Dipartimento di Biologia Animale Università degli Studi di Pavia

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dipartimento di Biologia Animale Università degli Studi di Pavia"

Transcript

1 Dipartimento di Biologia Animale Università degli Studi di Pavia INDAGINE SUI DANNEGGIAMENTI DA CINGHIALE (SUS SCROFA) NEL PARCO NAZIONALE DELL ARCIPELAGO TOSCANO E SULL EFFICACIA DEI METODI DI CONTROLLO DELLA POPOLAZIONE Glugno 2010

2 A CURA DI ALBERTO MERIGGI PIETRO MILANESI ANNA BRANGI PAOLO LAMBERTI Dipartimento di Biologia Animale Università di Pavia 1

3 INDAGINE SUI DANNEGGIAMENTI DA CINGHIALE (SUS SCROFA) NEL PARCO NAZIONALE DELL ARCIPELAGO TOSCANO E SULL EFFICACIA DEI METODI DI CONTROLLO DELLA POPOLAZIONE PREMESSA L incremento delle popolazioni di cinghiale in Italia ha innescato una serie di problemi derivanti, in particolar modo, dai danneggiamenti alle coltivazioni e ad altre destinazioni d uso dei suoli (p. es. orti familiari, giardini, ecc.) e dalla necessità di far fronte ai danni con compensazioni da parte degli Enti pubblici preposti alla gestione della fauna selvatica (Monaco et al. 2010). In alcune regioni e province italiane, l entità dei danni è tale da non essere economicamente sostenibile a lungo termine. Il cinghiale, però, è una specie di selvaggina di grande importanza economica e gestionale che assorbe l attenzione e l attività di un numero sempre più elevato di cacciatori, i quali hanno interesse a mantenere le popolazioni ad un livello numerico elevato, incompatibile con una limitazione rilevante dei danni. A questo si aggiunge l indotto economico, alquanto importante, dell attività venatoria al cinghiale (acquisto d armi, cani e attrezzature, vendita degli animali abbattuti, cessione di quote di prelievo) che funge, in parte, da contropartita ai danni e contribuisce a mantenere l interesse per il mantenimento di popolazioni ad alta densità. Dalla seconda metà degli anni 90 il problema dell incremento del cinghiale e, conseguentemente, dell intensificazione dei danni ha investito in modo sempre più preoccupante molti parchi nazionali e regionali e riserve naturali, dove è impensabile provvedere con un prelievo generalizzato e intenso e per i quali la riduzione consistente delle risorse finanziare rende sempre più difficile fronteggiare la situazione (Monaco et al. 2010). Nelle aree protette il problema dei danni da cinghiale viene usualmente affrontato secondo tre modalità tra loro complementari (Monaco et al. 2010): Compensazione del danno su denuncia da parte di proprietari e conduttori dei fondi, Prevenzione attraverso barriere, recinzioni elettrificate, foraggiamento dissuasivo, repellenti e dissuasori sonori, Controllo numerico della popolazione con catture e traslocazioni, prelievo selettivo, prelievo quantitativo. Come si è detto, la compensazione dei danni può essere economicamente sostenuta solo se gli importi sono limitati e se i danni non si verificano con regolarità, in caso contrario i danni possono arrivare ad essere insostenibili per le risorse finanziarie disponibili, o 2

4 comunque possono assorbire una parte consistente del bilancio di un parco o di una riserva naturale che potrebbe essere indirizzata altrimenti. La prevenzione, soprattutto con recinzioni (elettrificate o no) può essere molto efficace, ma è alquanto costosa, salvo che non sia mirata alle situazioni a rischio più elevato e prima che il danno si verifichi. Il controllo numerico è normalmente di scarsa efficacia perché le popolazioni di cinghiale rispondono rapidamente alle perdite aumentando il potenziale riproduttivo (p. es. diminuzione dell età del primo estro nelle femmine e aumento della sopravvivenza embrionale, della dimensione della cucciolata e della sopravvivenza giovanile) e, di conseguenza, la riduzione delle densità è solo temporanea. Un controllo numerico, per essere efficace, dovrebbe essere così intenso da diventare la principale attività di un area protetta. Il problema dei danni in un area protetta può essere risolto solamente agendo a più livelli e attraverso un approfondita conoscenza della popolazione sulla quale si deve operare. In questa relazione sono contenuti i primi risultati delle analisi effettuate sui dati pregressi in possesso del Parco Nazionale dell Arcipelago Toscano (PNAT) e riguardanti l isola d Elba. In particolare la relazione è formata da 7 parti: 1. Analisi ambientale del territorio, 2. Distribuzione e tendenza dei danni, 3. Modellizzazione del rischio di danneggiamento, 4. Prelievo e tendenza della popolazione 5. Stime della consistenza della popolazione, 6. Struttura della popolazione di cinghiale, 7. Demografia e modellizzazione della popolazione. 3

5 PARTE I ANALISI AMBIENTALE DEL TERRITORIO DELL ISOLA D ELBA 4

6 METODI Allo scopo di individuare le Unità di Paesaggio (UP) presenti nell isola d Elba è stata effettuata un analisi ambientale basata sulla Carta della Vegetazione in scala 1: Per questo scopo il territorio dell isola è stato suddiviso in celle di 100 ha mediante la sovrapposizione di una griglia di 1 km di lato. In ogni cella sono poi stati misurati i valori di 11 variabili relative alla vegetazione, mediante il software ArcView 3.0; quindi sono stati individuati i raggruppamenti di celle (Unità di Paesaggio) con valori simili delle variabili vegetazionali, mediante Analisi dei Cluster. Con questo metodo, il territorio dell isola è stato suddiviso, in modo oggettivo, in porzioni omogenee per caratteristiche ambientali che potranno essere zone di riferimento per gli interventi gestionali relativi alla popolazione di cinghiale. RISULTATI L analisi ambientale effettuata sul territorio dell isola d Elba ha individuato 8 Unità di Paesaggio (UP) con caratteristiche vegetazionali differenti (Fig. 1, Tab. 1). UP n. 1: Aree urbanizzate miste a macchia di sclerofille. Questa unità di paesaggio, costituita da 16 UC (1600 ha), è caratterizzata da aree urbanizzate frammiste a zone di macchia mediterranea. Questo tipo d ambiente è molto localizzato in alcuni tratti costieri dell isola e, per questo motivo, l UP risulta altamente frazionata. UP n. 2: Aree urbanizzate. L Unità di Paesaggio n. 2 è costituita per quasi il 90% da aree urbanizzate; le 10 UC che la compongono (1000 ha) sono localizzate in corrispondenza dei principali centri abitati costieri dell isola. UP n. 3: Aree boscate. Questa Unità di Paesaggio è costituita per oltre il 50% da boschi di latifoglie e, secondariamente, da zone a macchia mediterranea e da aree urbanizzate. Le 84 UC che la compongono (8400 ha) sono distribuite quasi totalmente nella porzione settentrionale dell isola, sui versanti con esposizione Nord. UP n. 4: Aree a macchia e boschi. Il tipo di vegetazione principale che caratterizza l Unità di Paesaggio n. 4 è la macchia mediterranea che in questa UP raggiunge quasi il 60%; di una certa importanza sono anche i boschi che coprono quasi il 15% del territorio. L UP è costituita da 90 UC per un totale di 9000 ha, collocati principalmente nella parte sudoccidentale dell isola. 5

7 UP n. 5: Aree a mosaico di macchia e boschi. Questa Unità di Paesaggio è caratterizzata principalmente da aree di macchia disposta a mosaico, da macchia estesa e da boschi di latifoglie. L UP è costituita da 15 UC (1500 ha) collocate soprattutto nelle parte nordorientale dell isola. UP n. 6: Aree a rimboschimenti di conifere e macchia. I rimboschimenti di conifere e la macchia mediterranea sono presenti in questa Unità di Paesaggio in modo equivalente, raggiungendo, insieme, oltre il 65% dell intera UP. Venticinque UC (2500 ha) compongono l unità con una presenza concentrata nella parte sud-orientale dell isola. UP n. 7: Aree coltivate con insediamenti urbani. Questa Unità di Paesaggio è caratterizzata principalmente da zone coltivate che raggiungono il 33% della superficie totale, e secondariamente da zone urbanizzate UP n. 8: Aree costiere rocciose. Oltre il 75% di questa Unità di Paesaggio è costituita da ambienti rupestri costieri; il secondo tipo di vegetazione per importanza sono i boschi di latifoglie che, però, non arrivano al 10%. L UP comprende 13 UC (1300 ha) distribuite in modo altamente frammentato lungo le coste dell isola. Fig. I.1 Unità di Paesaggio dell isola d Elba 6

8 Tab. I.1 Percentuali dei tipi di vegetazione e numero di UC nelle Unità di Paesaggio individuate sul territorio dell isola d Elba Unità di Paesaggio Vegetazione N=16 N=10 N=84 N=90 N=15 N=26 N=48 N=13 Urbanizzati 46,4 88,0 10,4 3,8 5,0 6,6 19,3 2,5 Colture agrarie 6,2 3,7 4,8 2,1 5,1 3,9 32,7 1,0 Rimboschimenti 4,7 4,2 5,1 3,4 7,3 35,6 5,4 4,3 Boschi 2,4 0,2 55,9 14,3 11,4 5,4 12,8 8,5 Boschi sclerofille 0,3 0,0 0,5 0,9 1,9 0,2 0,4 0,0 Macchia 26,4 0,9 12,2 57,0 22,3 30,9 17,5 2,5 Macchia mosaico 2,1 1,2 5,3 11,0 39,4 9,5 7,9 5,9 Affioramenti 0,0 0,0 0,7 2,3 4,2 0,2 0,4 0,0 Coste rocciose 11,3 1,7 5,0 5,1 3,4 7,8 3,7 75,4 Dune costiere 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 Aree salmastre 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 7

9 PARTE II DISTRIBUZIONE E TENDENZA DEI DANNI 8

10 METODI I danni provocati dai cinghiali all interno del PNAT a coltivazioni, orti, giardini e manufatti, dal 1999 al 2009, sono stati catalogati e georeferenziati con il software ArcGis 9.3. I danni sono stati suddivisi per tipo, in base alle differenti coltivazioni danneggiate e sono state valutate le differenze tra gli anni della ricorrenza dei danni totali e per ciascun tipo. Inoltre è stata valutata l entità dei rimborsi erogati dal PNAT per ogni anno e per ogni tipo. Per il numero di eventi di danneggiamento totali e per ogni tipo e per l entità dei rimborsi, è stata valutata la tendenza nel periodo di studio mediante analisi di regressione con stima di curve, ponendo le variabili dei danni come variabili dipendenti e la variabile tempo come indipendente. Inoltre sono state analizzate le relazioni tra le variabili dei danni mediante analisi di correlazione e la dipendenza del numero totale di eventi e dei rimborsi dai diversi tipi di danno mediante Analisi di Regressione Multipla (ARM). Infine sono state analizzate le relazioni esistenti tra l entità dei danni, sia come numero di eventi, sia come rimborsi, e il prelievo effettuato dentro e fuori Parco; anche per questo scopo sono state utilizzate analisi di correlazione e di regressione. RISULTATI I danni da cinghiale nel territorio a PNAT dell isola d Elba sono aumentati dal 1999 (39 eventi) al 2001 (43 eventi), per poi subire un progressivo decremento fino al 2004 (8 eventi); nei tre anni successivi si è assistito ad un ulteriore aumento dei danni, fino a 29 eventi nel 2007 ed un nuovo decremento nel 2008, quando è stato raggiunto il minimo di 6 eventi. Lo stesso andamento è risultato per i rimborsi erogati dall Ente PNAT (Fig. II.1). Considerando gli anni cumulati, il tipo di danno più frequente è stato quello ai vigneti, seguito dai danni alle opere o manufatti; i danni ai frutteti, ai prati e agli orti hanno rappresentato insieme il 27% del totale (Fig. II.2). 9

11 Fig. II.1 Variazioni annuali del numero di eventi di danneggiamento e dei rimborsi erogati dal PNAT Fig. II.2 Percentuali dei tipi di danno da cinghiale verificatisi dal 1999 al

12 Dal 1999 al 2003 la maggior parte dei danni è stata a carico dei vigneti per i quali è stato raggiunto un massimo superiore al 60% nel 2001, negli anni successivi i danni a questo tipo di coltivazione hanno avuto un decremento, scendendo al di sotto del 50% dal 2004 al I danni alle opere sono regrediti dal 1999 al 2003, per poi aumentare e raggiungere un massimo nel I frutteti sono stati colpiti in tutti gli anni tranne che nel 2004, con una tendenza all aumento dei danni fino al 2003 e successivamente una diminuzione. Decisamente limitati e occasionali sono stati i danni agli ortaggi, come quelli ai prati che in alcuni anni, però, hanno superato il 30% (Fig. II.3). Fig. II.3 Variazioni annuali delle proporzioni dei tipi di danno da cinghiale Le analisi di tendenza hanno evidenziato trend negativi e significativi per il numero di eventi totali, per i rimborsi totali e per il numero di eventi a carico dei vigneti, mentre per gli altri tipi di danno non è risultata nessuna tendenza significativa (Figg. II.4, II.5 e II.6). 11

13 Fig. II.4 Tendenza del numero di eventi totali di danno da cinghiali dal 1999 al 2009 nel PNAT (R 2 =0,462; F=9,57; P=0,013; y = 43,2 12,5 ln(t)) Fig. II.5 Tendenza dei rimborsi per danni da cinghiali dal 1999 al 2009 nel PNAT (R 2 =0,447; F=9,09; P=0,015; y = 19,5 6,4 ln(t)) 12

14 Fig. II.6 Tendenza dei danni da cinghiali ai vigneti dal 1999 al 2009 nel PNAT (R 2 =0,692; F=23,50; P=0,001; y = 32,9 12,2 ln(t)) Il numero di eventi totali è risultato correlato positivamente e significativamente con i danni ai vigneti (r=0,934; n=11; P<0,0001) e con quelli alle opere o manufatti (r=0,823; n=11; P=0,002). Correlazioni positive e significative sono emerse anche per i rimborsi con il numero di eventi totali (r=0,918; n=11; P<0,0001), con i danni ai vigneti (r=0,952; n=11; P<0,0001) e con quelli alle opere (r=0,677; n=11; P=0,022). Le analisi di regressione multipla hanno evidenziato come il numero di eventi totali dipenda fortemente dai danni ai vigneti, alle opere e ai prati; il modello ha spiegato complessivamente il 98,5% della varianza del numero di eventi totali (Tab. II.1). Tab. II.1 Risultati dell Analisi di Regressione Multipla tra il numero di eventi totali di danneggiamento e i diversi tipi di danno ( , PNAT) Tipi di danno B (ES) β t P R 2 Vigneti 0,9 (0,07) 0,77 13,96 <0,0001 0,859 Opere 0,8 (0,14) 0,31 5,64 0,001 0,965 Prati 0,5 (0,13) 0,15 3,37 0,012 0,985 Costante=3,5 ESS=1,60 F=216,79 P<0,

15 Per quanto riguarda i rimborsi erogati dal Parco per i danni da cinghiale, l ARM ha formulato un modello in cui è entrata una sola variabile, i danni ai vigneti, e che ha spiegato l 89,6% della varianza della variabile dipendente (Tab. II.2). Tab. II.2 Risultati dell Analisi di Regressione Multipla tra i rimborsi per danni da cinghiale e i diversi tipi di danno ( , PNAT) Tipi di danno B (ES) β t P R 2 Vigneti 0,6 (0,06) 0,95 9,33 <0,0001 0,896 Costante=1,3 ESS=2,17 F=89,98 P<0,0001 Dalle analisi di correlazione tra entità dei danni e prelievo realizzato sono emerse relazioni negative ma non significative sia considerando il prelievo dentro il Parco sia il prelievo cumulato dentro e fuori Parco (Tab. II.3 e II.4). Tab. II.3 Risultati delle analisi di correlazione tra numero di eventi di danneggiamento totali e il prelievo ( , PNAT) Prelievo r P Catture -0,142 0,678 Totale dentro PNAT -0,173 0,610 Totale dentro e fuori PNAT 0,226 0,504 Catture anno precedente -0,382 0,246 Tot. dentro PNAT anno prec. -0,456 0,158 Tot. dentro e fuori PNAT anno prec. -0,527 0,096 14

16 Tab. II.4 Risultati delle analisi di correlazione tra i rimborsi per danni da cinghiali e il prelievo ( , PNAT) Prelievo r P Catture -0,105 0,758 Totale dentro PNAT -0,168 0,621 Totale dentro e fuori PNAT 0,217 0,522 Catture anno precedente -0,189 0,578 Tot. dentro PNAT anno prec. -0,293 0,382 Tot. dentro e fuori PNAT anno prec. -0,417 0,202 15

17 PARTE III MODELLIZZAZIONE DEL RISCHIO DI DANNEGGIAMENTO 16

18 METODI Con il termine modello si indica una semplificazione di un sistema complesso. In ambito ecologico il modello è principalmente di tipo matematico. Quando si basa su ipotesi formulate a priori, da informazioni bibliografiche o derivanti dall esperienza personale, si parla di modello teorico oppure, nel caso di dati ricavati dal mondo reale, si parla di modello empirico. I modelli possono poi essere stocastici, se costituiti da un insieme finito di variabili che dipendono da un parametro e dai valori che le singole variabili assumono, cioè con base statistica, oppure deterministici, fisico-matematici che tentano di prevedere numericamente l'evoluzione del sistema, attraverso la soluzione approssimata (non analitica) del sistema di equazioni matematiche che descrivono il sistema. Nel modello stocastico l'inizializzazione delle variabili avviene mediante l'identificazione della distribuzione di probabilità che caratterizza ogni singola variabile, attraverso l'analisi statistica, che rappresenta lo spazio probabilistico dei valori che la variabile può assumere, così che, ricostruita la distribuzione di probabilità delle singole variabili, è possibile simulare, attraverso il modello stocastico, la variazione della distribuzione di probabilità delle variabili, ottenendo come risultato un nuovo spazio probabilistico di valori per ogni variabile casuale. Per il modello deterministico invece, è necessaria la conoscenza dello stato di partenza (le condizioni iniziali) attraverso il quale è possibile fornire i valori di inizializzazione delle variabili indipendenti del sistema di equazioni di cui è composto il modello stesso al di fine di ottenere un risultato unico, numerico, per ogni punto nello spazio. I più utilizzati in ambito ecologico sono i modelli empirico-stocastici in quanto, a parità di conoscenza della biologia della specie e delle dinamiche del sistema, sono quelli che meglio sintetizzano le relazioni tra l ambiente e la popolazione animale in esame (Massolo e Meriggi 1995). Un modello può avere funzione predittiva (forecasting), diretta ad individuare quegli ambienti a più alta vocazione per la specie, o esplicativa (hindcasting), finalizzata invece a mettere in evidenza le caratteristiche dell ambiente che determinano la presenza della specie. La formulazione di un modello si basa sull utilizzo congiunto di Sistemi Informativi Territoriali (GIS Geographical Information System) e analisi statistiche multivariate. I principi fondamentali delle analisi multivariate, tra cui alcune delle più frequentemente utilizzate sono la regressione logistica e l analisi di funzione discriminante, sono sostanzialmente quattro (Hirzel et al. 2002): l area di studio è configurata come una mappa raster composta da n celle isometriche adiacenti, 17

19 la variabile dipendente è sottoforma di dati di presenza-assenza della specie in esame all interno di un insieme di stazioni di campionamento, le variabili indipendenti sono di tipo ecogeografico (ambientale) e descrivono quantitativamente alcune caratteristiche per ogni cella. Possono essere dati topografici (ad es. altitudine o pendenza), ecologici (ad es. la percentuale di boschi o la concentrazione di nitrati), o di antropizzazione (ad es. la densità di strade o la distanza dalla città più vicina), viene calibrata una funzione in grado di classificare nel modo più corretto possibile le celle come idonee o non idonee per la specie, i dettagli sulle funzioni e la loro calibrazione dipendono dal tipo di analisi effettuata. In questo tipo di analisi la raccolta dei dati di presenza-assenza è una parte essenziale per la formulazione del modello. Il campionamento non deve essere viziato per essere rappresentativo della popolazione e i dati d assenza in particolare sono difficili da rilevare in modo accurato. Una stazione di campionamento può essere classificata come assenza principalmente per tre motivi (Hirzel et al. 2002): la specie non viene rilevata anche se è effettivamente presente ( falsa assenza ), per ragioni storiche la specie è assente anche se l habitat sarebbe idoneo (possibile falsa assenza ) l habitat è realmente non idoneo per la specie (unico caso in cui il dato di assenza è valido). Lo scopo di questa parte dello studio è stato produrre una mappa spazialmente esplicita del rischio di danni da cinghiale, confrontando l efficienza predittiva di modelli basati su soli dati di presenza con quelli basati su dati di presenza-assenza. I dati utilizzati per la formulazione dei modelli sono stati quelli relativi ai danni da cinghiale dall anno 1999 al 2007, mentre per la verifica sono stati utilizzati i danni registrati nel 2008 e nel Tutti i dati raccolti sono stati innanzitutto digitalizzati, poi elaborati e analizzati, mediante l'utilizzo di software appropriati alla loro trattazione. I software utilizzati per l elaborazione e l'analisi dei dati sono stati: ArcGIS 9.3: programma che consente di georeferenziare i dati provenienti da un database per visualizzarli e localizzarli nello spazio. Microsoft Excel XP: è un applicazione per la creazione e gestione di fogli elettronici che permette di impostare rapidamente delle tabelle numeriche sulla 18

20 base delle quali si possono eseguire calcoli di diversa natura (matematici, statistici, finanziari, ecc.) e realizzare grafici. SPSS 18.0: software per l'analisi statistica dei dati. R : software per l'analisi statistica dei dati e per la realizzazione di modelli, basato sull integrazione di strumenti GIS. Maxent 3.3.1: software per la realizzazione di modelli e mappe di idoneità/rischio ambientale per popolazioni animali e vegetali, basato sull integrazione di strumenti GIS. I dati relativi alle variabili ambientali nell area di studio sono stati ottenuti, utilizzando il software ArcGIS 9.3, da: Carta della Vegetazione, per quanto riguarda le variabili dell uso del suolo Digital Terrain Model (DTM, risoluzione 75 m), per quanto riguarda le variabili relative a altitudine, esposizione e pendenza. Il metodo rappresentativo dei procedimenti statistici basati su soli dati di presenza è stato l Algoritmo della Massima Entropia (MAXENT). Gli indici di nicchia ecologica, paragonabili a MAXENT, in quanto a presupposti statistici ma di carattere sintetico, sono stati associati alle seguenti analisi univariate e multivariate, per meglio esaminare le dinamiche determinanti i valori degli indici, e come metodi rappresentativi dei procedimenti statistici basati su dati di tipo presenza-assenza : Analisi uni variata della varianza one-way ANOVA. Analisi di Funzione Discriminante. Analisi di Regressione Logistica Binaria. Criterio di informazione di Akaike con Inferenza multi-modello. I dati sono stati analizzati per ottenere una stima delle principali caratteristiche delle nicchie e le mappe di rischio. Per individuare le variabili che influenzano il danno da cinghiale, l area di studio è stata suddivisa in 302 celle o Unità Campione (UC) di 1 km 2, attraverso una griglia a maglie quadrate di 100 x100 m. All interno di ogni UC sono state misurate le proporzioni delle variabili ambientali relative a: Tipi vegetazionali (24 variabili ottenute accorpando le categorie della Carta della Vegetazione in scala 1:25.000), Altimetria (12 variabili corrispondenti ad altrettante fasce altitudinali di 100 m ciascuna) 19

21 Esposizione (9 variabili, corrispondenti alle 8 esposizioni principali, più l esposizione nulla) Pendenza (7 variabili corrispondenti ad altrettante classi di 10 ciascuna) Alle UC è stato successivamente attribuito un codice binario 0/1; con 1 sono state indicate le UC all interno delle quali si sono verificati danni, con 0 tutte le altre (che possono essere UC di assenza accertata o UC dove non è stato effettuato il campionamento). In questo modo sono state individuate 56 UC di presenza, che sono state poi confrontate con altrettante UC di controllo, scelte in modo casuale tra quelle dove non è stata accertata la presenza di danno. Il confronto tra le UC è stato condotto attraverso l Analisi della Varianza (one way ANOVA), che ha permesso di verificare l esistenza di differenze significative tra i valori delle variabili nelle UC di presenza e nelle UC di controllo. È stata eseguita anche l Analisi della Funzione Discriminante (AFD): grazie a questa analisi è stato possibile individuare le variabili ambientali più efficaci nel separare le UC di presenza di danno da quelle scelte casualmente. Essa è rappresentata dall equazione: FD = β 0 + β 1x β nx n dove FD è la funzione discriminante, x sono le variabili indipendenti e β i coefficienti standardizzati delle variabili indipendenti. L'apporto di ogni variabile alla funzione discriminante è espresso dal valore assoluto di β, che indica in quale misura la variabile entrata nel modello contribuisce alla discriminazione tra i gruppi individuati sulla base dei valori assunti dalla variabile dipendente, e dal coefficiente di correlazione tra la stessa variabile e la FD. L AFD è stata condotta con la procedura forward stepwise (che comporta l aggiunta sequenziale di ciascuna variabile ambientale). La bontà della classificazione della Funzione Discriminante è stata valutata utilizzando 4 indicatori: Lambda di Wilks (e sua trasformazione in Chi-quadrato): dato dal rapporto tra matrice di devianza codevianza entro gruppi e la devianza totale; Autovalore: misura la varianza totale della variabile dipendente espressa nelle variabili selezionate, dando un'indicazione dell'importanza relativa della FD; Correlazione canonica: misura il grado di associazione tra la FD e la variabile dipendente (nel nostro caso, la presenza/assenza di danno); 20

