Appunti di Termodinamica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appunti di Termodinamica"

Transcript

1 ullio Paa unti di ermodinamica Per arofondire consultare il testo: Paa; Lezioni di Fisica-ermodinamica, edizioni Kaa, Roma

2 1 Sistemi e variabili termodinamiche Equazioni di stato 1 Introduzione La termodinamica classica studia il comortamento e le rorietà dellamateriaquando in essa si verificano scambi di energia sotto forma di lavoro e calore con l ambiente esterno, in condizioni determinate da grandezze fisiche macroscoiche (di solito volume, temeratura, ressione) In questa discilina, trascurando la costituzione atomica o molecolare della materia e la sua descrizione dinamica microscoica, si considerano situazioni di equilibrio caratterizzate da valori ben recisi delle grandezze macroscoiche anzidette La frase scambio di energia è, dal unto di vista moderno, una locuzione erfettamente corretta; va tenuto resente, tuttavia, che fino alla rima metà del secolo scorso si riteneva che il calore fosse una sorta di fluido materiale, chiamato calorico, e che il fluire o il defluire di questo da un coro ad un altro ne determinasse il riscaldamento o il raffreddamento inteso nel senso iù usuale Storicamente è notevole il fatto che l ingegnere francese Sadi Carnot sia riuscito nel 1824, in base a questa teoria fluidica, a stabilire entro quali limiti sia ossibile la trasformazione di calore in lavoro, onendo così le remesse er l enunciato del secondo rinciio o seconda legge della termodinamica Nel 1842 JRMayer dimostrò l equivalenza tra calore e lavoro meccanico rendendo in esame alcuni risultati serimentalidigay-lussacericavò er l equivalente meccanico del calore un valore che nelle moderne unità di misura corrisonde a 3, 6 J/cal Qualche anno iù tardi e indiendentemente da Mayer, Joule con una famosa eserienza, trovò er l equivalente meccanico del calore, misurato in calorie, un valore che differisce di qualche er cento da quello attualmente accettato che è4, 186 J/cal Il rimo rinciio della termodinamica o rima legge della termodinamica, nella forma iù generale di legge di conservazione dell energia, fu enunciato nel 1847 da H Helmholtz Più recentemente si è riconosciuto che è ossibile siegare l equivalenza tra calore ed energia con considerazioni microscoiche, secondo le quali i fenomeni termici vengono determinati da moti disordinati di atomi o molecole e dalle loro interazioni Per questo motivo lo studio della termodinamica uò essereaffrontato con i metodi della meccanica statistica in cui, erò, la descrizione del moto della singola articella erde d interesse in quanto ciò che serve è la conoscenza delle rorietà medie dell insieme di articelle Infatti una mole di sostanza contiene un numero di molecole ari al numero di vogadro, il cui ordine di grandezza èdi10 23 molecole/mol, erciò lo studio dinamico di una orzione anche iccolissima di materia coinvolgerebbe un numero estremamente grande di variabili La termodinamica statistica è stata sviluata rincialmente da Maxwell, Boltzmann egibbsedè ervenuta ad una comrensione molto accurata delle leggi della termodinamica In termodinamica classica, invece, viene assunto un unto di vista differente Le leggi fondamentali vengono stabilite come ostulati fondati sull eserienza e da esse vengono dedotti risultati generali senza entrare in dettagli microscoici e nell interretazione cinetica dei fenomeni Questo modo di rocedere conduce a risultati molto recisi senza dover ricorrere a iotesi semlificatrici che inevitabilmente si è costretti a formulare quando si studia un insieme di molte articelle D altra arte una trattazione statistica dei fenomeni termodinamici molte volte è necessaria, sia er ricavare esressioni di grandezze termodinamiche che altrimenti è imossibile ottenere, sia er dare una interretazione microscoica delle grandezze stesse 2 Sistemi termodinamici Si definisce sistema termodinamico (o semlicemente sistema) una orzione finita di materia, un coro o un insieme di cori searati dall ambiente circostante da una suerficie, oortunamente scelta, che chiamiamo confine del sistema; l ambiente circostante, a sua volta, è costituito da materia od altri cori Il sistema e l ambiente ossono interagire tra loro mediante scambi di energia che determinano lo stato termodinamico e l evoluzione nel

3 2 temo del sistema stesso Lo stato termodinamico è caratterizzato da grandezze macroscoiche: volume, ressione, temeratura, facilmente misurabili, e oche altre (energia interna, entalia, entroia,) che verranno definite in seguito È fondamentale ora definire con recisione cosa si intende er sistema termodinamico Esemlificando, consideriamo un reciiente contenente dell acqua scaldata mediante un fornello Come sistema ossiamo scegliere l acqua e come ambiente esterno il vaore circostante, il reciiente, e la sorgente termica; il confine del sistema è costituito dalla suerficie dell acqua liquida e dalle areti del reciiente Possiamo ridefinire il sistema scegliendo come confine una suerficie diversa; se infatti il reciiente che contiene l acqua è chiuso, ossiamo considerare come sistema l acqua e il suo vaore Il confine del sistema ora è costituito dalle areti del reciiente; l ambiente esterno è la sorgente termica e tutto ciò che lo circonda Se attraverso il confine del sistema si verificano scambi di materia e di energia il sistema si dice aerto, rimo caso dell esemio riortato: vaore fluisce nell ambiente circostante Se attraverso il confine sono esclusi gli scambi di materia ma non gli scambi di energia, termica e/o meccanica, secondo caso dell esemio riortato, il sistema si dice chiuso Un sistema si dice isolato se attraverso il suo confinesonoesclusisiagliscambidienergiatermicae meccanica che gli scambi di materia In articolare, se sono esclusi soltanto gli scambi di energia termica il sistema si dice adiabatico Un sistema uò essere iù o meno comlesso; il suo grado di comlessità diende dal numero di subsistemi semlici in cui esso uò essere suddiviso e dal numero di grandezze macroscoiche occorrenti er caratterizzarlo Chiamiamo sistemi semlici quelli omogenei; essi hanno comosizione uniforme in ogni unto, nel senso che sono costituiti interamente da solido o liquido oure vaore, ur contenendo eventualmente iùsostanzeovveroiù comonenti; er esemio: liquidi miscibili fra loro, soluzioni omogenee, miscele di gas e simili Il sistema omogeneo iù semlice è costituito da una sostanza ura (molecole tutte della stessa secie), interamente sotto forma di solido o liquido o gas Sistemi comlessi sono quelli eterogenei; essi sono costituiti da regioni omogenee searate da confini netti attraverso cui uò avvenire scambio di materia Ognuna di queste regioni si chiama fase Ovviamente un sistema eterogeneo uò contenere iù comonenti (sostanze) In articolare una sostanza ura uò costituire un sistema eterogeneo quando sono resenti iù fasi Riferendoci all esemio recedente, nel rimo caso il sistema è omogeneo erché come confine si è scelto la suerficie dell acqua, nel secondo caso il sistema è eterogeneo in quanto sono resenti due fasi: l acqua liquida ed il suo vaore ncora: l acqua in resenza di ghiaccio e del suo vaore è un sistema eterogeneo, sebbene sia costituito da una sostanza ura a inoltre notato che qualunque sistema, anche comlesso, che scambia energia con l esterno, come ad esemio una ila, una termocoia, un dielettrico olarizzato, un materiale magnetico, una cavità contenente radiazione elettromagnetica in equilibrio, uò essere studiato termodinamicamente 3 ariabili termodinamiche Si è detto che un sistema termodinamico è caratterizzato da oche grandezze macroscoiche direttamente misurabili Prendiamo in esame una sostanza ura, omogenea (resente in una fase); in generale essa è caratterizzata da molte grandezze: massa, volume, densità, ressione, temeratura, indice di rifrazione, costante dielettrica ecc; non tutte queste grandezze sono indiendenti né tutte sono imortanti in termodinamica Per lo studio termodinamico, in genere, vengono scelte: volume, ressione, temeratura ed altre come l energia interna, l entroia, l entalia ecc, ognuna delle quali uò diendere da alcune altre Le grandezze indiendenti vengono chiamate variabili termodinamiche, che si distinguono in variabili intensive e variabili estensive Le rime descrivono le caratteristiche locali del sistema (ressione, temeratura, densità ), le altre le caratteristiche globali (massa, volume, energia) In queste due categorie esistono coie di variabili, una intensiva l altra estensiva, tali che il loro rodotto risulta dimensionalmente un energia (variabili coniugate); er esemio ressione e volume Una viene indicata come forza generalizzata, l altra come sostamento generalizzato Le variabili termodinamiche devono essere definibili in tutto lo sazio occuato dal sistema e devono essere uniformi in tutti i unti di tale sazio; solo in questo modo lo stato

4 macroscoico del sistema uò essere comletamente caratterizzato Per questo motivo le variabili termodinamiche vengono chiamate anche variabili di stato In altri termini devono essere escluse le variazioni locali diendenti dal temo Se vengono realizzate queste condizioni, si dice che il sistema è in equilibrio: le variabili intensive risultano uniformi, le variabili estensive costanti e ben definite La definizione di equilibrio di un sistema è molto imortante in quanto lo studio della termodinamica è basato essenzialmente su questo concetto, sul quale torneremo nel rossimo aragrafo Quando un sistema, interagendo con l esterno, assa da uno stato, caratterizzato da certi valori delle variabili di stato, ad un nuovo stato in cui le variabili di stato hanno valori diversi, si dice che esso comie una trasformazione, durante la quale si verificano infiniti stati in cui le variabili termodinamiche, in generale, non sono definibili in tutto il sistema, in quanto ossono diendere dal temo e dal unto uttavia questo non significa che sia imossibile definire una certa trasformazione; infatti, in termodinamica, il concetto di trasformazione è fondamentale Se, durante la trasformazione, si vuole descrivere il sistema er mezzo delle variabili di stato, si uò suorre di controllare convenientemente l interazione con l esterno In questo modo è ossibile realizzare una successione infinita di stati di equilibrio, ciascuno diverso dall altro, urché si attenda un intervallo di temo sufficientemente lungo affinché in ciascuno di questi infiniti stati, tutte le variabili termodinamiche assumano valori uniformi in tutto il sistema Una trasformazione di questo tio si chiama quasi statica 4 Equilibrio termodinamico Esaminiamo in dettaglio sotto quali condizioni un sistema si trova in equilibrio termodinamico Un sistema generico, comunque comlesso, è in uno stato di equilibrio termodinamico se sono verificate nello stesso temo le seguenti condizioni: a) equilibrio meccanico b) equilibrio termico c) equilibrio chimico L equilibrio meccanico è realizzato quando la ressione ècostanteintutteleartidelsistema Se nel sistema esistono, oltre alle forze di ressione, forze di volume, la risultante di tali forze dev essere nulla Si noti che la ressione èunavariabileintensiva; ingenerel equilibrio meccanico è stabilito se sono costanti le variabili intensive L equilibrio termico è realizzato quando la temeratura in ogni unto del sistema è uniforme; ciòè intuitivo er un sistema isolato Se il sistema è chiuso ma in contatto termico con l esterno, la temeratura del sistema all equilibrio deve essere uguale alla temeratura dell ambiente esterno In termodinamica er equilibrio chimico si intende non solo il fatto che eventuali reazioni chimiche siano giunte all equilibrio o siano cessate ma che non esistano rocessi che comortino trasferimento di materia da una fase all altra Nel seguito tratteremo in dettaglio quest ultimo caso, omettendo la arte relativa alla termodinamica chimica Se il sistema è chiuso, l equilibrio chimico, inteso come recisato iù sora, viene raggiunto attraverso rocessi di omogeneizzazione di una fase, er esemio soluzione comleta di un comosto in un solvente, oure quando cessa il assaggio di materia da una fase all altra, come si verifica, ad esemio, nel caso di un liquido in resenza del suo vaore saturo La grandezza fisica che caratterizza l equilibrio chimico èilotenziale chimico: essoè una grandezza intensiva che, all equilibrio, deve essere costante in tutto il sistema 5 Equazione di stato, trasformazioni reversibili Una volta chiarito il concetto di equilibrio termodinamico, consideriamo un sistema chiuso in equilibrio, costituito da una sostanza omogenea Le variabili di stato macroscoiche che caratterizzano il sistema sono il volume,laressione e la temeratura θ che, come aarirà chiaro nel seguito, chiameremo emirica La funzione che lega le tre variabili all equilibrio si chiama equazione di stato che, in generale, indichiamo con Da questa è ossibile dedurre: f(,,θ) =0 (51) = (,θ), = (, θ), θ = θ(, ) (52) 3

