della sua misura. Il Sistema internazionale di Unità

Dettagli

La ricerca empirica: una definizione

La ricerca empirica: una definizione Lucido 35/51 La ricerca empirica: una definizione La ricerca empirica si distingue da altri tipi di ricerca per tre aspetti (Ricolfi, 23): 1. produce asserti o stabilisce nessi tra asserti ipotesi teorie,

Dettagli

DAL PROBLEMA AL PROGRAMMA

DAL PROBLEMA AL PROGRAMMA 1. I PROBLEMI E LA LORO SOLUZIONE DAL PROBLEMA AL PROGRAMMA L'uomo, per affrontare gli innumerevoli problemi postigli dallo sviluppo della civiltà, si è avvalso della scienza e della tecnica, i cui destini

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Analisi termografica su celle litio-ione sottoposte ad esperienze di "second life" Francesco D'Annibale, Francesco Vellucci. Report RdS/PAR2013/191

Analisi termografica su celle litio-ione sottoposte ad esperienze di second life Francesco D'Annibale, Francesco Vellucci. Report RdS/PAR2013/191 Agenzia nazionale per le nuove tecnologie, l energia e lo sviluppo economico sostenibile MINISTERO DELLO SVILUPPO ECONOMICO Analisi termografica su celle litio-ione sottoposte ad esperienze di "second

Dettagli

Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it

Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it Corso di laurea magistrale in Ingegneria delle Telecomunicazioni Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it Trasmettitore

Dettagli

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile.

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. ORDINALI E NOMINALI LA PROBABILITÀ Statistica5 23/10/13 Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. Se si afferma che un vitello di razza chianina pesa 780 kg a 18

Dettagli

3. TEORIA DELL INFORMAZIONE

3. TEORIA DELL INFORMAZIONE 3. TEORIA DELL INFORMAZIONE INTRODUZIONE MISURA DI INFORMAZIONE SORGENTE DISCRETA SENZA MEMORIA ENTROPIA DI UNA SORGENTE NUMERICA CODIFICA DI SORGENTE 1 TEOREMA DI SHANNON CODICI UNIVOCAMENTE DECIFRABILI

Dettagli

Previsione di impatto acustico relativa a:

Previsione di impatto acustico relativa a: PROVINCIA DI MODENA COMUNE DI FIORANO M. Previsione di impatto acustico relativa a: nuovo capannone uso deposito ditta Atlas Concorde Spa ubicato in Via Viazza I Tronco - Fiorano M. (MO) Settembre 2012

Dettagli

LA POVERTÀ IN ITALIA. Anno 2013. 14 luglio 2014

LA POVERTÀ IN ITALIA. Anno 2013. 14 luglio 2014 14 luglio 2014 Anno 2013 LA POVERTÀ IN ITALIA Nel 2013, il 12,6% delle famiglie è in condizione di povertà relativa (per un totale di 3 milioni 230 mila) e il 7,9% lo è in termini assoluti (2 milioni 28

Dettagli

/ * " 6 7 -" 1< " *,Ê ½, /, "6, /, Ê, 9Ê -" 1/ " - ÜÜÜ Ìi «V Ì

/ *  6 7 - 1<  *,Ê ½, /, 6, /, Ê, 9Ê - 1/  - ÜÜÜ Ìi «V Ì LA TRASMISSIONE DEL CALORE GENERALITÀ 16a Allorché si abbiano due corpi a differenti temperature, la temperatura del corpo più caldo diminuisce, mentre la temperatura di quello più freddo aumenta. La progressiva

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

PROGETTO EM.MA PRESIDIO

PROGETTO EM.MA PRESIDIO PROGETTO EM.MA PRESIDIO di PIACENZA Bentornati Il quadro di riferimento di matematica : INVALSI e TIMSS A CONFRONTO LE PROVE INVALSI Quadro di riferimento per la valutazione Quadro di riferimento per i

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli