I metodi formali dell Analisi Lessicale: Le Espressioni Regolar

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I metodi formali dell Analisi Lessicale: Le Espressioni Regolar"

Transcript

1 I metodi formali dell Analisi Lessicale: Le Espressioni Regolari (ER) N.Fanizzi - V.Carofiglio 6 aprile 2016

2 1 Introduzione

3 Espressioni Regolari Dato un alfabeto finito X, una espressione regolare è una notazione per decrivere linguaggi regolari sull alfabeto ampliato X {λ, +,,,, (, )}: ESEMPI L = {a} R(L) = a L = {a, b, c} R(L) = a + b + c (+ denota UNIONE tra linguaggi) L = ({a} {bc}) R(L) = (a + b c) ( e denotano ITERAZIONE e CONCATENAZIONE tra linguaggi)

4 Espressioni Regolari - definizione Dato un alfabeto finito X, una stringa R sull alfabeto ampliato X {λ, +,,,, (, )} è una espressione regolare di alfabeto X sse vale una delle seguenti condizioni: R = R = λ R = a R = (R 1 + R 2 ) R = (R 1 R 2 ) R = (R 1 ) con a X con R 1, R 2 espressioni regolari di alfabeto X con R 1, R 2 espressioni regolari di alfabeto X con R 1 espressione regolare di alfabeto X L insieme delle espressioni regolari di alfabeto X viene denotato con R

5 Linguaggi Regolari Dato un alfabeto finito X un linguaggio L su X è un linguaggio regolare sse: L è finito oppure L può essere ottenuto induttivamente mediante le operazioni: 1 L = L 1 L 2 con L 1, L 2 regolari 2 L = L 1 L 2 con L 1, L 2 regolari 3 L = L 1 con L 1 regolare Osservazione: e {λ} sono linguaggi regolari Definiamo l insieme di tali linguaggi come classe dei linguaggi regolari denotata con L REG

6 Operazioni sui linguaggi (Dovere di cronaca) Dati due linguaggi L e L definiti sullo stesso alfabeto X : unione L L = {w X w L w L } prodotto L L = {w = w 1 w 2 X w 1 L w 2 L } iterazione L = {w 1... w n X n i : w i L, 0 i n} complemento L = {w X w L} intersezione L L = {w X w L w L } { {λ} k=0 potenza L k = L k 1 L k>0 chiusura (transitiva) L + = k>0 Lk (quindi si può scrivere L = L 0 L + = {λ} L + )

7 Esempi. Dati i linguaggi L 1 = {a 2n n 0} e L 2 = {b, cc} L 1 L 2 = {b, cc, aab, aacc, aaaab, aaaacc,...} L 2 L 1 = {b, cc, baa, ccaa, baaaa, ccaaaa,...} L 1 L 2 = L 2 L 1 = {λ, b, cc, aa, aaaa, aaaaaa,...} L 1 L 2 = {λ, aa, aaaa, aaaaaa, aaaaaaaa,...} = {λ, b, cc, bb, bcc, ccb, bbb, cccc,...} L 0 2 = {λ} L 1 2 = {b, cc} = {bb, bcc, ccb, cccc}... L 2 2 L + 2 = {b, cc, bb, bcc, ccb, bbb, cccc,...}

8 Ad ogni espressione regolare R corrisponde un linguaggio regolare S(R): espressione regolare linguaggio regolare λ {λ} a {a} (R 1 + R 2 ) S(R 1 ) S(R 2 ) (R 1 R 2 ) S(R 1 ) S(R 2 ) (R) (S(R))

9 Proposizione. Un linguaggio su X è regolare sse esso corrisponde ad una espressione regolare di alfabeto X ossia definita la funzione S : R (X ), si ha che: Osservazioni. L REG = {L (X ) R R: L = S(R)} un linguaggio regolare può essere descritto da più di una espressione regolare, cioè la funzione S non è inettiva Due espressioni regolari R 1 e R 2 si dicono equivalenti, e si scrive R 1 = R 2, sse S(R 1 ) = S(R 2 )