5 4 L equazione di stato è caratteristica di ogni sistema e nel diagramma θ è raresentata da una suerficie (suerficie di stato); essa uò essere determinata serimentalmente e, qualche volta, teoricamente in base a modelli di struttura molecolare a notato che l equazione di stato uò esseredefinita entro intervalli iù o meno ami di, e θ; cioèentroilimitiercuiilsistemaè omogeneo; se si verificano transizioni di fase essa cambia forma Si è detto che l equazione di stato uò essere determinata solo in condizioni di equilibrio; a questo unto ci si chiede come uò essere descritta l evoluzione, trasformazione, diun sistema che assa da uno stato di equilibrio iniziale ad uno stato di equilibrio finale Sebbene, generalmente, in termodinamica interessino quantitativamente gli stati iniziale e finale, lo studio delle trasformazioni è molto imortante nell esame dell interazione del sistema con l ambiente esterno Questo studio uò essere fatto concettualmente er mezzo di trasformazioni ideali che conducono il sistema dallo stato iniziale a quello finale attraverso una successione continua, infinita, di stati di equilibrio: uno qualsiasi di questi stati uò essere descritto da valori uniformi delle variabili termodinamiche in tutto lo sazio occuato dal sistema, e er ognuno di essi è valida l equazione di stato Come si èdettoiùsora, queste trasformazioni sono quasistatiche Se esse avvengono anche senza dissiazione di energia (assenza di attrito e di fenomeni di isteresi) si dice che la trasformazione è reversibile; ciòsignifica che ercorrendo la trasformazione in senso inverso, con gli stessi criteri stabiliti iù sora, si ritrovano integralmente tutti gli stati del sistema e dell ambiente con cui esso ha interagito Naturalmente tali condizioni ossono essere realizzate solo in un temo infinitamente lungo È evidente che esse non sono mai strettamente soddisfatte; tuttavia, oerando in maniera oortuna, talvolta ossono essere realizzate con sufficiente arossimazione Per esemio, suoniamo di volere fare esandere o comrimere reversibilmente, a temeratura costante, una certa quantità di gas contenuta in un reciiente cilindrico Il cilindro ha una base erfettamente conduttrice del calore, le areti erfettamente isolanti ed è chiuso da un istone, anch esso erfettamente isolante, che uò scorrere senza attrito nel cilindro Poniamo la base del cilindro in contatto con una sorgente termica, disositivo che mantiene costante la sua temeratura e che, in questo caso, costituisce l ambiente esterno, e collochiamo un gran numero di iccoli esi sul istone in modo da bilanciare la ressione del gas Doo un certo temo il gas risulterà in equilibrio, cioè caratterizzato da certi valori uniformi in tutto il cilindro delle variabili di stato,, olendo fare esandere il gas reversibilmente occorre rimuovere i esi con una cadenza tale che il gas, ogni volta, abbia il temo di ortarsi in condizioni di equilibrio Raggiunto lo stato finale, rimettiamo i esetti uno alla volta con gli stessi criteri usati nella fase di esansione, fino a raggiungere lo stato iniziale, in cui anche lo stato della sorgente termica risulta riristinato La trasformazione risetterà le condizioni di reversibilità quanto iù numerosi sono i esetti e quanto iùlentamentevieneeffettuata l oerazione orneremo successivamente su questo argomento 6 Postulato zero della ermodinamica, emeratura La temeratura è una variabile termodinamica imortantissima: nel sistema internazionale di unità dimisura(si)è assunta come grandezza fondamentale e quindi merita una definizione molto accurata C B Fig, 1 Sulla base di risultati serimentali, eraltro intuitivi e largamente verificati, si giunge alla enunciazione del ostulato zero della termodinamica che, in accordo con R H Fowler, si uò esrimere: Due sistemi e B searatamente in equilibrio termico con un terzo sistema C sono in equilibrio termico tra loro In conformità con le (52), i sistemi semlici ed omogenei ossono essere descritti mediante una sola coia di variabili di stato; er esemio: ressione e volume Se il sistema è in equilibrio termodinamico, queste variabili assumono valori uniformi in tutto il sistema L esistenza dello stato di equilibrio diende dalla resenza di altri sistemi, vicini a quello considerato, e dalla natura dei confini che li searano Questi ossono essere adiabatici oure conduttori del calore, ossia diatermici Se, er esemio, la arete che seara due sistemi e

6 B è adiabatica, lo stato del sistema, definito dalle variabili,, e lo stato del sistema B, definito da B, B, ossono coesistere searatamente in stati di equilibrio, er qualunque valore delle due coie delle variabili considerate Se viceversa e B sono searati da una arete diatermica, i valori, e B, B cambiano sontaneamente finché nonviene raggiunto lo stato di equilibrio del sistema comlessivo + B, assumendo valori diversi In tal caso i due sistemi si dicono in equilibrio termico fra loro Il ostulato zero della termodinamica uò essere illustrato mediante la figura 1 I sistemi e B sono searati da una arete adiabatica, grigia; ciascuno erò è in contatto, er mezzo di una arete conduttrice del calore, in nero, con un terzo sistema C L insieme èracchiuso in un involucro adiabatico L eserienza mostra che tra e C, B e C si raggiunge l equilibrio termico Se sostituiamo la arete adiabatica che seara e B con una arete conduttrice, non si osserva alcun cambiamento nelle variabili e dei tre sistemi Si ottiene lo stesso risultato utilizzando tutte le combinazioni di, B e C 61 emeratura emirica Il ostulato zero della termodinamica ermette di definire la temeratura emirica Consideriamo due sistemi e B, ciascuno descritto dalle variabili, e B, B Se i sistemi sono in equilibrio termico (θ = θ B ), deve esistere una funzione delle variabili di stato (equazione di stato) del tio F (,, B, B )=0, (61) la cui esressione diende dalle sostanze di cui sono costituiti i sistemi In queste condizioni deve essere ossibile riscrivere la (61) nella forma ϕ 1 (, )=ϕ 2 ( B, B ) Infatti, consideriamo tre sistemi, B e C; la condizione erché sia in equilibrio termico con C è esressa da una relazione analoga alla (61): che risolta risetto a C diventa F 1 (,, C, C )=0, C = f 1 (,, C ) nalogamente, se B e C sono in equilibrio termico si ha: che risolta risetto a C dà F 2 ( B, B, C, C )=0, C = f 2 ( B, B, C ) Pertanto, er il ostulato zero della termodinamica, la condizione er cui e B sono searatamente in equilibrio termico con C è esressa dall equazione: f 1 (,, C )=f 2 ( B, B, C ) (62) Ma, er iotesi, e B sono in equilibrio termico tra loro, erciò la(62)deveessereequivalente alla (61) a osservato erò chelavariabile C non comare in quest ultima, mentre essa è resente nella (62) Se le due equazioni sono equivalenti, f 1 e f 2 devono essere fattorizzabili nella forma ϕ 1 (, )ψ( C )=ϕ 2 ( B, B )ψ( C ), 5 dacuisideduce ϕ 1 (, )=ϕ 2 ( B, B )

7 6 Per esemio, nel caso che i sistemi siano costituiti da gas ideali che, a temeratura costante, seguono la legge di Boyle ( = cost), la recedente si scrive: = B B Con ovvia estensione alle ossibili combinazioni dei tre sistemi si ottiene: ϕ 1 (, )=ϕ 2 ( B, B )=ϕ 3 ( C, C ), ecosì er qualsiasi numero di sistemi in equilibrio termico tra loro Si ètrovatocheerognisistemaè ossibile stabilire una funzione delle variabili di stato, ovviamente diversa er ogni sistema, che ha la rorietà diassumerelostessovalore numerico er tutti i sistemi in equilibrio termico tra loro Chiamiamo temeratura emirica θ tale rorietà, cioè θ = ϕ(, ) (63) Questa funzione non è altro che l equazione di stato Per dare un significato fisico iù chiaro alle considerazioni svolte sora, rendiamo in esame un sistema ed un sistema di riferimento C Fissato uno stato di C, caratterizzato da C, C,è ossibile far variare, in maniera tale che i sistemi e C risultino in equilibrio ale equilibrio è descritto dalla funzione F (,, C, C )=0, la quale contiene quattro variabili di stato, di cui due refissate Di queste variabili, una sola risulta indiendente, dunque è ossibile stabilire una relazione che lega e,raresentata nel diagramma da una curva, in genere regolare entro ami intervalli di variazione delle variabili ale curva si chiama isoterma del sistema Siosservichela forma dell isoterma è indiendente dalla natura del sistema di riferimento C Infatti,scelto un altro sistema di riferimento C 0 in equilibrio con, er ogni stato di aartenente all isoterma, in cui si ha equilibrio tra C ed, sideveverificare l equilibrio di C 0 con, in accordo col ostulato zero della termodinamica Pertanto l isoterma di uò essere ottenuta usando il () sistema C 0 al osto di C; essa diende dalla natura di e non dal sistema di riferimento È ovvio che scegliendo stati di C diversi è ossibile ottenere un insieme di isoterme di ϑ 4, come mostrato in figura 2 Contrassegnando ciascuna isoterma con un numero θ (temeratura emirica), si deduce ϑ 3 ϑ 2 che er il sistema C è ossibile trovare una relazione, non ϑ 1 necessariamente analitica, tra, e θ che uò essere scritta nella stessa forma della (63), ossia: (B) ϑ 4 ϑ 3 ϑ 2 ϑ 1 θ = ϕ(,) bbiamo cosìfissato, come si fa er qualsiasi grandezza fisica, un criterio di confronto che, er quanto detto rima, consiste nell osservazione serimentale dello stato di un sistema C, osto in equilibrio termico con un sistema Sesiconsidera un sistema B, in equilibrio termico col sistema di riferimento C, con gli stessi criteri adottati er stabilire l equilibrio termico tra e C, è ossibile ottenere un insieme di isoterme di B, figura 2 In questo modo, er il ostulato zero della termodinamica, si ha equilibrio termico tra e B e dunque uguaglianza delle temerature di edib Leisotermadi Fig 2 e B si dicono isoterme corrisondenti Ovviamente l oerazione uò essere estesa a iùsistemi;inquestecondizioniilsistemac costituisce un termoscoio È facile trovare sistemi semlici er i quali una sola variabile termodinamica resenta sensibili variazioni durante il rocesso che orta il termoscoio all equilibrio termico, mentre