22 Percentuale di casi classificati correttamente: casi osservati inizialmente in un gruppo che vengono riclassificati dalla funzione nello stesso gruppo. Una funzione discriminante è tanto migliore quanto più massimizza l'autovalore, la correlazione canonica e la percentuale di casi classificati correttamente e quanto più minimizza il valore di lambda di Wilks. In questo caso la variabile dipendente è binaria (può assumere infatti solo 2 valori: 0 e 1), quindi è stata ottenuta una sola funzione discriminante. Inoltre è stato formulato un modello predittivo della probabilità di presenza di danni da cinghiale nell area di studio, attraverso un Analisi di Regressione Logistica Binaria (ARLB). L equazione del modello logistico è: dove Y è la probabilità che l evento accada e z è l equazione caratteristica della regressione multipla lineare: z = β 0 + β 1 x β n x n dove x n è la n-esima variabile indipendente e β n è il coefficiente standardizzato delle variabili indipendenti. Tramite l ARLB è possibile stimare, per ogni UC, la probabilità che i danni si verifichino. Questo modello ha il vantaggio di includere un numero di variabili molto ridotto rispetto a quello di una funzione discriminante formulata sugli stessi casi. Secondo Meriggi e Massolo (1995), se non si vuole perdere stabilità nelle classificazioni, il numero di variabili che entrano nel modello non dovrebbe superare un quinto dei casi in cui l evento accade (presenza della specie). Per selezionare le variabili che contribuiscono all equazione del modello logistico, è stata utilizzata la procedura forward stepwise, che comporta, dato un insieme di n variabili indipendenti (variabili ambientali), l aggiunta successiva e sequenziale di ciascuna variabile al modello, in una serie di passaggi iterativi. Il risultato ottenuto mediante ciascun passaggio viene saggiato con i test della massima verosimiglianza, del - 2 Log Likelihood ( 2LL) e dello Z 2 (Adattamento o Goodness of Fit Statistic). La varianza della variabile dipendente spiegata dal modello è quantificata dal valore di R 2 corretto di Nagelkerke, che può assumere valori compresi tra 0 e 1. La stima del contributo di ciascuna variabile nella determinazione della probabilità di danni è data 21

23 dal valore della correlazione parziale (esprimibile con R, R 2 o Rho) tra la variabile in questione e la variabile dipendente, e dal rapporto tra la probabilità che l evento accada e la probabilità complementare che l evento non accada, denominata Esp (B). Un valore di R positivo indica che valori crescenti di quella variabile aumentano la probabilità che l evento accada, un valore di R negativo indica che valori crescenti di quella variabile diminuiscono tale probabilità. Il valore assoluto di R indica pertanto il contributo parziale dato al modello da ogni variabile dipendente. Se Esp(B) è maggiore di 1, la probabilità che l evento accada aumenta, se invece è minore di 1 diminuisce. Come ulteriore stima della predittività del modello di regressione logistica, viene solitamente usata la percentuale di casi classificati correttamente dal modello stesso, cioè dei punti analizzati in cui la presenza osservata coincide con quella prevista dal modello. È stata inoltre effettuata un analisi mediante curva ROC (Receiver Operator Characteristics); essa permette di valutare lo scostamento del modello ottenuto da uno che classifica i casi casualmente (Massolo e Meriggi 2007). La curva ROC viene costruita mettendo in relazione la sensibilità del modello (proporzione di casi positivi classificati correttamente) con il reciproco della sua specificità (proporzione di casi negativi classificati correttamente). Il modello logistico costituisce uno dei metodi più utilizzati per produrre una Funzione di Selezione delle Risorse, cioè un espressione matematica in grado di sintetizzare il processo di selezione dell habitat di una specie per prevederne la distribuzione (Boyce & McDonald 1999, Manly et al. 2003). Nel nostro caso è stata usata per prevedere la probabilità del verificarsi di danni. Poiché usando la procedura stepwise nel modello logistico spesso entrano variabili correlate tra loro, sono stati individuati, grazie alla matrice di correlazione di Pearson, sottogruppi di variabili non correlate (P > 0,05). In seguito, per ognuno di questi sottogruppi è stata effettuata una ARLB con la procedura enter, che aggiunge al modello tutte le variabili simultaneamente. L inferenza sui modelli ottenuti con i sottogruppi di variabili non correlate è stata effettuata seguendo l Information-Theoretic Approach (Anderson et al., 2000, 2001; Anderson e Burnham, 2002). In una prima fase è stato calcolato il logaritmo della massima verosimiglianza (MLL, Maximized Log-likelihood), secondo la formula: MLL = dove n è la dimensione del campione e σ 2 è il rapporto tra la somma dei quadrati dei residui (RSS, Residual Sum of Squares) e n. 22

24 Le performance dei vari modelli sono state confrontate utilizzando il criterio di Akaike (AIC, Akaike Information Criterion; Akaike, 1973). AIC = n ln (σ 2 ) + 2k Nel nostro caso è stato calcolato l AIC corretto (AIC c ), il cui uso è consigliato nel caso la numerosità sia n/k < 40 (dove k è il numero di parametri del modello) (Massolo e Meriggi, 2007). AIC c = n ln (σ 2 ) + 2k + Il modello per il quale l AIC c è minimo viene selezionato come modello migliore e, per ordinare i modelli successivi, si calcola la differenza tra l AIC c del modello migliore e gli AIC c degli altri: i = AIC ci min (AIC c ) Sempre per ordinare i modelli in base al rango, è stato poi calcolato per ognuno il peso w i, Akaike weight, il cui valore può essere interpretato come la probabilità di un dato modello di essere il migliore tra tutti quelli considerati (Merli e Meriggi, 2006; Jedrzejewski et al., 2008). La formula usata è stata la seguente: L importanza relativa delle variabili predittive (variabili ambientali) è stata valutata in base ai seguenti criteri: - numero di modelli in cui compare ogni variabile; - varianza spiegata (R 2 ) dei modelli in cui compare la variabile; - valore del coefficiente parziale di regressione standardizzato in ogni modello; - somma dei pesi (w i ) dei modelli in cui entra la variabile; - media pesata dei coefficienti parziali di regressione standardizzati dei modelli in cui entra la variabile: β = R i = 1 w i β i 23

GRANDI CARNIVORI IN LOMBARDIA

GRANDI CARNIVORI IN LOMBARDIA GRANDI CARNIVORI IN LOMBARDIA Meriggi A., Milanesi P., Crotti C., Mazzoleni L. Dipartimento di Biologia Animale Università degli Studi Pavia Classe: Mammiferi Ordine: Carnivori Famiglia Canidi Ursidi Felidi

Dettagli

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla Il metodo della regressione può essere esteso dal caso in cui si considera la variabilità della risposta della y in relazione ad una sola variabile indipendente X ad una situazione più generale in cui

Dettagli

General Linear Model. Esercizio

General Linear Model. Esercizio Esercizio General Linear Model Una delle molteplici applicazioni del General Linear Model è la Trend Surface Analysis. Questa tecnica cerca di individuare, in un modello di superficie, quale tendenza segue

Dettagli

Atlante delle specie faunistiche indicatrici di qualità ambientale nel territorio della Provincia di Milano

Atlante delle specie faunistiche indicatrici di qualità ambientale nel territorio della Provincia di Milano UNIVERSITA DEGLI STUDI DI PAVIA DIPARTIMENTO DI BIOLOGIA ANIMALE Atlante delle specie faunistiche indicatrici di qualità ambientale nel territorio della Provincia di Milano A cura di: Dott. Alberto Meriggi