10 Esempio. L linguaggio delle parole su X = {a, b} con a e b alternate, inizianti e terminanti con b L descrivibile attraverso l espressione R 1 = b(ab) ovvero con R 2 = (ba) b pertanto R 1 = R 2

11 1. (R 1 + R 2 ) + R 3 = R 1 + (R 2 + R 3 ) prop. associativa di + 2. R 1 + R 2 = R 2 + R 1 prop. commutativa di + 3. R + = + R = R elem. neutro per + 4. R + R = R Idempotenza 5. (R 1 R 2 ) R 3 = R 1 (R 2 R 3 ) prop. associativa di 6. R 1 R 2 R 2 R 1 non commutatività di 7. R λ = λ R = R λ elem. neutro per 8. R = R = elem. assorbente per 9. R 1 (R 2 + R 3 ) = (R 1 R 2 ) + (R 1 R 3 ) prop. distributiva di risp. a (R 1 + R 2 ) R 3 = (R 1 R 3 ) + (R 2 R 3 ) prop. distributiva di risp. a (R) = (R) (R) = ((R) ) = (λ + R) 12. ( ) = (λ) = λ 13. (R) = λ + R R n + (R n+1 R ) 14. (R 1 + R 2 ) = (R1 + R 2 ) = (R1 R 2 ) = = (R1 R 2 ) R1 = R 1 (R 1 R 2 ) 15. (R 1 + R 2 ) R1 + R 2 in generale 16. R R = R R 17. R 1 (R 2 R 1 ) = (R 1 R 2 ) R (R1 R 2) = λ + (R 1 + R 2 ) R (R 1 R2 ) = λ + R 1 (R 1 + R 2 ) 20. R 1 = R 2 R 1 + R 3 sse R 1 = R2 R 3 con R 2 λ R 1 = R 1 R 2 + R 3 sse R 1 = R 3 R2

12 1 Data l espressione R = a (a + b), trovare il linguaggio associato. 2 Data L espressione R = (aa) (bb) b, trovare il linguaggio associato 3 Data l espressione R = (a + b) (a + bb), trovare il linguaggio associato 4 Fissato l alfabeto X = {0, 1} dare l espressione regolare R, tale che: S(R) = {w X w ha almeno una coppia di 0 consecutivi} S(R) = {w X w non ha coppie di 0 consecutivi} 5 Trovare tutte le stringhe di lunghezza minore di quattro in S((a + b) b(a + ab) ) 6 Trovare l espressione regolare per: L = {a n b m (n + m)pari} L = {a n b m n 4; m 3}

13 1 Scrivere le espressioni regolari per i seguenti linguaggi su X = {0, 1} tutte le stringhe che terminano per 01 tutte le stringhe che non terminano per 01 tutte le stringhe contenenti un numero pari di 0 tutte le stringhe che hanno almeno due occorrenze di sottostringhe 00 (nota che 000 contiene due occorrenze di 00) tutte le stringhe che hanno al piú due occorrenze di sottostringhe 00 tutte le stringhe che non contengono occorrenze di 101

14 1 Trovare le espressioni regolari per i seguenti linguaggi su {a, b} L = {w w mod 3 = 0} L = {w n a (w) mod 3 = 0} L = {w n a (w) mod 5 < 0}

15 o1 Individuare il linguaggio S(a (a + b) ) S(a (a + b) ) = S(a ) S(a + b) = (S(a)) ( S(a) S(b) ) = { λ, a, aa, aaa,...} {a, b} { λ, a, aa, aaa,..., b, ab, aab,...}

16 o2 Individuare il linguaggio S((a + b) (a + bb)) (a + b) stringhe di a e b (a + bb) stringa a oppure stringa bb S((a + b) (a + bb)) é l insieme su {a, b} di stringhe che terminano per a oppure per bb. ovvero: S((a + b) (a + bb)) = {a, bb, aa, abb, ba, bbb,...}

17 o3 Individuare il linguaggio S((aa) (bb) b) S((aa) (bb) b) = {a 2n b 2m+1 n 0, m 0}