8 altre variabili resentano variazioni irrilevanti Un termoscoio, er esemio, uò essere costituito da un iccolo bulbo di vetro ieno di liquido, er esemio alcool o mercurio, munito di un caillare Il volume del liquido varia sensibilmente senza essere influenzato dalla variazione della ressione ambiente, quando il termoscoio viene osto in contatto termico con un sistema La semlice lettura della lunghezza della colonna di liquido nel caillare dà una immediata indicazione dell equilibrio termico La variazione di volume è una rorietà termometrica; altre rorietà termometriche sono la variazione di ressione a volume costante, le variazioni di resistenza elettrica, l effetto termoelettrico, ecc Una volta stabilita oerativamente l uguaglianza delle temerature di due o iù sistemi, oerazione indisensabile quando si definiscono grandezze fisiche fondamentali, occorre fissare una scala er la temeratura Il rocedimento èsemliceoiché abbiamo scelto come termoscoio un sistema in cui una sola variabile termodinamica resenta variazioni rilevanti (volume nel caso del termoscoio ad alcool o mercurio) Poniamo il termoscoio in contatto termico con un sistema in uno stato di riferimento caratterizzato da valori ben recisi delle variabili termodinamiche (tali valori si realizzano facilmente nelle transizioni di fase che, come vedremo, avvengono a temeratura e ressione costanti) e ne osserviamo l indicazione Successivamente ortiamo il termoscoio in contatto termico con un altro sistema o con lo stesso sistema in uno stato di riferimento diverso; osservando la nuova indicazione, ossiamo dividere l intervallo tra le due indicazioni in arti uguali costruendo una scala emirica di temeratura Gli stati di riferimento costituiscono due unti fissi facilmente riroducibili Storicamente, come unti fissi sono stati resi: il unto di fusione del ghiaccio (ghiaccio in equilibrio con la sua acqua di fusione) alla ressione di una atmosfera ed il unto di ebollizione dell acqua alla ressione di una atmosfera (equilibrio tra acqua ed il suo vaore saturo) Questo intervallo è stato diviso in 100 arti, ottenendo la scala di temerature centigrada o Celsius, così chiamata erché roosta nel 1742 dall astronomo svedese Celsius L intervallo unitario di questa scala si chiama grado centigrado e si indica col simbolo CCosì facendo si è costruita una scala emirica di temerature θ ed il termoscoio è ormai diventato un termometro Non entriamo in dettagli relativi ad altre scale ormai abbandonate La scala di temerature Farenheit è tuttoggi usata nei aesi anglosassoni Il unto fisso inferiore (0 F )è stabilito alla temeratura di una miscela di acqua, ghiaccio e sale ammoniaco o sale marino, e il unto fisso sueriore (98 F ) alla temeratura del sangue di una ersona sana In questa scala i unti fissi del ghiaccio fondente e dell ebollizione dell acqua, alla ressione di una atmosfera, hanno risettivamente valori 32 F e 212 F Poiché sia la scala centigrada che quella Farenheit sono lineari, indicando con θ F e θ C le temerature Farenheit e centigrada, si ha θ F 32 θ C 0 = da cui: θ F = θ C, θ C = 5 9 (θ F 32) 7 Prorietà termometriche del gas ideale, emeratura assoluta Nel 1600 vi fu un grande interesse er i disositivi, già noti nell antichità, atti alla misura della temeratura La rima utilizzazione dei termometri viene attribuita a Galilei e nei Rendiconti degli Eserimenti di Scienze Naturali dell ccademia del Cimento del 1684, si legge: Descriveremo uno strumento che uò essere utilizzato er l osservazione delle modificazioni che si roducono nell aria in relazione al calore e al freddo e che comunemente viene chiamato termometro Il bulbo e il tubo di questo strumento devono essere di caacità tale che, se lo si rieme di sirito di vino fino ad un certo segno del collo, il semlice freddo della neve o del ghiaccio alicati esternamente non riesca a condensarlo al di sotto di 20 gradi della canna; e che viceversa il iù grande vigore dei raggi del Sole in iena estate non riesca a rarefarlo al di sora di 80 gradi Il tubo dello strumento va oi marcato con recisione in gradi; er questo occorre suddividere l intero tubo in dieci arti uguali usando un comasso Fatto ciò, e determinata la giusta roorzione di sirito di vino mediante la

9 8 rova del Sole e del ghiaccio, la bocca del tubo va sigillata sciogliendovi della ceralacca con la fiamma di una lamada, e il termometro è comletato Come si uò osservare, questo metodo è lo stesso di quello usato er definire la temeratura centigrada di un termometro a mercurio nel quale, come rorietà termometrica, viene resa in considerazione la dilatazione termica del mercurio che ha un andamento lineare in un amio intervallo di temerature Molti termometri si basano sul tale diendenza che è la iù conveniente; tuttavia esistono ottimi termometri in cui la rorietà termometrica non diende linearmente dalla temeratura; il roblema invero non è la linearità, ma l univocità di tale diendenza, che deve essere ben definita e misurabile, come accade er i termometri a resistenza elettrica e le termocoie I gas sono sistemi in cui la rorietà termometrica, ressione o volume, a ressioni modeste, è lineare con la temeratura Se il gas viene mantenuto a volume costante, indicando risettivamente con θ 0 e θ 100 le temerature emiriche dei due unti fissi, 0 C e 100 C, con 0 e 100 le ressioni del gas a queste temerature, la temeratura θ corrisondente alla ressione soddisfa la relazione che si uò scrivere: oure: θ 100 =, θ = ; = 0 (1 + β 0 θ), (71) dove β 0 = 1 µ (72) La (71) viene indicata come seconda legge di Gay-Lussac La quantità β 0 è costante er il gas ideale ed, in ratica, er la maggior arte dei gas a ressioni e temerature ordinarie Serimentalmente si trova che quanto iù cisiavvicina al comortamento del gas ideale, ossia se la ressione del gas èsufficientemente bassa, il valore di β 0 tende a lim 0 β0 = β0 0 1 = 273, 15 ( C) 1 In queste condizioni la (71) si scrive: µ = 0 (1 + β0θ) 0 = , 15 θ, (73) Introducendo la temeratura assoluta = 273, 15 + θ, in questa nuova scala di temerature, la (73) diventa: = 0 273, 15 + θ 273, 15 = 0 0, (74) dove 0 = 273, 15 K è la temeratura assoluta corrisondente a 0 C La temeratura introdotta si dice assoluta erché si riferisce alla rorietà termometrica caratteristica del gas ideale La scala delle temerature assolute èdettascala 0 Kelvin; la temeratura èmisuratainkelvin (K); l amiezza Fig 3 dell intervallo unitario di temeratura rimane immutata; lo zero di questa scala corrisonde a 273, 15 C Un altra rorietà termometrica dei gas è la variazione di volume con la temeratura, mantenendo costante la ressione Consideriamo il disositivo mostrato in figura 3, costituito da una amolla munita di un tubicino, chiuso da una goccia di mercurio che uò liberamente scorrere e che dunque assicura la costanza della ressione esterna, agente sul gas Nell iotesi che il gas sia sufficientemente rarefatto, e quindi arossimabile al gas ideale, con ragionamenti

10 analoghi al caso recedente, in cui è mantenuto costante il volume, si trova la legge di Charles, esressa dalla relazione: = 0 (1 + βθ), (75) in cui 0 è il volume del gas a 0 C e β èilcoefficiente di esansione o di dilatazione a ressione costante Nel 1802 Gay-Lussac, dimostrò che tutti i gas, a ressioni modeste e a temerature ordinarie, arossimabili quindi al gas ideale, hanno lo stesso coefficiente di dilatazione nzi, in queste condizioni, i valori di β 0 e β nelle equazioni (71), (75) coincidono Infatti consideriamo un gas ideale, nello stato iniziale, di coordinate termodinamiche 0, 0, θ 0 =0 C, che viene scaldato reversibilmente a ressione costante, fino allo stato B, in cui le variabili di stato sono 100, 0, θ = 100 C Per la (75), si ha 100 = 0 (1 + β100) (76) Successivamente il gas viene comresso reversibilmente, a temeratura costante, in modo che il suo volume assuma il valore iniziale 0, fino allo stato finale C, doveressionee temeratura hanno i valori 100, θ = 100 C Le trasformazioni, nel diagramma (diagramma di Claeyron) sono mostrate in figura 4; la rima, B, è isobarica, retta arallela all asse, la seconda BC, isoterma,èun tratto di ierbole equilatera, raresentata dalla legge di Boyle: 9 = cost che verrà ricavata al n 3 del caitolo 2 Pertanto, tenuto conto della (75), il legame tra lo stato finale e quello iniziale del gas è: 100 C = = 0 0 (1 + β100) (76) 0 B Da questa relazione si trae: β = 1 µ = β 0, Fig identica alla (72) Pertanto la (75) diventa: = 0 273, 15 + θ 273, 15 = 0 0, (77) analoga alla (74) Dalle (74) e (77) si deduce che allo zero assoluto, =0,ressioneevolumedelgas ideale sono nulli a osservato tuttavia che il gas ideale, er molti versi, è solo un utile modello utte le sostanze reali, al diminuire della temeratura, tendono a condensare; si dimostrerà, er mezzo della terza legge della termodinamica, che lo zero assoluto èunatem- eratura irraggiungibile con un numero finito di oerazioni Recentemente Cohen-annoudji e collaboratori in una serie di eserimenti svolti tra il 1988 e il 1995, in cui hanno usato fasci laser er rallentare, e quindi raffreddare atomi di elio, sono riusciti a raggiungere la temeratura di 180 nk 8 Equazione di stato del gas ideale Ricordiamo che l equazione di stato f(,,) =0è tiica di ogni sistema e che nel diagramma è raresentata da una suerficie Di solito erò si considerano raresentazioni iù semlici: cioè leroiezioniditalesuerficie nei iani, e, dove ogni trasformazione reversibile è raresentata da una curva articolare Per esemio, nel diagramma di figura 4, considerato iù sora, sono state indicate tre trasformazioni reversibili del gas ideale: l isobara B, l isotermabc ed una isocora (isovolumica)

11 10 C La (76) costituisce l equazione di stato del gas ideale, in quanto lega le tre variabili termodinamiche v,, in modo naturale; infatti µ = , 15 θ = = In alternativa consideriamo, nel diagramma di figura 5, uno stato iniziale di coordinate termodinamiche 0, 0, 0 e riscaldiamo il gas reversibilmente a volume costante fino allo stato B dove assume la temeratura dell isoterma assante er un generico stato C, in cui la ressione e il volume siano e Per la (74) si ha: B( 0, B, ) B = 0 0 C (,, ) Facendo quindi esandere il gas reversibilmente, a temeratura costante fino ai valori e dello stato C, si ha B 0 = ( 0, 0, 0 ) Fig 5 Sostituendo a B il valore ricavato dalla recedente relazione, si ottiene =, ossia, 0 0 = = K, (81) 0 dove K è una costante direttamente roorzionale alla massa del gas ideale, o meglio, al numero di moli n, quantità che definiremo iù avanti -273,15 ϑ Fig 6 Infatti dalla (81) si deduce che er gas sufficientemente rarefatti, ossia arossimabili al gas ideale, assegnato il numero di moli, il rodotto varia linearmente con la temeratura In ratica, fissato il volume, viene misurata la ressione in funzione della temeratura In figura 6 è mostrato l andamento della grandezza = K = K(273, 15 + θ), in funzione della temeratura centigrada θ, relativa a due masse di gas contenenti risettivamente n 1 ed n 2 moli Si osserva che i unti serimentali si trovano su due rette che, estraolate, incontrano entrambe l asse delle temerature nel unto θ = 273, 15 C I coefficienti angolari delle rette sono diversi ed è maggiore quello della retta relativa al gas con n 2 >n 1 Se si considerasse un numero di moli diverso, si otterrebbe una nuova retta con caratteristiche analoghe alle recedenti Si deduce che la costante K è roorzionale al numero di moli attraverso una gran- dezza R, chiamata costante universale dei gas Pertanto, essendo il rodotto una grandezza Fig 7 estensiva (energia), er n moli si uò orre K = nr e la (81) diventa = nr, (82)