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

ALLEGATO 2 METODOLOGIA VASA

ALLEGATO 2 METODOLOGIA VASA ALLEGATO 2 METODOLOGIA VASA La metodologia VASA (Valutazione Storico Ambientale) è stata messa a punto per sopperire alla carenza di criteri di valutazione dell influenza antropica e delle dinamiche temporali,

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

Elementi di statistica. Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1

Elementi di statistica. Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1 Elementi di statistica Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1 Statistica La statistica si può definire come: l insieme dei metodi

Dettagli

Ecologia e conservazione della Lepre in Italia

Ecologia e conservazione della Lepre in Italia Ecologia e conservazione della Lepre in Italia Alberto Meriggi e Francesca Meriggi Dipartimento di Scienze della Terra e dell Ambiente Università di Pavia Premessa Declino generale della lepre in tutta

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI CAPITOLO III CONFRONTI TRA DISTRIBUZIONI 3.1 CONFRONTI TRA DISTRIBUZIONI OSSERVATE E DISTRIBUZIONI TEORICHE OD ATTESE. Nella teoria statistica e nella pratica sperimentale, è frequente la necessità di

Dettagli

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Anno scolastico 01-01 I Docenti della Disciplina Salerno, settembre 01 Anno scolastico

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

Sistemi Informativi Territoriali. Il caso del rischio di incendio

Sistemi Informativi Territoriali. Il caso del rischio di incendio Paolo Mogorovich Sistemi Informativi Territoriali Appunti dalle lezioni Il caso del rischio di incendio Cod.731 - Vers.CC9 1 Introduzione 2 Definizione del problema 3 Omogeneizzazione dei dati 4 Calcolo

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2.

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2. Analisi multivariata Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Cercare di capire le relazioni

Dettagli

Sistemi Informativi Territoriali. Map Algebra

Sistemi Informativi Territoriali. Map Algebra Paolo Mogorovich Sistemi Informativi Territoriali Appunti dalle lezioni Map Algebra Cod.735 - Vers.E57 1 Definizione di Map Algebra 2 Operatori locali 3 Operatori zonali 4 Operatori focali 5 Operatori

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

1. Scopo dell esperienza.

1. Scopo dell esperienza. 1. Scopo dell esperienza. Lo scopo di questa esperienza è ricavare la misura di tre resistenze il 4 cui ordine di grandezza varia tra i 10 e 10 Ohm utilizzando il metodo olt- Amperometrico. Tale misura

Dettagli

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice cap 0 Romane - def_layout 1 12/06/12 07.51 Pagina V Prefazione xiii Capitolo 1 Nozioni introduttive 1 1.1 Introduzione 1 1.2 Cenni storici sullo sviluppo della Statistica 2 1.3 La Statistica nelle scienze

Dettagli

SINTESI DEI PRINCIPALI RISULTATI DELL ULTIMA EDIZIONE DEL MONITORAGGIO DEL MICROCREDITO (dati 2014)

SINTESI DEI PRINCIPALI RISULTATI DELL ULTIMA EDIZIONE DEL MONITORAGGIO DEL MICROCREDITO (dati 2014) SINTESI DEI PRINCIPALI RISULTATI DELL ULTIMA EDIZIONE DEL MONITORAGGIO DEL MICROCREDITO (dati 2014) A cura dell Ente Nazionale per il Microcredito, Team di monitoraggio Il monitoraggio condotto dall Ente

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Conoscenza. Metodo scientifico

Conoscenza. Metodo scientifico Conoscenza La conoscenza è la consapevolezza e la comprensione di fatti, verità o informazioni ottenuti attraverso l'esperienza o l'apprendimento (a posteriori), ovvero tramite l'introspezione (a priori).

Dettagli

11. Analisi statistica degli eventi idrologici estremi

11. Analisi statistica degli eventi idrologici estremi . Analisi statistica degli eventi idrologici estremi I processi idrologici evolvono, nello spazio e nel tempo, secondo modalità che sono in parte predicibili (deterministiche) ed in parte casuali (stocastiche

Dettagli

1. L analisi statistica

1. L analisi statistica 1. L analisi statistica Di cosa parleremo La statistica è una scienza, strumentale ad altre, concernente la determinazione dei metodi scientifici da seguire per raccogliere, elaborare e valutare i dati

Dettagli

Misure globali della progressività, dell incidenza e della redistribuzione dell imposta Irpef a.i. 2001-2007

Misure globali della progressività, dell incidenza e della redistribuzione dell imposta Irpef a.i. 2001-2007 Ministero Dell Economia e delle Finanze Dipartimento delle Finanze Direzione Studi e Ricerche Economico Fiscali Statistiche Fiscali Approfondimenti febbraio 2010 Misure globali della progressività, dell

Dettagli

Principi di analisi causale Lezione 2

Principi di analisi causale Lezione 2 Anno accademico 2007/08 Principi di analisi causale Lezione 2 Docente: prof. Maurizio Pisati Logica della regressione Nella sua semplicità, l espressione precedente racchiude interamente la logica della

Dettagli

CAPITOLO I Principi generali. Art.1

CAPITOLO I Principi generali. Art.1 REGOLAMENTO PROVINCIALE PER LA PREVENZIONE, L ACCERTAMENTO ED IL RISARCIMENTO DEI DANNI CAUSATI ALLE OPERE ED ALLE COLTURE AGRICOLE E FORESTALI DALLA FAUNA SELVATICA E DALL ATTIVITÀ VENATORIA CAPITOLO

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

LA CORRELAZIONE LINEARE

LA CORRELAZIONE LINEARE LA CORRELAZIONE LINEARE La correlazione indica la tendenza che hanno due variabili (X e Y) a variare insieme, ovvero, a covariare. Ad esempio, si può supporre che vi sia una relazione tra l insoddisfazione

Dettagli

Corso di Automazione Industriale 1. Capitolo 4

Corso di Automazione Industriale 1. Capitolo 4 Simona Sacone - DIST 1 Corso di Automazione Corso Industriale di 1 Automazione Industriale 1 Capitolo 4 Analisi delle prestazioni tramite l approccio simulativo Aspetti statistici della simulazione: analisi

Dettagli

Elaborazione dei dati su PC Regressione Multipla

Elaborazione dei dati su PC Regressione Multipla 21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione

Dettagli

Tecniche di analisi multivariata

Tecniche di analisi multivariata Tecniche di analisi multivariata Metodi che fanno riferimento ad un modello distributivo assunto per le osservazioni e alla base degli sviluppi inferenziali - tecniche collegate allo studio della dipendenza

Dettagli

Analisi discriminante

Analisi discriminante Capitolo 6 Analisi discriminante L analisi statistica multivariata comprende un corpo di metodologie statistiche che permettono di analizzare simultaneamente misurazioni riguardanti diverse caratteristiche