18 o4a Individuare l espressione regolare per il linguaggio su X {0, 1} L = {w X w ha almeno una coppia di zeri consecutivi} Ogni stringa di L deve contenere: almeno un 00 ed é del tipo x00y, con x e y arbitrarie stringhe su X ((0 + 1) ) dunque L = S((0 + 1) 00 (0 + 1) )

19 o4b Individuare l espressione regolare per il linguaggio L = {w {0, 1} w NON ha coppie di zeri consecutivi} Osserviamo che se occorre uno 0, subito dopo ci deve essere un 1 la sotto-stringa 01 puó essere preceduta e seguita da 1 Dunque: La risposta contiene ripetiz. di (ovvero (1 (01)1 ) mancano le stringhe del tipo ((1 (01)1 0) Dunque: La risposta contiene anche ripetizioni di stringhe della forma (ovvero (1 (01)1 ) (λ + 0) mancano le stringhe del tipo ((1 0)) mancano le stringhe del tipo ((1 )) dunque mancano 1 (0 + λ) dunque L = S( (1 (01)1 ) (0 + λ) + (1 (0 + λ)) )

20 o4b-bis Individuare l espressione regolare per il linguaggio L = {w {0, 1} w NON ha coppie di zeri consecutivi} S( (1 (01)1 ) (0 + λ) + (1 (0 + λ)) ) S( (1 + (01)) (0 + λ) ) definiscono lo stesso linguaggio?

Linguaggi. Rosario Culmone, Luca Tesei. 20/10/2009 UNICAM - p. 1/32

Linguaggi. Rosario Culmone, Luca Tesei. 20/10/2009 UNICAM - p. 1/32 Linguaggi Rosario Culmone, Luca Tesei 20/10/2009 UNICAM - p. 1/32 Alfabeto Un alfabeto è un insieme finito di simboli. Useremo Σ per denotare un alfabeto. Esempi di alfabeto sono: l alfabeto latino adottato

Dettagli

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI FACOLTA' DI ECONOMIA UNIVERSITA DELLA CALABRIA Corso di Modelli Matematici per l Azienda a.a. 2011-2012 DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI Prof. Fabio Lamantia INSIEMI INSIEME= gruppo di oggetti

Dettagli

Espressioni Regolari

Espressioni Regolari Espressioni Regolari Le espressioni regolari sono costituite dalle stringhe sull alfabeto Σ = Σ {+,,*,(,),φ} ottenute secondo le seguenti regole: 1. φ e ciascun membro di Σ sono Epressioni Regolari 2.

Dettagli

Quiz sui linguaggi CF

Quiz sui linguaggi CF Fondamenti dell Informatica 1 semestre Quiz sui linguaggi CF Prof. Giorgio Gambosi a.a. 2014-2015 Problema 1: Si consideri la seguente grammatica context free G, dove S, NP, V P, P P, A sono i simboli

Dettagli

Corso di Linguaggi di Programmazione + Laboratorio Docente: Marco de Gemmis

Corso di Linguaggi di Programmazione + Laboratorio Docente: Marco de Gemmis Corso di Linguaggi di Programmazione + Laboratorio Docente: Marco de Gemmis Capitolo 2 Grammatiche e Linguaggi Si ringraziano il Prof. Giovanni Semeraro e il Dott. Pasquale Lops per la concessione del

Dettagli

Esercizi di Fondamenti di Informatica per la sicurezza. Stefano Ferrari

Esercizi di Fondamenti di Informatica per la sicurezza. Stefano Ferrari Esercizi di Fondamenti di Informatica per la sicurezza tefano Ferrari 23 dicembre 2003 2 Argomento 1 Grammatiche e linguaggi Esercizi Es. 1.1 Definiti i linguaggi: L 1 = {aa, ab, bc, c} L 2 = {1, 22, 31}

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A Linguaggi Formali e Compilatori. I linguaggi formali. Giacomo PISCITELLI

Corso di Laurea Magistrale in Ingegneria Informatica A.A Linguaggi Formali e Compilatori. I linguaggi formali. Giacomo PISCITELLI Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2011-2012 Linguaggi Formali e Compilatori I linguaggi formali Giacomo PISCITELLI Traduttori Un traduttore è un programma che effettua la traduzione