12 che è l equazione di stato del gas ideale Il valore di R, ricavato serimentalmente, risulta J R =(8, ± 0, 00035) mole K, oure: cal R =1, ± 0, mole K La (82), nel diagramma, descrive la suerficie di stato del gas ideale, figura 7 In figura 8, sono mostrate le sue roiezioni sui iani e Si osserva che nel iano le linee unteggiate e tratteggiate raresentano, risettivamente, un insieme di trasformazioni a volume costante e a ressione costante, mentre quelle a tratto ieno un insieme di isoterme Nel iano sono mostrate le stesse trasformazioni; analoga roiezione si otrebbe effettuare nel iano 81 Legge di Dalton Se il gas è costituito da una miscela, in cui ogni comonente èresenteern 1,n 2,n 3, moli,siha =(n 1 + n 2 + )R Se i gas searatamente occuassero lo stesso volume si avrebbe 1 = n 1 R, 2 = n 2 R, 11 sommando, dacuisideduce ( ) =(n 1 + n 2 + )R, = , che esrime la legge di Dalton In una miscela di gas la ressione è la somma delle ressioni che ciascun gas eserciterebbe se da solo occuasse tutto il volume Fig 8 82 Numero di vogadro, costante di Boltzmann Secondo la convenzione internazionale stabilita nel 1960, la massa atomica viene esressa er mezzo dell unità di massa atomica, amu (atomic mass unit), che indichiamo con m 0 Questa unità èdefinita con riferimento alla massa del articolare isotoo 12 C del carbonio, il cui nucleo è costituito da sei rotoni e da sei neutroni La massa di tale isotoo viene osta esattamente uguale a 12 unità di massa atomica, ertanto: m 0 = m ( 12 C) 12

13 12 Il raorto tra la massa m di un atomo o di una molecola di un qualsiasi elemento e m 0, si chiama eso atomico o molecolare M: M = m (83) m 0 Dunque il eso atomico o molecolare di ogni elemento viene determinato con riferimento a questo standard Perciò il eso molecolare dell azoto è 28, il eso atomico del sodio è11e così via Il numero di atomi o di molecole N, di massa ari all unità di massa atomica, che hanno massa totale 1 grammo, è N = 1 m 0 = M m, (84) dove si è tenuto conto della (83) ale numero, chiamato numero di vogadro, è quindi uguale al raorto tra il eso atomico o molecolare e la massa dell atomo o della molecola della sostanza Si definisce mole (o quantità di sostanza) di una certa secie di atomi o molecole, l insieme di N atomi o molecole di tale secie; essa, er la (84), ha la massa di M grammi e nel SI ha come simbolo mol Misurando l unità di massa atomica in grammi, m 0 =1, g, il valore del numero di vogadro, determinato serimentalmente e oggi universalmente accettato, è N =(6, ± 0, 00009) molecole/mol Pertanto, se N è il numero di molecole resenti in una certa massa di sostanza, il numero di moli n è n = N, N oure, tenuto conto della (84), n = m N M = m M, dove m è la massa della sostanza L equazione di stato del gas ideale si uò dunque scrivere: = nr = N N R = Nk B, dove k B = R/N è la costante di Boltzmann Il valore della costante di Boltzmann è k B =1, J K Dalle considerazioni recedenti si deduce la legge di vogadro: Uguali volumi di gas nelle stesse condizioni di ressione e temeratura contengono lo stesso numero di molecole Perciò una mole di gas in condizioni normali, 0 =1atm =1, Pa, 0 = 273, 15 K, occua il volume: 0 =22, 4144 litri =22, m 3 Dall equazione (81) si deduce inoltre che, essendo 0, 0 grandezze intensive, il raorto 0 0 / 0 diende dal numero di moli Ponendo 0 uguale al volume molare in condizioni normali, è ossibile ricavare la costante R Esemio In figura 9 sono mostrate un insieme di trasformazioni reversibili di un gas ideale nel diagramma v, dicuic è una isoterma a temeratura, B e DC sono isobare, D e BC isocore Sull asse delle ascisse sono riortati i volumi er kilomole che, er non generare confusione, indichiamo con v ssegnati: v =2, 5 m 3 /kmole, = Pa, C = Pa, determinare: le temerature, B e D, il volume molare v C,ilvolume reale e la massa del gas, suonendo che sia costituito da n = 4kmol di idrogeno Raresentare le trasformazioni nei diagrammi e v

14 13 Dall equazione di stato del gas ideale si ha: = C = v R = 240, 6 K, B v = C v C B = Bv B R D = Dv D R = 481, 3 K = 120, 3 K v C = v B = v =5 m3 C kmol = nv =10m 3 m = nm H2 =8kg D C dove M H2 è il eso molecolare dell idrogeno Le trasformazioni nei diagrammi e sono raresentate nelle figure 10 e 11 2,5 5 Fig 9 ( 10 3 ) v B 400 B C B D C 100 D D B Fig10 2,5 5 Fig11 v 9 Misura della temeratura assoluta Si è stabilito che i termometri in cui vengono usate sostanze con diverse rorietà termometriche, in genere, resentano valori delle scale non coincidenti, ur essendo stati tarati con gli stessi unti fissi La scala così ottenuta è la scala emirica Per molte sostanze le differenze tra una scala e l altra non sono notevoli, erò è chiaro che sorge la necessità di misurare la temeratura con un termometro che dia indicazioni indiendenti dalla sostanza termometrica ale termometro in ratica non esiste, tuttavia nel aragrafo 7 si è mostrato che la ressione del gas ideale, a volume costante, diende linearmente dalla temeratura assoluta, equazione (74) Dunque se il gas si trova a temerature lontane dal suo unto di condensazione e a ressioni iuttosto modeste, al limite tendenti a zero, il suo comortamento è raticamente quello del gas ideale Fino al 1954 er stabilire una scala di temerature, sono stati usati due unti fissi: quelli relativi alle transizioni di fase dell acqua che abbiamo menzionato rima In seguito si èsceltounsolountofisso: il unto trilo dell acqua in vaore cui si realizza la coesistenza delle fasi solida, liquida e vaore; questo unto, in cui la ressione di vaore èdi4,57 mm di Hg, er convenzione internazionale, èstatofissato bulbo ghiaccio alla temeratura di 0, 01 C, ossia alla temeratura assoluta tr = 273, 16 K In figura 12 è mostrato il disositivo che acqua realizza il unto trilo dell acqua, usato er la taratura del termometro a gas Esso è costituito da una amolla di vetro ermeticamente chiusa, dalla quale è stata estratta l aria, contenente acqua urissima in resenza del suo vaore Inizial- Fig 12 mente nella cavità dell amolla viene osta una miscela frigorifera, costituita da ghiaccio

15 14 e sale Una volta che si èformatounsufficiente strato di ghiaccio sulla arete interna dell amolla, la miscela frigorifera viene rimossa e si one il bulbo del termometro, rovocando la fusione di un sottile strato di ghiaccio In queste condizioni e finché le fasi solida, liquida e gassosa coesistono in equilibrio, il disositivo si trova al unto trilo Definiamo temeratura assoluta, la temeratura misurata con un termometro a gas secondolarelazione: = tr lim, (91) i 0 i in cui tr è la temeratura del unto trilo dell acqua fissato a 273, 16 K, i la ressione del gas termometrico a questa temeratura Come s è detto, l intervallo unitario di questa scala è uguale a quello della scala Celsius, l unita è il grado Kelvin Un termometro a gas a volume costante è schematizzato in figura 13 Il gas termometrico è contenuto nel bulbo B, costituito generalmente di latino, e er mezzo di un caillare, è osto in comunicazione con un tubo M contenente mercurio, collegato a M 0 mediante un condotto flessibile Il volume del gas è mantenuto costante facendo variare l altezza di M 0 finoachelasuerficie del mercurio non tocchi la unta di un indice di riferimento osto in corrisondenza dell innesto con il caillare La ressione h del gas è misurata dall altezza h della colonna di mercurio I valori della ressione vanno corretti er una seriedierrorisistematicidicuiirincialisono: ladiversa temeratura del gas nel bulbo e nello sazio vicino al mercurio, il gradiente di temeratura esistente lungo B gas M Fig 13 M il caillare e la dilatazione termica del bulbo Omettiamo di discutere in dettaglio tali correzioni In figura 14 sono mostrate una serie di misure del unto di ebollizione dell acqua, = 373, 16 K, alla ressione di una atmosfera, effettuate con gas diversi Si osserva che nonostante le misure diendano dal tio di gas imiegato, tutte danno indicazioni convergenti verso la stessa temeratura quando i tende a zero; si noti, ad esemio, che er i uguale a circa 20 cm di Hg lo scarto massimo delle misure con i vari gas è di qualche arte su diecimila È da notare il comortamento quasi ideale dell elio e dell idrogeno La scala delle ordinate, er comodità di lettura,è stata molto esansa 374,00 373,75 O 2 373,50 aria 373,25 373,16 N 2 He H 2 373, Fig 14 (cm Hg) 0

16 15 Moltilicando e dividendo la (91) er il volume molare /n, si ha /n = tr lim i 0 i /n, da cui: lim /n lim i/n i 0 i 0 = = cost = R, tr ossia il raorto indicato in questa relazione è indiendente dalla temeratura ed uguale alla costante R del gas ideale Le eserienze, condotte con vari gas, figura 15, mostrano che er i 0laquantità /n tende al valore 22, 4144 litri atm/mol; quindi dividendo er tr,siottiener =0, 0820 litri atm/(mol K) /n 23 H 2 N2 litri atm/mol aria O Fig 15 (atm) i 10 Equazione di stato dei gas reali Nell introdurre la temeratura assoluta si è visto che tutti i gas, nel limite in cui la ressione iniziale i tende a zero, danno er la temeratura la stessa indicazione, cioè si comortano come il gas ideale iceversa, quando la ressione è sufficientemente elevata e/o la temeratura si avvicina alla temeratura di condensazione, i gas reali resentano caratteristiche diverse Per studiare il loro comortamento ci si rivolge all eserienza e si osserva, di solito, la diendenza, a temeratura costante, del rodotto dalla densità molare n/,doven è il numero di moli del gas L equazione di stato del gas si uò quindi esrimere er mezzo di una serie di otenze del tio µ = 1+ nb + n2 C 2 + n3 D 3 + in cui, B, C, sono i cosiddetti coefficienti del viriale Se si considera una mole, l equazione di stato diventa: B C D = µ (101) 2 3 dove ora denota il volume molare, volume che er semlicità indichiamo con lo stesso simbolo Eserimenti di questo tio furono eseguiti er la rima volta intorno al 1870 da Kamerlingh-Onnes e collaboratori L eserienza mostra che i coefficienti del viriale diendono dalla sola temeratura e sono caratteristici di ciascun gas; essi infatti sono correlati alle interazioni intermolecolari In genere, a temerature non troo basse i coefficienti del viriale sono iuttosto iccoli e la relazione tra il rodotto e1/, er ressioni fino a 40 atmosfere, è circa lineare, dunque i termini significativi dello sviluo sono i rimi due