Dettagli

METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica

METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica EPIDEMIOLOGIA Ha come oggetto lo studio della distribuzione delle malattie in un popolazione e dei fattori che la influenzano

Dettagli

LE DETERMINANTI DELLA REDDITIVITÀ DELLE SOCIETA OPERANTI NEL COMPARTO TESSILE ABBIGLIAMENTO IN ITALIA

LE DETERMINANTI DELLA REDDITIVITÀ DELLE SOCIETA OPERANTI NEL COMPARTO TESSILE ABBIGLIAMENTO IN ITALIA LE DETERMINANTI DELLA REDDITIVITÀ DELLE SOCIETA OPERANTI NEL COMPARTO TESSILE ABBIGLIAMENTO IN ITALIA Il metodo CVRP per l analisi delle maggiori società tessili italiane Stefano Cordero di Montezemolo

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

Modelli matematici avanzati per l azienda a.a. 2010-2011

Modelli matematici avanzati per l azienda a.a. 2010-2011 Modelli matematici avanzati per l azienda a.a. 2010-2011 Docente: Pasquale L. De Angelis deangelis@uniparthenope.it tel. 081 5474557 http://www.economia.uniparthenope.it/siti_docenti P.L.DeAngelis Modelli

Dettagli

CONSIDERAZIONI CONCLUSIVE

CONSIDERAZIONI CONCLUSIVE 514 CONSIDERAZIONI CONCLUSIVE 515 Conclusioni Le Considerazioni conclusive sulla Fase 2 della VIS possono essere sintetizzate in tre punti: 1. La seconda fase dopo lo screening ha approfondito in primo

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini)

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Esercizio 1 In uno studio sugli affitti mensili, condotto su un campione casuale di 14 monolocali nella città nella città

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

Gli aspetti economici di stima

Gli aspetti economici di stima Gli aspetti economici di stima Generalità Per aspetto economico o criterio di stima si intende il tipo di valore che si intende attribuire a un bene economico. Per tipo di valore si intende uno schema

Dettagli

INDICE PREFAZIONE VII

INDICE PREFAZIONE VII INDICE PREFAZIONE VII CAPITOLO 1. LA STATISTICA E I CONCETTI FONDAMENTALI 1 1.1. Un po di storia 3 1.2. Fenomeno collettivo, popolazione, unità statistica 4 1.3. Caratteri e modalità 6 1.4. Classificazione

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

RISCHIO E CONTROLLO DI GESTIONE LA COSTRUZIONE DI UN BUDGET

RISCHIO E CONTROLLO DI GESTIONE LA COSTRUZIONE DI UN BUDGET LA COSTRUZIONE DI UN BUDGET Prof. Francesco Albergo Docente di PIANIFICAZIONE E CONTROLLO Corso di Laurea in Economia Aziendale Curriculum in Gestione Aziendale Organizzata UNIVERSITA degli Studi di Bari

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

REGIONE LIGURIA Protezione Civile

REGIONE LIGURIA Protezione Civile ALLEGATO 2 REGIONE LIGURIA Protezione Civile INCENDIO DELLE ZONE DI INTERFACCIA DEFINIZIONE SCENARI Febbraio 2007 2 DEFINIZIONE SCENARIO DI INCENDI DI INTERFACCIA Per valutare il rischio conseguente agli

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

Esercitazione in Laboratorio: risoluzione di problemi di programmazione lineare tramite Excel il mix di produzione

Esercitazione in Laboratorio: risoluzione di problemi di programmazione lineare tramite Excel il mix di produzione Esercitazione in Laboratorio: risoluzione di problemi di programmazione lineare tramite Excel il mix di produzione Versione 11/03/2004 Contenuto e scopo esercitazione Contenuto esempi di problema di programmazione

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

SMID a.a. 2005/2006 Corso di Statistica per la Ricerca Sperimentale I sondaggi 23/1/2006

SMID a.a. 2005/2006 Corso di Statistica per la Ricerca Sperimentale I sondaggi 23/1/2006 SMID a.a. 2005/2006 Corso di Statistica per la Ricerca Sperimentale I sondaggi 23/1/2006 Scopo della ricerca Riuscire a determinare le caratteristiche di un fenomeno attraverso un campionamento di alcuni

Dettagli

Retroazione In lavorazione

Retroazione In lavorazione Retroazione 1 In lavorazione. Retroazione - introduzione La reazione negativa (o retroazione), consiste sostanzialmente nel confrontare il segnale di uscita e quello di ingresso di un dispositivo / circuito,

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

Verità ed esperienza: come la natura genera le osservazioni sperimentali

Verità ed esperienza: come la natura genera le osservazioni sperimentali Verità ed esperienza: come la natura genera le osservazioni sperimentali Andrea Onofri Dipartimento di Scienze Agrarie ed Ambientali Universitá degli Studi di Perugia 10 gennaio 2012 Indice 1 Presupposti

Dettagli

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro Pivot è bello Livello scolare: 1 biennio Abilità Conoscenze interessate Predisporre la struttura della Distribuzioni delle matrice dei dati grezzi con frequenze a seconda del riguardo a una rilevazione

Dettagli

III Forum di partecipazione pubblica I linguaggi del rischio: discipline a confronto

III Forum di partecipazione pubblica I linguaggi del rischio: discipline a confronto III Forum di partecipazione pubblica I linguaggi del rischio: discipline a confronto 15 gennaio 2013, c/o Camera di Commercio di Parma Via Verdi, Parma Il rischio idraulico La memoria degli eventi calamitosi

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

Il controllo delle prestazioni del provider. IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti)

Il controllo delle prestazioni del provider. IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti) del provider IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti) 1 del provider - premessa (1) in merito alla fase di gestione ordinaria dell outsourcing sono state richiamate le prassi di miglioramento

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

CLASSIFICAZIONE DEI CARATTERI

CLASSIFICAZIONE DEI CARATTERI CLASSIFICAZIONE DEI CARATTERI Come abbiamo visto, su ogni unità statistica si rilevano una o più informazioni di interesse (caratteri). Il modo in cui un carattere si manifesta in un unità statistica è

Dettagli

PICCOLO, GRANDE, NUOVO Il commercio in Piemonte prima della riforma

PICCOLO, GRANDE, NUOVO Il commercio in Piemonte prima della riforma Errore. L'argomento parametro è sconosciuto. Direzione Commercio Artigianato PICCOLO, GRANDE, NUOVO Il commercio in Piemonte prima della riforma Sintesi dei risultati Maggio 2002 Piccolo, grande, nuovo.

Dettagli

La teoria dell utilità attesa

La teoria dell utilità attesa La teoria dell utilità attesa 1 La teoria dell utilità attesa In un contesto di certezza esiste un legame biunivoco tra azioni e conseguenze: ad ogni azione corrisponde una e una sola conseguenza, e viceversa.