Dettagli

Richiami sugli insiemi numerici

Richiami sugli insiemi numerici Richiami sugli insiemi numerici denota l insieme vuoto cioè l insieme privo di elementi. N = {1, 2, 3,...} denota l insieme dei numeri naturali. Z = {..., 2, 1, 0, 1, 2,...} denota l insieme dei numeri

Dettagli

01 - Elementi di Teoria degli Insiemi

01 - Elementi di Teoria degli Insiemi Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2013/2014

Dettagli

01 - Elementi di Teoria degli Insiemi

01 - Elementi di Teoria degli Insiemi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2015/2016

Dettagli

Reti logiche: introduzione

Reti logiche: introduzione Corso di Calcolatori Elettronici I Reti logiche: introduzione ing. Alessandro Cilardo Corso di Laurea in Ingegneria Biomedica Circuiti e porte logiche Esempio di rete di commutazione: Circuiti e porte

Dettagli

Espressioni regolari descrivono i linguaggi regolari. Un FA (NFA o DFA) è un metodo per costruire una macchina che riconosce linguaggi regolari.

Espressioni regolari descrivono i linguaggi regolari. Un FA (NFA o DFA) è un metodo per costruire una macchina che riconosce linguaggi regolari. Espressioni regolari descrivono i linguaggi regolari Un FA (NFA o DFA) è un metodo per costruire una macchina che riconosce linguaggi regolari. Una espressione regolare e un modo dichiarativo per descrivere

Dettagli

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 richiami teorici sulle grammatiche di Chomsky esercizivari esercizi su grammatiche ed espressioni regolari

Dettagli

GLI INSIEMI. Laboratorio per apprendimenti logico - matematici. Dispensa a cura del prof. Domenico Perrone Maggio 2005

GLI INSIEMI. Laboratorio per apprendimenti logico - matematici. Dispensa a cura del prof. Domenico Perrone Maggio 2005 GLI INSIEMI Laboratorio per apprendimenti logico - matematici Dispensa a cura del prof. Domenico Perrone Maggio 2005 1 I problemi Perché gli Insiemi? Cos è un insieme? Cantor, Frege, Russell Quale ruolo

Dettagli

Esercitazioni di Algebra e Geometria

Esercitazioni di Algebra e Geometria Esercitazioni di Algebra e Geometria Anno Accademico 2010 2011 Dott.ssa Elisa Pelizzari e-mail elisa.peli@libero.it Esercitazioni: lunedì 14.30 16.30 venerdì 14.30 16.30 Ricevimento studenti: venerdì 13.30

Dettagli

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata

Dettagli

Espressioni regolari

Espressioni regolari spressioni Regolari Un FA (NFA o DFA) e una macchina a stati finiti che riconosce linguaggi regolari. Una espressione regolare e un modo dichiarativo (o algebrico) per descrivere un linguaggio regolare.

Dettagli

Progamma sintetico. Nozioni preliminari Automi Finiti Macchine di Turing Limiti delle macchine di Turing La tesi di Church-Turing Le classi P e NP

Progamma sintetico. Nozioni preliminari Automi Finiti Macchine di Turing Limiti delle macchine di Turing La tesi di Church-Turing Le classi P e NP Progamma sintetico Nozioni preliminari Automi Finiti Macchine di Turing Limiti delle macchine di Turing La tesi di Church-Turing Le classi P e NP Un problema classico Un uomo viaggia con un lupo, una pecora

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -.

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -. I numeri naturali non sono adatti per risolvere tutti i problemi. Esempio. La temperatura atmosferica di un mattino estivo, sopra lo zero, viene indicata con un numero preceduto dal segno + (+19 C, +25

Dettagli

DEFINIZIONE DI INSIEME

DEFINIZIONE DI INSIEME ELEMENTI DI TEORIA DEGLI INSIEMI PROF.SSA ROSSELLA PISCOPO Indice 1 DEFINIZIONE DI INSIEME ------------------------------------------------------------------------------------------------ 3 2 METODI DI

Dettagli

Precorsi di matematica

Precorsi di matematica Precorsi di matematica Francesco Dinuzzo 12 settembre 2005 1 Insiemi Il concetto di base nella matematica moderna è l insieme. Un insieme è una collezione di elementi. Gli elementi di un insieme vengono

Dettagli

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni Cenni di logica matematica e di teoria degli insiemi CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni 1 1 Logica matematica Corsi Introduttivi - a.a. 2016/2017 2 Serve

Dettagli

CORSO DI AZZERAMENTO DI MATEMATICA

CORSO DI AZZERAMENTO DI MATEMATICA CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA

Dettagli

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1.