17 16 Nella tabella sono riortati i valori dei coefficienti B e C er l azoto er alcune temerature comrese tra 80 K e 273 K Coefficienti del viriale B e C dell azoto (K) B(cm 3 /mole) -250,8-162,1-114,6-71,16-34,3-9,5 C 10 4 (cm 6 /mole 2 ) ,2 La (101) comrende il caso del gas ideale; infatti quando la ressione tende a zero la densità molare tende a zero (n/ 0), quindi il rodotto tende al rimo coefficiente del viriale, cioè lim( )= 0 In figura 16 è riortato l andamento di B in funzione della temeratura er alcuni gas B(cm 3 /mol) H 2 CH 4 Xe He C 3 H 8 NH 3 H 2 O 140 C 2 H Fig 16 (K) enendo resente l equazione di stato del gas ideale, ossiamo orre = R ; allora la (101) si riscrive nella forma (/R 1) (cm 3 /mol) 273 K 398 K 323 K 248 K 198 K 142,5 K 172 K 150 K 129 K ,005 0,01 0,015 0,020 0,025 1/ (mol/cm 3 ) Fig 17 oure R =1+B + C 2 +, µ R 1 = B + C + (102) Si osservi che la funzione definita dalla (102), limitandosi ai rimi due termini del secondo membro, diende linearmente da 1/, er cui è ossibile ricavare i rimi due coefficienti del viriale: B è dato dall intersezione della curva con l asse delle ordinate, C dalla endenza della retta In figura 17 sono riortate un insieme di isoterme serimentali er l azoto ed esrimibili mediante l equazione (102) Si osservi l andamento lineare nella zona di basse densità Poiché in ratica le misure vanno effettuate facendo variare la ressione, in alternativa alla (101), il rodotto uò essere esresso er mezzo di una serie di otenze di, = 0 (1 + B 0 + C ) (103)

18 Icoefficienti 0, B 0, C 0, hanno le stesse caratteristiche dei coefficienti, B, C, e vengono chiamati ancora, in assenza di altra nomenclatura, coefficienti del viriale In articolare 0 = R, gli altri sono funzioni della sola temeratura e diendono dal tio di gas In figura 18 sono mostrate un insieme di isoterme serimentali relative all azoto ed esrimibili mediante la (103) Si osserva che, er temerature e ressioni sufficientemente basse, tutte le curve hanno endenza negativa che, all aumentare della ressione, raggiunge il valore zero e oi diventa ositiva Si vede subito che er = 0, la endenza ( ( )/ ) =0 = 0 B 0, fornisce il secondo coefficiente del viriale; il unto in cui la endenza ènullasichiamaunto di Boyle; il gas, nell intorno di questo unto, si comorta come il gas ideale (l atm/mol) ,99 K ,16 K 249,99 K ,11 K 175,02 K 150,04 K (atm) Fig 18 Si noti inoltre che, er ressioni sufficientemente basse, l andamento delle isoterme è all incirca rettilineo; nella (103) basta considerare soltanto il termine lineare ll aumentare della ressione, er avere una descrizione iù recisa, occorre rendere in considerazione i termini successivi Z C 137 C 60 C 0 C Fig 19 (atm) La grandezza che esrime chiaramente il comortamento di un gas reale è il fattore di comressibilità Zche si ricava dalle (101) e (103), ossia: Z = R =1+B + C 2 + Z = R =1+B0 + C (104)

19 18 Per il gas ideale esso assume il valore uno In figura 19 è riortato l andamento di Z dell anidride carbonica, in conformità con la seconda delle (104) Osservazione Le equazioni (101) e (103) sono equivalenti; tuttavia, sebbene la seconda sia iùratica erché la misura della ressione è molto iù agevole, viene referita la rima oiché si trova che la serie converge iù raidamente In ogni caso è ossibile esrimere la (103) er mezzo dello sviluo di 1/ ; illustriamo il rocedimento limitandoci ai coefficienti, B e C ralasciando, nelle (101) e (103), tutti i termini succesivi al rimo, si ha =, = 0 ; = 0 Consideriamo ora i rimi due termini della (103), 1 =1+B0, = / B 0 Sostituendo nella (103) e trascurando i termini di ordine sueriore al secondo, si ottiene =1+ B 0 / B 0 + C 0 =1+ B0 µ1 B0 (/ B 0 ) C µ1 B0 Poiché iltermineb 0 /,comesiuòverificare, ad esemio, con i valori riortati in tabella er l azoto, è in genere molto minore di uno, ossiamo scrivere: =1+B0 µ1+ B0 + 2 C B0 + 2 (B 02 + C 0 ) 2, µ1+ 2B0 dove si è tralasciato il termine che contiene 1/ 3 Si ha dunque = 0, B = B 0, C = 2 (B 02 + C 0 ) 11 Equazione di stato di an der Waals Non è ossibile descrivere il comortamento di una sostanza con una sola equazione di stato esatta, cioè che non sia del tio (101) o (103), in tutto l intervallo di valori misurabili di,,e Sono state rooste numerose equazioni di stato; molte sono originate dall equazione di stato del gas ideale e sono alicabili solo se il sistema si trova in una articolare fase lcune sono comletamente emiriche e descrivono al meglio i valori delle variabili di stato, misurati in certi intervalli; altre hanno un fondamento teorico nella teoria cinetica dei gas Una equazione semiemirica famosa èquelladianderwaals,chedescriveinmodo soddisfacente lo stato di una sostanza ura nella fase di vaore ed in rossimità delunto critico L equazione er una mole èlaseguente ³ + a 2 ( b) =R, oure = R b a 2, (111)

20 con a e b costanti caratteristiche del gas Per n moli: µ + an2 2 ( nb) =nr (112) Come si uò osservare dalla sua struttura, essa deriva dall equazione del gas ideale aortando in questa oortune modifiche che si ossono giustificare con le seguenti considerazioni Le molecole di un gas reale, contrariamente a quelle del gas ideale, hanno dimensioni finite er cui il volume disonibile a ciascuna di esse è minore del volume totale; quindi al volume si deve sottrarre una quantità b che chiamiamo covolume Inoltre non è ossibile trascurare le interazioni intermolecolari che non siano rodotte da urti erfettamente elastici, come nel caso del gas ideale Come si è visto in Meccanica, le interazioni intermolecolari fra coie di molecole sono descritte abbastanza bene, mediante l energia otenziale di Lennard-Jones che, ricordiamo, è data dall equazione: ³r0 12 ³ r0 6 U(r) =U 0 2, r r in cui r 0 è la distanza di equilibrio Successivamente, con la maggiore raffinatezza raggiunta dalle eserienze e lo sviluo della teoria del otenziale intermolecolare, sono state introdotte esressioni analitiche iù comlesseesemreiù aderenti ai risultati serimentali In figura 20, er esemio, è mostrata l energia otenziale intermolecolare U/U 0 dell rgon, in funzione della distanza ridotta r/r 0 Questa curva, di cui non riortiamo la comlessa esressione analitica, descrive i risultati serimentali con una U/U 0 recisione di una arte su mille; tuttavia se viene confrontata 1,5 con quella che mostra l andamento dell ener- gia otenziale di Lennard-Jones in meccanica, si osserva una sostanziale concordanza, anche se in quest ultima 1 vengono introdotti soltanto due arametri caratteristici; ossia U 0 e r 0 destra del unto di equilibrio, l energia otenziale corrisonde ad una forza attrattiva tra le 0,5 molecole; questa forza, che decresce raidamente doo circa due volte la distanza di equilibrio, è resonsabile di un termine che ossiamo indicare genericamente come 0,5 1 r/r 0 1,5 ressione interna, da sommare alla ressione esterna misurabile con un manometro sinistra del unto 0,5 d equilibrio la forza diventa fortemente reulsiva a ancora osservato che l energia otenziale di Lennard- Jones è stata roosta negli anni trenta ed ha avuto molto successo erché alicabile in svariati casi; l equazione di an der Waals fu formulata nel 1873 e il tio di energia otenziale iotizzata èdiversa,figura 21 1 Fig 20 Essa, in funzione della distanza r, è descritta da una legge del tio U(r) = U 0 µ d r m, U 19 dove m è un numero ositivo maggiore di 3 e d il diametro delle molecole Queste sono immaginate come sfere rigide che non si ossono avvicinare al di sotto della distanza d, in corrisondenza alla quale le suerfici delle sfere sono tangenti una all altra; er r>dl energia otenziale corrisonde ad una forza attrattiva che tende a zero quando r èalcune volte d Lo sazio entro cui agisce la forza attrattiva si uò schematizzare mediante una certa sfera d azione, caratteristica del tio di molecola, centrata nella molecola stessa Di conseguenza una molecola all interno del gas è in equilibrio U 0 d Fig 21 r

Legge del gas perfetto e termodinamica

Legge del gas perfetto e termodinamica Scheda riassuntia 5 caitoli 9-0 Legge del gas erfetto e termodinamica Gas erfetto Lo stato gassoso è quello di una sostanza che si troa oltre la sua temeratura critica. La temeratura critica è quella oltre

Dettagli

Consideriamo un gas ideale in equilibrio termodinamico alla pressione p 1. , contenuto in un volume V

Consideriamo un gas ideale in equilibrio termodinamico alla pressione p 1. , contenuto in un volume V LEGGI DEI GS Per gas si intende un fluido rivo di forma o volume rorio e facilmente comrimibile in modo da conseguire notevoli variazioni di ressione e densità. Le variabili termodinamiche iù aroriate

Dettagli

L Q = 1. e nel ciclo di Carnot questo rendimento assume valore massimo pari a : η =

L Q = 1. e nel ciclo di Carnot questo rendimento assume valore massimo pari a : η = CICLI ERMODINAMICI DIREI: Maccine termice Le maccine ce anno come scoo uello di trasformare ciclicamente in lavoro il calore disonibile da una sorgente termica sono dette maccine termice o motrici e il

Dettagli

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. Introduzione I rocessi termodinamici che vengono realizzati nella ratica devono consentire la realizzazione di uno scambio di energia termica o di energia

Dettagli

SISTEMI E STATI TERMODINAMICI

SISTEMI E STATI TERMODINAMICI ittorio Mussino: vittorio.mussino@olito.it SISEMI E SI ERMODINMICI Nel corso di Fisica I (meccanica), si sono determinate le leggi che governano il moto dei sistemi di articelle (discreti e continui) e

Dettagli

FISICA. V [10 3 m 3 ]

FISICA. V [10 3 m 3 ] Serie 5: Soluzioni FISICA II liceo Esercizio 1 Primo rinciio Iotesi: Trattiamo il gas con il modello del gas ideale. 1. Dalla legge U = cnrt otteniamo U = 1,50 10 4 J. 2. Dal rimo rinciio U = Q+W abbiamo

Dettagli

sorgente di lavoro meccanico operante in maniera ciclica internamente reversibile esternamente reversibile termostato T

sorgente di lavoro meccanico operante in maniera ciclica internamente reversibile esternamente reversibile termostato T CICLI MOORI Utilizzando un motore (sorgente di lavoro meccanico oerante in maniera ciclica) che evolve secondo il ciclo isotermo-adiabatico di Carnot in maniera internamente reversibile, scambiando calore

Dettagli

LA TERMOLOGIA. studia le variazioni di dimensione di un corpo a causa di una

LA TERMOLOGIA. studia le variazioni di dimensione di un corpo a causa di una LA TERMOLOGIA La termologia è la parte della fisica che si occupa dello studio del calore e dei fenomeni legati alle variazioni di temperatura subite dai corpi. Essa si può distinguere in: Termometria

Dettagli

Elementi di meccanica dei fluidi

Elementi di meccanica dei fluidi IMPIANTI AEROSPAZIALI DISPENSE DEL CORSO, VERSIONE 005 Caitolo 3 Elementi di meccanica dei fluidi 3. IMPIANTI AEROSPAZIALI DISPENSE DEL CORSO, VERSIONE 005 3. Introduzione In molti imianti il collegamento

Dettagli

6. I GAS IDEALI. 6.1 Il Gas perfetto

6. I GAS IDEALI. 6.1 Il Gas perfetto 6. I GAS IDEALI 6. Il Gas erfetto Il gas erfetto o ideale costituisce un modello astratto del comortamento dei gas cui tendono molti gas reali a ressioni rossime a quella atmosferica. Questo modello di

Dettagli

Portata Q - è il volume di liquido mosso dalla pompa nell'unità di tempo; l'unità di misura della portata è m 3 /sec (l/s; m 3 /h).