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it LA CLASSIFICAZIONE CAP IX, pp.367-457 Problema generale della scienza (Linneo, ) Analisi discriminante Cluster Analysis

Dettagli

3) ANALISI DEI RESIDUI

3) ANALISI DEI RESIDUI 3) ANALISI DEI RESIDUI Dopo l analisi di regressione si eseguono alcuni test sui residui per avere una ulteriore conferma della validità del modello e delle assunzioni (distribuzione normale degli errori,

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. CLASSE quinta INDIRIZZO AFM-SIA-RIM-TUR UdA n. 1 Titolo: LE FUNZIONI DI DUE VARIABILI E L ECONOMIA Utilizzare le strategie del pensiero razionale negli aspetti dialettici e algoritmici per affrontare situazioni

Dettagli

Elementi di statistica descrittiva I 31 Marzo 2009

Elementi di statistica descrittiva I 31 Marzo 2009 Il Concetti generali di Statistica) Corso Esperto in Logistica e Trasporti Elementi di Statistica applicata Elementi di statistica descrittiva I Marzo 009 Concetti Generali di Statistica F. Caliò franca.calio@polimi.it

Dettagli

Altri metodi di indicizzazione

Altri metodi di indicizzazione Organizzazione a indici su più livelli Altri metodi di indicizzazione Al crescere della dimensione del file l organizzazione sequenziale a indice diventa inefficiente: in lettura a causa del crescere del

Dettagli

In una tabella 2 x 2 il valore del chiquadrato, che quantifica la differenza fra i numero osservati e quelli attesi, è la somma delle quattro celle

In una tabella 2 x 2 il valore del chiquadrato, che quantifica la differenza fra i numero osservati e quelli attesi, è la somma delle quattro celle Test statistici il chi quadrato Valutare la differenza tra due percentuali o proporzioni L'ipotesi zero (o ipotesi nulla) afferma che la differenza osservata - di qualsiasi entità essa sia - è dovuta al

Dettagli

Lineamenti di econometria 2

Lineamenti di econometria 2 Lineamenti di econometria 2 Camilla Mastromarco Università di Lecce Master II Livello "Analisi dei Mercati e Sviluppo Locale" (PIT 9.4) Aspetti Statistici della Regressione Aspetti Statistici della Regressione

Dettagli

Histogram of C1 Normal

Histogram of C1 Normal Soluzioni domande ed esercizi Fondamenti di Affidabilità Capitolo 2. La vita di un cambio ad ingranaggi può essere fortemente influenzata nelle fasi iniziali della sua vita da problemi derivanti principalmente

Dettagli

CINGHIALE ED AREE PROTETTE IN ITALIA - IL CASO DEL PARCO NAZIONALE DEI MONTI SIBILLINI

CINGHIALE ED AREE PROTETTE IN ITALIA - IL CASO DEL PARCO NAZIONALE DEI MONTI SIBILLINI UNIVERSITA DEGLI STUDI DI CAMERINO FACOLTA DI MEDICINA VETERINARIA Corso di Laurea in Scienze e Tecnologie delle Produzioni Animali Dipartimento di Scienze Veterinarie TESI DI LAUREA IN AGR/19 ZOOTECNIA

Dettagli

Prefazione all edizione originale. Prefazione all edizione italiana

Prefazione all edizione originale. Prefazione all edizione italiana Indice Prefazione all edizione originale Prefazione all edizione italiana xiii xv 1 Il miglioramento della qualità nel moderno ambiente produttivo 1 1.1 Significato dei termini qualità e miglioramento

Dettagli

RILEVAMENTI ED ANALISI DEI DATI FAUNISTICI ED AMBIENTALI

RILEVAMENTI ED ANALISI DEI DATI FAUNISTICI ED AMBIENTALI RILEVAMENTI ED ANALISI DEI DATI FAUNISTICI ED AMBIENTALI Riferimenti normativi e tecnici. Gli INDIRIZZI REGIONALI PER LA PIANIFICAZIONE FAUNISTICO VENATORIA PROVINCIALE (allegato 6 INDIRIZZI PER LA GESTIONE

Dettagli

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte Competenza chiave europea: MATEMATICA Scuola Primaria DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte TAB. A TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE al termine della Scuola Primaria

Dettagli

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA STATISTICA ECONOMICA STATISTICA PER L ECONOMIA a.a. 2009-2010 Facoltà di Economia, Università Roma Tre Archivio Statistico delle Imprese Attive (ASIA) L archivio è costituito dalle unità economiche che

Dettagli

Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole -

Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole - Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole - - richiami preliminari sulle proprietà strutturali - Abbiamo visto che alcune caratteristiche dei sistemi dinamici (DES compresi) non

Dettagli

Indice Prefazione xiii 1 Probabilità

Indice Prefazione xiii 1 Probabilità Prefazione xiii 1 Probabilità 1 1.1 Origini del Calcolo delle Probabilità e della Statistica 1 1.2 Eventi, stato di conoscenza, probabilità 4 1.3 Calcolo Combinatorio 11 1.3.1 Disposizioni di n elementi

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Regressione non lineare con un modello neurale feedforward

Regressione non lineare con un modello neurale feedforward Reti Neurali Artificiali per lo studio del mercato Università degli studi di Brescia - Dipartimento di metodi quantitativi Marco Sandri (sandri.marco@gmail.com) Regressione non lineare con un modello neurale

Dettagli

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D)

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D) ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI () Una immagine (digitale) permette di percepire solo una rappresentazione 2D del mondo La visione 3D si pone lo scopo di percepire il mondo per come è in 3 dimensioni

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI 1. L azienda Wood produce legno compensato per costruzioni

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Corso di Statistica Medica Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Sono previste 40 ore complessive, di cui almeno 16 di lezione frontale e le restanti

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Il risultato di un analisi chimica è un informazione costituita da: un numero un incertezza un unità di misura

Il risultato di un analisi chimica è un informazione costituita da: un numero un incertezza un unità di misura Il risultato di un analisi chimica è un informazione costituita da: un numero un incertezza un unità di misura Conversione del risultato in informazione utile È necessario fare alcune considerazioni sul

Dettagli

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione 1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti

Dettagli

7.2. La costruzione degli indicatori demografici: la struttura dei flussi

7.2. La costruzione degli indicatori demografici: la struttura dei flussi 544 7.2. La costruzione degli indicatori demografici: la struttura dei flussi La seconda sottocomponente analizzata per l analisi demografica concerne le dinamiche dei flussi, considerando come tali i

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA

CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA ANNO ACCADEMICO 2013-2014 UNIVERSITA DEGLI STUDI DI TERAMO FACOLTA DI MEDICINA VETERINARIA CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA CFU 5 DURATA DEL CORSO : ORE 35 DOCENTE PROF. DOMENICO DI DONATO

Dettagli