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Le matrici Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Siano m, n N\{0}. Una matrice m n a coefficienti in K è una tabella di m n elementi di K disposti

Dettagli

Grammatiche. Grammatiche libere da contesto Grammatiche regolari Potenza delle grammatiche libere e regolari Struttura di frase: Alberi di derivazione

Grammatiche. Grammatiche libere da contesto Grammatiche regolari Potenza delle grammatiche libere e regolari Struttura di frase: Alberi di derivazione Grammatiche Grammatiche libere da contesto Grammatiche regolari Potenza delle grammatiche libere e regolari Struttura di frase: Alberi di derivazione Esempio dei numeri interi Si consideri il linguaggio

Dettagli

Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento

Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento Calcolo Combinatorio Prof. A. Albanese Dipartimento di Matematica e Fisica E. De Giorgi - Università del Salento Disposizioni

Dettagli

L intero è o il valore zero o una stringa di cifre che inizia con una cifra diversa sa zero.

L intero è o il valore zero o una stringa di cifre che inizia con una cifra diversa sa zero. ANALISI SINTATTICA Data un linguaggio scrivere una grammatica che lo generi ESERCIZIO 1 Definire una grammatica per il linguaggio L = {ww w appartiene a (a, b)*} ESERCIZIO 2 Dato l alfabeto T=[0,1,2,3,4,5,6,7,8,9,/}

Dettagli

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}. Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è

Dettagli

Matematica e-learning - Corso Zero di Matematica. Gli Insiemi. Prof. Erasmo Modica A.A.

Matematica e-learning - Corso Zero di Matematica. Gli Insiemi. Prof. Erasmo Modica  A.A. Matematica e-learning - Gli Insiemi Prof. Erasmo Modica http://www.galois.it erasmo@galois.it A.A. 2009/2010 1 Simboli Matematici Poiché in queste pagine verranno utilizzati differenti simboli matematici,

Dettagli

Verificare se una grammatica e LL(1) e costruirne la tabella di parsing. Verificare se una grammatica e LR(0) e costruirne la tabele ACTION e GOTO

Verificare se una grammatica e LL(1) e costruirne la tabella di parsing. Verificare se una grammatica e LR(0) e costruirne la tabele ACTION e GOTO ANALISI SINTATTICA TIPO 1: Data un linguaggio scrivere una grammatica che lo generi TIPO 2: Verificare se una grammatica non contestuale è ambigua TiPO 3: Verificare se una grammatica e LL(1) e costruirne

Dettagli

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

Proprietà dei linguaggi regolari

Proprietà dei linguaggi regolari Proprietà dei linguaggi regolari Argomenti della lezione Relazione tra automi, grammatiche ed espressioni regolari Pumping lemma per i linguaggi regolari Equivalenza di automi a stati finiti Le seguenti

Dettagli

1 (A,+) sia un gruppo abeliano, cioè soddisfi gli assiomi: x (y + z) = x y + x z (y + z) x = y x + z x

1 (A,+) sia un gruppo abeliano, cioè soddisfi gli assiomi: x (y + z) = x y + x z (y + z) x = y x + z x ANE ANELLI. Anelli In questa unità ci occupiamo di un particolare anelloide che prende il nome di anello. Si chiama anello ogni anelloide (A + ) tale che: (A+) sia un gruppo abeliano cioè soddisfi gli

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

ESEMPIO Un esempio di insieme vuoto è l insieme dei numeri reali di quadrato 4. B A