Portata Q - è il volume di liquido mosso dalla pompa nell'unità di tempo; l'unità di misura della portata è m 3 /sec (l/s; m 3 /h). OME ER FLUIDI ALIMENARI Definizione Sono macchine oeratrici oeranti su fluidi incomrimibili in grado di trasformare l energia meccanica disonibile all albero di un motore in energia meccanica del fluido

Dettagli

NUMERI RAZIONALI E REALI

NUMERI RAZIONALI E REALI NUMERI RAZIONALI E REALI CARLANGELO LIVERANI. Numeri Razionali Tutti sanno che i numeri razionali sono numeri del tio q con N e q N. Purtuttavia molte frazioni ossono corrisondere allo stesso numero, er

Dettagli

Dilatazione termica. Δl=α l o Δt. ΔA = 2 α A o Δt. ( ) Δl=α l o Δt. α = coefficiente di dilatazione termica lineare

Dilatazione termica. Δl=α l o Δt. ΔA = 2 α A o Δt. ( ) Δl=α l o Δt. α = coefficiente di dilatazione termica lineare Acroolis Atene Eretteo: sostituzione di armature in acciaio con strutture in itanio. Esemi di restauro negativo acciaio contro ferro sigillato in iombo. Recuero di restauri inoortuni con sostituzione mediante

Dettagli

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche Aunti ed Esercizi di Fisica ecnica e Macchine ermiche Ca. 2. ermodinamica degli stati Paolo Di Marco Versione 2009.03 30.10.09. La resente disensa è redatta ad esclusivo uso didattico er gli allievi dei

Dettagli

Complementi ed esercizi di Idrodinamica I parte. 1. Proprietà fisiche dei fluidi

Complementi ed esercizi di Idrodinamica I parte. 1. Proprietà fisiche dei fluidi Comlementi ed esercizi di Idrodinamica I arte.. Prorietà fisiche dei fluidi. Densità e modulo di elasticità a comressione cubica. Come è noto la densità di massa ρ misura la massa contenuta nell unità

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

5. Dati sperimentali e loro elaborazione 9. 5.1 Resistenza interna del triodo 9. 5.2 Conduttanza mutua del triodo 16

5. Dati sperimentali e loro elaborazione 9. 5.1 Resistenza interna del triodo 9. 5.2 Conduttanza mutua del triodo 16 Sommario Pa. 1. Scoo dell eserienza 2 2. Presuosti teorici 3 3. Aarato Strumentale 6 4. Descrizione dell eserimento 8 5. Dati serimentali e loro elaborazione 9 5.1 Resistenza interna del triodo 9 5.2 Conduttanza

Dettagli

5 LAVORO ED ENERGIA. 5.1 Lavoro di una forza

5 LAVORO ED ENERGIA. 5.1 Lavoro di una forza 5 LAVR ED ENERGIA La valutazione dell equazione del moto di una articella a artire dalla forza agente su di essa risulta articolarmente semlice qualora la forza è costante; in tal caso è ossibile stabilire

Dettagli

L equilibrio chimico

L equilibrio chimico Equilibrio chimico L equilibrio chimico Ogni reazione, in un sistema chiuso, evolve sontaneamente ad uno stato di equilibrio Quando viene raggiunto lo stato di Equilibrio Chimico: le velocità della reazione

Dettagli

4. Reti correttrici e regolatori industriali. 4.1 Regolatori industriali. 4.1.1 Regolatore ad azione proporzionale P

4. Reti correttrici e regolatori industriali. 4.1 Regolatori industriali. 4.1.1 Regolatore ad azione proporzionale P 4. Reti correttrici e regolatori industriali Un sistema di controllo ad anello chiuso deve soddisfare le secifiche assegnate nel dominio della frequenza e quelle assegnate nel dominio del temo. Queste

Dettagli

CONTROLLO TERMICO DEI SISTEMI DI CALCOLO Fluidodinamica UNITA' 07 - SOMMARIO 7. EQUAZIONI INTEGRALI DI BILANCIO PER FLUIDI IN MOTO (B)

CONTROLLO TERMICO DEI SISTEMI DI CALCOLO Fluidodinamica UNITA' 07 - SOMMARIO 7. EQUAZIONI INTEGRALI DI BILANCIO PER FLUIDI IN MOTO (B) U.07/0 UNITA' 07 - SOMMARIO 7. EQUAZIONI INTEGRALI DI BILANCIO PER FLUIDI IN MOTO (B) 7. BILANCIO DELL ENERGIA 7.. Bilancio dell energia stazionario er sistemi a due correnti 7... Bilancio dell energia

Dettagli

Scambio termico 6.1. 6.1.1 Introduzione. 6.1.2 Conduzione

Scambio termico 6.1. 6.1.1 Introduzione. 6.1.2 Conduzione 6. Scambio termico 6.. Introduzione Lo studio dei fenomeni di scambio termico si uò ricondurre a due variabili: la temeratura e il flusso di calore. La temeratura indica l energia molecolare media di un

Dettagli

PRESSIONE, VOLUME, TEMPERATURA

PRESSIONE, VOLUME, TEMPERATURA ER M O D I N A M I CA È la branca della fisica che descrive le trasformazioni subite da un SISEMA MACROSCOPICO a seguito di uno scambio di energia con altri sistemi o con l'ambiente. IL sistema macroscoico

Dettagli

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche. Cap. 10. Elementi di psicrometria, condizionamento dell aria e benessere ambientale

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche. Cap. 10. Elementi di psicrometria, condizionamento dell aria e benessere ambientale Aunti ed Esercizi di Fisica Tecnica e Macchine Termiche Ca. 0. Elementi di sicrometria, condizionamento dell aria e benessere ambientale Nicola Forgione Paolo Di Marco Versione 0.0.04.0. La resente disensa

Dettagli

CBM a.s. 2012/2013 PROBLEMA DELL UTILE DEL CONSUMATORE CON IL VINCOLO DEL BILANCIO

CBM a.s. 2012/2013 PROBLEMA DELL UTILE DEL CONSUMATORE CON IL VINCOLO DEL BILANCIO CM a.s. /3 PROLEMA DELL TILE DEL CONSMATORE CON IL VINCOLO DEL ILANCIO Il consumatore è colui che acquista beni er destinarli al rorio consumo. Linsieme dei beni che il consumatore acquista rende il nome

Dettagli

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2 46 Tonzig La fisica del calore o 6 R/2 rispettivamente per i gas a molecola monoatomica, biatomica e pluriatomica. Per un gas perfetto, il calore molare a pressione costante si ottiene dal precedente aggiungendo

Dettagli

! L occhio come sistema ottico complesso. Corso di Principi e Modelli della Percezione. ! Prof. Giuseppe Boccignone!

! L occhio come sistema ottico complesso. Corso di Principi e Modelli della Percezione. ! Prof. Giuseppe Boccignone! L occhio come sistema ottico comlesso Corso di Princii e Modelli della Percezione Prof. Giusee Boccignone Diartimento di Scienze dell Informazione Università di Milano boccignone@dsi.unimi.it htt://homes.dsi.unimi.it/~boccignone/giuseeboccignone_webage/modelli_percezione.html

Dettagli

LO STATO GASSOSO. Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi

LO STATO GASSOSO. Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi LO STATO GASSOSO Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi STATO GASSOSO Un sistema gassoso è costituito da molecole

Dettagli

Capitolo 2 - Sostanze pure e gas

Capitolo 2 - Sostanze pure e gas Aunti di FISICA ECNICA Caitolo 2 - Sostanze ure e gas Sostanze ure... 2 Generalità e definizioni... 2 Fasi di un sistema... 3 arianza e regola delle fasi... 4 Equilibrio liquido-aore: la tensione di aore...

Dettagli

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica 2010-11

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica 2010-11 Modelli dei Sistemi di Produzione Modelli e lgoritmi della Logistica 00- Scheduling: Macchina Singola CRLO MNNINO Saienza Università di Roma Diartimento di Informatica e Sistemistica Il roblema /-/ w C

Dettagli

I GAS POSSONO ESSERE COMPRESSI.

I GAS POSSONO ESSERE COMPRESSI. I GAS Tutti i gas sono accomunati dalle seguenti proprietà: I GAS POSSONO ESSERE COMPRESSI. L aria compressa occupa un volume minore rispetto a quello occupato dall aria non compressa (Es. gomme dell auto

Dettagli

STABILITÀ DEI SISTEMI LINEARI

STABILITÀ DEI SISTEMI LINEARI STABILITÀ DEI SISTEMI LINEARI Quando un sistema fisico inizialmente in quiete viene sottoosto ad un ingresso di durata finita o di amiezza limitata, l uscita del sistema dovrebbe stabilizzarsi a un certo

Dettagli

CALCOLO INERZIA TERMICA E CONSUMO LEGNA DEL TERMOCAMINO MERCURY

CALCOLO INERZIA TERMICA E CONSUMO LEGNA DEL TERMOCAMINO MERCURY Pag. 1 di 7 CALCOLO INERZIA TERMICA E CONSUMO LEGNA DEL TERMOCAMINO MERCURY Premessa La resente relazione ha l obiettivo di verificare quale sia il consumo di legna ed il temo necessario affinché il termocamino

Dettagli

Termometria e calorimetria

Termometria e calorimetria ermometria e alorimetria Priniio zero della termodinamia: 2 ori, e, a temerature differenti ( < ) osti a ontatto raggiungono l equilibrio termio. Se e sono in equilibrio termio on un terzo oro C allora

Dettagli

Gli autori saranno grati a chiunque segnali loro errori, inesattezze o possibili miglioramenti.

Gli autori saranno grati a chiunque segnali loro errori, inesattezze o possibili miglioramenti. Diloma Universitario in Ingegneria Corso di Fisica ecnica Paolo Di Marco e Alessandro Franco Esercizi di ermodinamica Alicata Versione 99.00 //99. La resente raccolta è redatta ad esclusivo uso didattico

Dettagli

I NUMERI INDICI. Numeri indici indici (misurano il livello di variabilità, concentrazione, dipendenza o interdipendenza, ecc.)

I NUMERI INDICI. Numeri indici indici (misurano il livello di variabilità, concentrazione, dipendenza o interdipendenza, ecc.) NUMER NDC Numeri indici indici (misurano il livello di variabilità, concentrazione, diendenza o interdiendenza, ecc.) si utilizzano er confrontare grandezze nel temo e nello sazio e sono dati dal raorto

Dettagli

6. CAMPO MAGNETICO ROTANTE.

6. CAMPO MAGNETICO ROTANTE. 6 CAMPO MAGNETICO ROTANTE Il camo magnetico monofase Il funzionamento delle macchine elettriche rotanti alimentate in corrente alternata si basa sul rinciio del camo magnetico rotante: il suo studio viene

Dettagli

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti Unità di misura Le unità di misura sono molto importanti 1000 è solo un numero 1000 lire unità di misura monetaria 1000 unità di misura monetaria ma il valore di acquisto è molto diverso 1000/mese unità

Dettagli

CAP.3 LA LEGGE COSTITUTIVA ELASTO-PLASTICA

CAP.3 LA LEGGE COSTITUTIVA ELASTO-PLASTICA ECNOLOGE E MAERAL AEROSPAZAL CAP. LA LEGGE COSUVA ELASO-PLASCA CAPOLO LA LEGGE COSUVA ELASO-PLASCA. ntroduzione Le microstruttura dei materiali olicristallini è all origine del comortamento elasto-lastico

Dettagli

Temperatura e Calore

Temperatura e Calore Temperatura e Calore 1 Temperatura e Calore Stati di Aggregazione Temperatura Scale Termometriche Dilatazione Termica Il Calore L Equilibrio Termico La Propagazione del Calore I Passaggi di Stato 2 Gli

Dettagli

Primo principio della termodinamica

Primo principio della termodinamica Primo riniio della termodinamia Priniio di equivalenza Due ori a temeratura diversa, in ontatto, raggiungono l'equilibrio termio Durante il ontatto, il "alore" si trasferise dal oro iù aldo al oro iù freddo

Dettagli

Sessione live #2 Settimana dal 24 al 30 marzo. Statistica Descrittiva (II): Analisi congiunta, Regressione lineare Quantili.

Sessione live #2 Settimana dal 24 al 30 marzo. Statistica Descrittiva (II): Analisi congiunta, Regressione lineare Quantili. Sessione lie # Settimana dal 4 al 30 marzo Statistica Descrittia (II): Analisi congiunta, Regressione lineare Quantili Lezioni CD: 3 4-5 Analisi congiunta Da un camione di 40 studenti sono stati rileati

Dettagli

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche Aunti ed Esercizi di Fisica ecnica e Macchine ermiche Ca.7. I cicli termici delle macchine motrici Paolo Di Marco Versione 006.0 0.0.07 La resente disensa è redatta ad esclusivo uso didattico er gli allievi

Dettagli

Corso di Fisica Strumentale

Corso di Fisica Strumentale Facoltà di Medicina e Chirurgia Corso di Fisica Strumentale er Tecnici di Laboratorio Biomedico e Tecnici di revenzione ambientale e sui luoghi di lavoro Prof. R. Rolandi Il microscoio ottico Lo scoo di

Dettagli

La riflessione della luce: gli specchi

La riflessione della luce: gli specchi APITOLO 3 La riflessione della luce: gli secchi Immaginiamo un camo di 20 ettari ( ha 0 4 m 2 ) ieno di secchi arabolici: er l esattezza 360. Grazie a un articolare sistema di tubi, la radiazione solare

Dettagli

1 Il campo elettrico. 1.1 Azione a distanza

1 Il campo elettrico. 1.1 Azione a distanza 1 Il camo elettrico 1.1 Azione a distanza L idea di interazione fra cori è stata semre associata all idea di un contatto: la ossibilità che un oggetto otesse esercitare un azione in una regione di sazio

Dettagli

Stati di aggregazione della materia

Stati di aggregazione della materia SOLIDO: Forma e volume propri. Stati di aggregazione della materia LIQUIDO: Forma del recipiente in cui è contenuto, ma volume proprio. GASSOSO: Forma e volume del recipiente in cui è contenuto. Parametri

Dettagli

Le Macchine a Fluido. Tutor Ing. Leonardo Vita

Le Macchine a Fluido. Tutor Ing. Leonardo Vita Le Macchine a Fluido Tutor Ing. Leonardo Vita Introduzione Si uò definire macchina, in senso lato, un qualsiasi convertitore di energia cioè, in generale, una scatola chiusa in cui entra e da cui esce

Dettagli

sostanze in cui le molecole possono muoversi le une rispetto alle altre. Un fluido può quindi essere un liquido, un gas o un plasma.

sostanze in cui le molecole possono muoversi le une rispetto alle altre. Un fluido può quindi essere un liquido, un gas o un plasma. Aunti di MECCANICA DEI FLUIDI Corso di Fisica e Laboratorio rof. Massimo Manvilli SEZIONE ITI - ITCG Cattaneo con Liceo Dall Aglio STATI DI AGGREGAZIONE DELLA MATERIA Solidi : Liquidi : Gas: Plasma : FluidI:

Dettagli

Trigonometria (tratto dal sito Compito in classe di Matematica di Gilberto Mao)

Trigonometria (tratto dal sito Compito in classe di Matematica di Gilberto Mao) Trigonometria (tratto dal sito Comito in classe di Matematica di Gilberto Mao) Teoria in sintesi Radiante: angolo al centro di una circonferenza che sottende un arco di lunghezza rettificata uguale al

Dettagli

CALCOLO EFFICACIA ED EFFICIENZA DI TERMOCAMINETTI A GIRI DI FUMO

CALCOLO EFFICACIA ED EFFICIENZA DI TERMOCAMINETTI A GIRI DI FUMO Pag. 1 di 7 CALCOLO EFFICACIA ED EFFICIENZA DI TERMOCAMINETTI A GIRI DI FUMO Introduzione La resente relazione ha obiettivo di calcolare indicativamente funzionamento efficacia ed efficienza di termocaminetti

Dettagli

SENSAZIONE SONORA. 18.1 L orecchio umano. 18.2 La sensazione sonora - Audiogramma normale

SENSAZIONE SONORA. 18.1 L orecchio umano. 18.2 La sensazione sonora - Audiogramma normale Corso di Imiati Tecnici a.a. 009/010 Docente: Prof. C. Isetti CAPITOLO 18 18.1 L orecchio umano La ercezione di suoni, come d altra arte già osservato al riguardo della luce, coinvolge sia asetti fisici

Dettagli

LE LEGGI DEI GAS. Dalle prime teorie cinetiche dei gas simulazioni della dinamica molecolare. Lezioni d'autore

LE LEGGI DEI GAS. Dalle prime teorie cinetiche dei gas simulazioni della dinamica molecolare. Lezioni d'autore LE LEGGI DEI GAS Dalle prime teorie cinetiche dei gas simulazioni della dinamica molecolare. Lezioni d'autore alle Un video : Clic Un altro video : Clic Un altro video (in inglese): Clic Richiami sulle

Dettagli

Formulario di Termodinamica

Formulario di Termodinamica Formulario di Termodinamica Punto triplo dell acqua: T triplo = 273.16 K. Conversione tra gradi Celsius e gradi Kelvin (temperatura assoluta): t( C) = T (K) 273.15 Conversione tra Caloria e Joule: 1 cal

Dettagli

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso GLI STATI DI AGGREGAZIONE DELLA MATERIA Lo stato gassoso Classificazione della materia MATERIA Composizione Struttura Proprietà Trasformazioni 3 STATI DI AGGREGAZIONE SOLIDO (volume e forma propri) LIQUIDO

Dettagli

ATMOSFERE CONTROLLATE NELLA METALLURGIA DELLE POLVERI Teoria e pratica

ATMOSFERE CONTROLLATE NELLA METALLURGIA DELLE POLVERI Teoria e pratica ATMOSFERE CONTROLLATE NELLA METALLURGIA DELLE POLVERI Teoria e ratica Enrico MOSCA TORINO 1 1. INTRODUZIONE Le atmosfere controllate si definiscono come un singolo gas o una miscela di gas, la cui comosizione

Dettagli

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Termologia Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Trasmissione del calore Legge di Wien Legge di Stefan-Boltzmann Gas

Dettagli

Esercizi SINTESI E RIEPILOGO. Parole chiave. Formule e proprietà importanti. Tema B. In più: esercizi interattivi

Esercizi SINTESI E RIEPILOGO. Parole chiave. Formule e proprietà importanti. Tema B. In più: esercizi interattivi Unità Esercizi In iù: esercizi interattivi Tema B SINTESI E RIEPILG Parole chiave Ascissa. 17 Asse delle ascisse. 17 Asse delle ordinate. 17 Asse. 17 Asse. 17 Coefficiente angolare. 10 Coordinata. 17 Distanza

Dettagli

La presa dei fotogrammi

La presa dei fotogrammi UNITÀ T2 La resa dei fotogrammi TEORI 1 Fotogrammetria aerea 2 Relazione tra scala dei fotogrammi e altezza di volo 3 Parametri del volo aereo fotogrammetrico 4 Gestione del volo fotogrammetrico 5 Fotogrammetria

Dettagli

Regolazione degli impianti a vapore

Regolazione degli impianti a vapore Regolazione degli imianti a vaore Ing. A. Paolo Carlucci Nel rogetto di una centrale termoelettrica intervengono numerosi fattori: utilizzazione annua, ovvero quante ore all anno una centrale deve funzionare;

Dettagli

L E L E G G I D E I G A S P A R T E I

L E L E G G I D E I G A S P A R T E I L E L E G G I D E I G A S P A R T E I Variabili di stato Equazioni di stato Legge di Boyle Pressione, temperatura, scale termometriche Leggi di Charles/Gay-Lussac Dispense di Chimica Fisica per Biotecnologie

Dettagli

E chiaro allora che, rappresentando l evento impossibile e quello certo le due situazioni limite, per un qualunque evento si avrà:

E chiaro allora che, rappresentando l evento impossibile e quello certo le due situazioni limite, per un qualunque evento si avrà: CORSO ELEMENTARE SULLA PROBABILITA Eserimento aleatorio: ogni fenomeno del mondo reale il cui svolgimento è accomagnato da un certo grado di incertezza. rova (tentativo) singola esecuzione di un ben determinato

Dettagli

3. Stato gassoso. Al termine dell unità didattica si dovranno raggiungere i seguenti obiettivi:

3. Stato gassoso. Al termine dell unità didattica si dovranno raggiungere i seguenti obiettivi: 3. Stato gassoso. Al termine dell unità didattica si dovranno raggiungere i seguenti obiettivi:. Descrivere le caratteristiche e il comportamento del gas a livello microscopico.. Definire pressione temperatura

Dettagli

Logistica (mn) 6 CFU Appello del 22 Luglio 2010

Logistica (mn) 6 CFU Appello del 22 Luglio 2010 Logistica (mn) 6 CFU Aello del Luglio 010 NOME: COGNOME: MATR: Avvertenze ed istruzioni: Il comito dura ore e quindici. Non è ermesso lasciare l'aula senza consegnare il comito o ritirarsi. Se dovessero

Dettagli

Riepilogo programma di Chimica Ginnasio Anno scolastico 2011/2012

Riepilogo programma di Chimica Ginnasio Anno scolastico 2011/2012 Riepilogo programma di Chimica Ginnasio Anno scolastico 2011/2012 Misure e grandezze Grandezze fondamentali Grandezza fisica Simbolo della grandezza Unità di misura Simbolo dell unità di misura lunghezza

Dettagli

Capitolo 10 Il primo principio 113

Capitolo 10 Il primo principio 113 Capitolo 10 Il primo principio 113 QUESITI E PROBLEMI 1 Tenuto conto che, quando il volume di un gas reale subisce l incremento dv, il lavoro compiuto dalle forze intermolecolari di coesione è L = n 2

Dettagli

I FENOMENI TERMICI. I fenomeni termici Fisica Medica Lauree triennali nelle Professioni Sanitarie. P.Montagna ott-07. pag.1

I FENOMENI TERMICI. I fenomeni termici Fisica Medica Lauree triennali nelle Professioni Sanitarie. P.Montagna ott-07. pag.1 I FENOMENI TERMICI Temperatura Calore Trasformazioni termodinamiche Gas perfetti Temperatura assoluta Gas reali Principi della Termodinamica Trasmissione del calore Termoregolazione del corpo umano pag.1

Dettagli

Focolari differenziati secondo il tipo di combustibile

Focolari differenziati secondo il tipo di combustibile Arofondimento Focolari differenziati secondo il tio di combustibile A. Focolari er combustibili solidi II combustibile solido viene in genere disteso in strati iù o meno sessi (a seconda della roduzione

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 Controlli Digitali Laurea Magistrale in Ingegneria Meccatronica CONTROLLORI PID Tel. 0522 522235 e-mail: secchi.cristian@unimore.it Introduzione regolatore Proorzionale, Integrale, Derivativo PID regolatori