ESEMPIO Un esempio di insieme vuoto è l insieme dei numeri reali di quadrato 4. B A TEORI DEGLI INSIEMI GENERLIT Un insieme è un ente costituito da oggetti. Il concetto di insieme e di oggetto si assumono come primitivi. Se un oggetto a fa parte di un insieme si dice che esso è un suo

Dettagli

" " # " $ $ $ $ % $&%% # $ # #' $" $$ $( $)

  #  $ $ $ $ % $&%% # $ # #' $ $$ $( $) ! "" " " # " $ $ $ $ % $&%% # $ # #' $" $$ $( $) (#** ( ( ( (( (" +,-./ 011-,,0 2-++/ 34-5-6,- 708-306- 96/ 5-4:- 2: 80.3+-55- ;9-5,:06:.-,020+01:8:+- 2-2:8/4-50+0/+896:

Dettagli

(2) se A A, allora A c A; (3) se {A n } A, allora +

(2) se A A, allora A c A; (3) se {A n } A, allora + 1. Spazi di misura In questo paragrafo accenneremo alla nozione di spazio di misura. Definizione 1. Sia X un insieme non vuoto. Una famiglia A di sottoinsiemi di X è una σ-algebra se : (1) A; (2) se A

Dettagli

Le variabili logiche possono essere combinate per mezzo di operatori detti connettivi logici. I principali sono:

Le variabili logiche possono essere combinate per mezzo di operatori detti connettivi logici. I principali sono: Variabili logiche Una variabile logica (o booleana) è una variable che può assumere solo uno di due valori: Connettivi logici True (vero identificato con 1) False (falso identificato con 0) Le variabili

Dettagli

Teoria degli Insiemi

Teoria degli Insiemi Angelica Malaspina Dipartimento di Matematica, Informatica ed Economia Università degli Studi della Basilicata, Italy angelica.malaspina@unibas.it distributive distributive distributive Il concetto di

Dettagli

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3)

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Nicola Durante 2011-12 Abstract 1 Insiemi numerici (Lezione del 5.10.11) 1.1 Cenni di teoria degli insiemi Richiamiamo brevemente alcuni simboli usati in

Dettagli

Gruppi, Anelli, Campi

Gruppi, Anelli, Campi Gruppi, Anelli, Campi (A1) Chiusura per addizione (A2) Associatività addizione (A3)Elemento neutro addizione (A4)Esistenza inversi additivi Campo (A5) Commutatività addizione (M1) Chiusura per moltiplicazione

Dettagli

1 Introduzione alle matrici quadrate 2 2 a coefficienti in R.

1 Introduzione alle matrici quadrate 2 2 a coefficienti in R. 1 Introduzione alle matrici quadrate 2 2 a coefficienti in R Per introdurre il concetto di matrice, a 2 righe e 2 colonne, iniziamo col considerare griglie o tabelle di numeri Gli elementi della griglia,

Dettagli

Funzione esponenziale Equazioni esponenziali RIPASSO SULLE POTENZE

Funzione esponenziale Equazioni esponenziali RIPASSO SULLE POTENZE RIPASSO SULLE POTENZE Proprietà delle potenze La formula a n indica l operazione chiamata potenza, ( a è la base ed n l esponente) che consiste nel moltiplicare la base a per se stessa n volte. Per le

Dettagli

Algebra di Boole. Andrea Passerini Informatica. Algebra di Boole

Algebra di Boole. Andrea Passerini Informatica. Algebra di Boole Andrea Passerini passerini@disi.unitn.it Informatica Variabili logiche Una variabile logica (o booleana) è una variable che può assumere solo uno di due valori: True (vero identificato con 1) False (falso

Dettagli

Forma Normale di Chomsky

Forma Normale di Chomsky 2. Eliminazione delle produzioni unitarie Forma Normale di Chomsky Una produzione si dice unitaria se è della forma A! B. Le produzioni unitarie in pratica consistono in una ridenominazione di variabili,

Dettagli

GIOCHI DI PAROLE E GRUPPI LIBERI

GIOCHI DI PAROLE E GRUPPI LIBERI ìm 1 Alma Mater Studiorum Università di Bologna SCUOLA DI SCIENZE Corso di Laurea in Matematica GIOCHI DI PAROLE E GRUPPI LIBERI Tesi di Laurea in Algebra Relatore: Chiar.mo Prof. LIBERO VERARDI Presentata

Dettagli

Definizione: Due monomi si dicono simili se hanno la stessa parte letterale.