Dettagli

2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà. I liquidi e loro proprietà

2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà. I liquidi e loro proprietà 2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà 1 I liquidi e loro proprietà 2 Proprietà Generali dei Gas I gas possono essere espansi all infinito. I gas occupano i loro contenitori uniformemente

Dettagli

14/05/2013. Onde sonore

14/05/2013. Onde sonore Onde sonore valutazione del fenomeno acustico 1 Cos è il suono? Una erturbazione di carattere oscillatorio che si roaga in un mezzo elastico Alla roagazione corrisonde una roagazione di energia ma non

Dettagli

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro I FENOMENI TERMICI Temperatura Calore Trasformazioni termodinamiche Gas perfetti Temperatura assoluta Gas reali Principi della Termodinamica Trasmissione del calore Termoregolazione del corpo umano Temperatura

Dettagli

Suggerimenti per evitare errori frequenti nello scritto di fisica

Suggerimenti per evitare errori frequenti nello scritto di fisica Suggerimenti per evitare errori frequenti nello scritto di fisica Quelli che seguono sono osservazioni utili ad evitare alcuni degli errori piu frequenti registrati durante gli scritti di fisica. L elenco

Dettagli

ANALISI DELLE VIBRAZIONI PER LA DIAGNOSTICA DELLE MACCHINE ROTANTI 2 parte

ANALISI DELLE VIBRAZIONI PER LA DIAGNOSTICA DELLE MACCHINE ROTANTI 2 parte Indice Vibrazioni di una macchina elettrica ANALISI DELLE VIRAZIONI PER LA DIAGNOSTICA DELLE MACCHINE ROTANTI arte Lucia FROSINI Diartimento di Ingegneria Industriale e dell Informazione Università di

Dettagli

IL RENDIMENTO DELLE MACCHINE TERMICHE E IL SECONDO PRINCIPIO DELLA TERMODINAMICA di Ezio Fornero

IL RENDIMENTO DELLE MACCHINE TERMICHE E IL SECONDO PRINCIPIO DELLA TERMODINAMICA di Ezio Fornero IL RENDIMENTO DELLE MACCHINE TERMICHE E IL SECONDO PRINCIPIO DELLA TERMODINAMICA di Ezio Fornero Contenuti: - Concetto di macchina termica - Significato di rendimento di una macchina termica - Il Postulato

Dettagli

LABORATORIO DI CHIMICA GENERALE E INORGANICA

LABORATORIO DI CHIMICA GENERALE E INORGANICA UNIVERSITA DEGLI STUDI DI MILANO Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Chimica CORSO DI: LABORATORIO DI CHIMICA GENERALE E INORGANICA Docente: Dr. Alessandro Caselli

Dettagli

PSICROMETRIA DELL ARIA UMIDA

PSICROMETRIA DELL ARIA UMIDA PSICROMETRIA DELL ARIA UMIDA 1. PROPRIETÀ TERMODINAMICHE DEI GAS PERFETTI Un modello di comportamento interessante per la termodinamica è quello cosiddetto d i gas perfetto. Il gas perfetto è naturalmente

Dettagli

CONCORRENZA PERFETTA E DINAMICA

CONCORRENZA PERFETTA E DINAMICA 1 CONCORRENZA PERFETTA E DINAMICA 1. La caratterizzazione dell'equilibrio di mercato Per caratterizzare un mercato di concorrenza erfetta consideriamo un certo numero di imrese che roducono e offrono tutte

Dettagli

Le macchine termiche e il secondo principio della termodinamica

Le macchine termiche e il secondo principio della termodinamica Le macchine termiche e il secondo principio della termodinamica ) Definizione di macchina termica È sperimentalmente verificato che nel rispetto del primo principio della termodinamica (ovvero della conservazione

Dettagli

Lo Stato Gassoso: Alcune Caratteristiche

Lo Stato Gassoso: Alcune Caratteristiche Lo Stato Gassoso: Alcune Caratteristiche Sebbene possano avere proprietà chimiche distinte, le sostanze in fase gas hanno caratteristiche fisiche molto simili, in quanto le particelle (atomi o molecole)

Dettagli

Capitolo 2 Le trasformazioni fisiche della materia

Capitolo 2 Le trasformazioni fisiche della materia Capitolo 2 Le trasformazioni fisiche della materia 1.Gli stati fisici della materia 2.I sistemi omogenei e i sistemi eterogenei 3.Le sostanze pure e i miscugli 4.I passaggi di stato 5. la teoria particellare

Dettagli

Lavoro e Potenza, Unità di misura. 1 unità di Potenza = 1 kg f m /s. 1 HP = 33000 lb f ft / min

Lavoro e Potenza, Unità di misura. 1 unità di Potenza = 1 kg f m /s. 1 HP = 33000 lb f ft / min Laoro e Potenza, Unità di misura om è noto, la Potenza è definita come Laoro ( Forza sostamento) nell unità di temo. L unità SI della otenza è dunque: Watt N m /s Nelle unità MKS, la otenza (la cui unità

Dettagli

5. FLUIDI TERMODINAMICI

5. FLUIDI TERMODINAMICI 5. FLUIDI TERMODINAMICI 5.1 Introduzione Un sistema termodinamico è in genere rappresentato da una quantità di una determinata materia della quale siano definibili le proprietà termodinamiche. Se tali

Dettagli

EQUILIBRI - GENERALITA. Come si è visto trattando i tre princìpi della termodinamica, il criterio di spontaneità di una trasformazione è

EQUILIBRI - GENERALITA. Come si è visto trattando i tre princìpi della termodinamica, il criterio di spontaneità di una trasformazione è EQUILIBRI - GENERALIA Come si è visto trattando i tre princìpi della termodinamica, il criterio di spontaneità di una trasformazione è G < 0 Quando vale questo criterio, i reagenti si trasformano in prodotti.

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 22 Il primo principio della termodinamica non è altro che una affermazione del principio di conservazione dell energia. Ci dice che se un sistema

Dettagli

GRANDEZZE FISICHE. Prof.ssa Paravizzini M.R.

GRANDEZZE FISICHE. Prof.ssa Paravizzini M.R. GRANDEZZE FISICHE Prof.ssa Paravizzini M.R. PROPRIETA DEL CORPO SOGGETTIVE OGGETTIVE PR.SOGGETTIVE: gusto, bellezza, freschezza, forma MISURABILI PR. OGGETTIVE: massa, temperatura, diametro, ecc.. Le misure

Dettagli

QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA

QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA Un recipiente contiene gas perfetto a 27 o C, che si espande raggiungendo il doppio del suo volume iniziale a pressione costante. La temperatura finale

Dettagli

Cap. 1 - Stati di aggregazione della materia.

Cap. 1 - Stati di aggregazione della materia. Cap. 1 - Stati di aggregazione della materia. Lo stato di aggregazione di un sistema è determinato dalla energia cinetica delle particelle e dall energia potenziale dovuta alle forze di coesione fra le

Dettagli

GAS. I gas si assomigliano tutti

GAS. I gas si assomigliano tutti I gas si assomigliano tutti Aeriforme liquido solido GAS Descrizione macroscopica e microscopica degli stati di aggregazione della materia Fornendo energia al sistema, le forze di attrazione tra le particelle

Dettagli

ESERCITAZIONI DEL CORSO DI PROGETTO DELLE SOVRASTRUTTURE VIARIE - A.A. 2008-09 MATERIALI GRANULARI

ESERCITAZIONI DEL CORSO DI PROGETTO DELLE SOVRASTRUTTURE VIARIE - A.A. 2008-09 MATERIALI GRANULARI MATERIALI GRANULARI. IL COMPORTAMENTO MECCANICO DEI MATERIALI GRANULARI. Introduzione I materiali granulari imiegati negli strati iù rofondi della sovrastruttura stradale (fondazione, sotto-fondazione

Dettagli

FONDAMENTI CHIMICO FISICI DEI PROCESSI IL SECONDO E IL TERZO PRINCIPIO DELLA TERMODINAMICA

FONDAMENTI CHIMICO FISICI DEI PROCESSI IL SECONDO E IL TERZO PRINCIPIO DELLA TERMODINAMICA FONDAMENTI CHIMICO FISICI DEI PROCESSI IL SECONDO E IL TERZO PRINCIPIO DELLA TERMODINAMICA LE MACCHINE TERMICHE Sono sistemi termodinamici che trasformano il calore in lavoro. Operano ciclicamente, cioè

Dettagli

Impianto idraulico. Capitolo 4 4.1

Impianto idraulico. Capitolo 4 4.1 Caitolo 4 Imianto idraulico 4.1 4.1 Introduzione L'imianto idraulico è un imianto che consente la distribuzione di energia meccanica ed il suo controllo attraverso un fluido incomrimibile. Nell'imianto

Dettagli

Termodinamica: legge zero e temperatura

Termodinamica: legge zero e temperatura Termodinamica: legge zero e temperatura Affrontiamo ora lo studio della termodinamica che prende in esame l analisi dell energia termica dei sistemi e di come tale energia possa essere scambiata, assorbita

Dettagli

Ripasso sulla temperatura, i gas perfetti e il calore

Ripasso sulla temperatura, i gas perfetti e il calore Ripasso sulla temperatura, i gas perfetti e il calore Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia La temperatura Fenomeni non interpretabili con le leggi della meccanica Dilatazione

Dettagli

Ripasso di microeconomia ECONOMIA E FINANZA PUBBLICA. Teoria del consumatore. Lezione n. 1. Teoria del consumatore. Le preferenze.

Ripasso di microeconomia ECONOMIA E FINANZA PUBBLICA. Teoria del consumatore. Lezione n. 1. Teoria del consumatore. Le preferenze. Università degli Studi di erugia Corso di Laurea Magistrale in Scienze della olitica e dell'mministrazione Lezione n. Riasso di microeconomia CONOMI FINNZ ULIC nza Caruso Le referenze Come i consumatori

Dettagli

AREA 1: FUNZIONI E LIMITI

AREA 1: FUNZIONI E LIMITI AREA : FUNZIONI E LIMITI INSIEMI NUMERICI E FUNZIONI Per ricordare H Un insieme E si dice: itato sueriormente se esiste un numero k, non necessariamente aartenente a E, che eá maggiore o uguale di tutti

Dettagli

Stati di aggregazione della materia unità 2, modulo A del libro

Stati di aggregazione della materia unità 2, modulo A del libro Stati di aggregazione della materia unità 2, modulo A del libro Gli stati di aggregazione della materia sono tre: solido, liquido e gassoso, e sono caratterizzati dalle seguenti grandezze: Quantità --->

Dettagli

APPUNTI del CORSO di MACCHINE I

APPUNTI del CORSO di MACCHINE I APPUNI del CORSO di MACCHINE I Motori a combustione interna A cura del dott. ing. Daniele Scatolini dalle lezioni del rof. Cinzio Arrighetti Introduzione Il motore a combustione interna (m.c.i.) ha origine

Dettagli

Risposta: 2009 2010 Quantità Prezzo ( ) Quantità Prezzo ( ) Automobili 8.000 15.000 6.500 14.500 Biciclette 80.000 195,52 94.

Risposta: 2009 2010 Quantità Prezzo ( ) Quantità Prezzo ( ) Automobili 8.000 15.000 6.500 14.500 Biciclette 80.000 195,52 94. 1. Domanda Si consideri un sistema economico che roduce solo due beni: automobili e biciclette. È noto che nel 009 sono state rodotte 8.000 automobili che sono state venduto al rezzo di 15.000 e 80.000

Dettagli

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. Introduzione I processi termodinamici che vengono realizzati nella pratica devono consentire la realizzazione di uno scambio di energia termica o di energia

Dettagli