Definizione: Due monomi si dicono simili se hanno la stessa parte letterale. CALCOLO LETTERALE Definizione: Data una formula si dicono variabili le lettere alle quali può essere sostituito qualsiasi valore numerico; i numeri si dicono, invece, costanti. Nella formula per il calcolo

Dettagli

Algebra di Boole. Tavole di verità. Fondamenti di Informatica Algebra di Boole. Si basa su tre operazioni logiche: AND (*) OR (+) NOT (!

Algebra di Boole. Tavole di verità. Fondamenti di Informatica Algebra di Boole. Si basa su tre operazioni logiche: AND (*) OR (+) NOT (! Fondamenti di Informatica Algebra di Boole Prof.ssa Enrica Gentile Informatica e Comunicazione Digitale a.a. 2-22 Algebra di Boole Si basa su tre operazioni logiche: AND (*) OR () NOT (!) Gli operandi

Dettagli

Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati;

Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Implicazione logica. Equivalenza logica; Condizione necessaria,

Dettagli

Linguistica Computazionale

Linguistica Computazionale Linguistica Computazionale Laboratorio espressioni regolari (1) 30 settembre 2014 Cercare, ricercare Cercare una parola in un testo è semplice: ma come fare per ricerche più complesse? le parole che terminano

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

Esercitazioni (a cura di R. Basili)

Esercitazioni (a cura di R. Basili) Esercitazioni (a cura di R. Basili) E1. Elementi di Algebra Insiemi Nozione intuitiva di insieme L'insieme vuoto Operazioni tra insiemi Domini Prodotto Cartesiano Proprieta' delle operazioni tra insiemi

Dettagli

Elementi di Algebra e Logica Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali:

Elementi di Algebra e Logica Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali: Elementi di Algebra e Logica 2008. 8. Logica. 1. Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali: (a) p ( q r); (b) p (q r); (c) (p q) ( p r); (d) (p q) ( p r); (e) (p

Dettagli

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche Indice 1 Cenni di logica 2 Elementi di teoria degli insiemi 3 Relazioni e funzioni 4 Strutture algebriche Silvia Pianta - Laura Montagnoli Geometria I - Prerequisiti - UCSC A.A. 2015/2016 1 / 36 1. Cenni

Dettagli

1 Relazioni. Definizione Una relazione R su un insieme A si dice relazione d ordine se gode delle proprietà 1), 3), 4).

1 Relazioni. Definizione Una relazione R su un insieme A si dice relazione d ordine se gode delle proprietà 1), 3), 4). 1 Relazioni 1. definizione di relazione; 2. definizione di relazione di equivalenza; 3. definizione di relazione d ordine Definizione Una corrispondenza tra due insiemi A e B è un sottoinsieme R del prodotto

Dettagli

Cenni di teoria degli insiemi

Cenni di teoria degli insiemi Università degli Studi di Napoli «Federico II» Facoltà di rchitettura Upta Corso di laurea in Urbanistica e Scienze della Pianificazione Territoriale e mbientale Corso integrato di Matematica e statistica

Dettagli

Nozioni introduttive e notazioni

Nozioni introduttive e notazioni Nozioni introduttive e notazioni 1.1 Insiemi La teoria degli insiemi è alla base di tutta la matematica, in quanto ne fornisce il linguaggio base e le notazioni. Definiamo un insieme come una collezione

Dettagli

Fondamenti di informatica per la sicurezza anno accademico 2004 2005 docente: Stefano Ferrari

Fondamenti di informatica per la sicurezza anno accademico 2004 2005 docente: Stefano Ferrari Corso di Laurea in icurezza dei sistemi e delle reti informatiche Fondamenti di informatica per la sicurezza anno accademico 2004 2005 docente: tefano Ferrari 23.02.2005 della seconda parte vers. A valutazioni

Dettagli

Metodi quantitativi per i mercati finanziari

Metodi quantitativi per i mercati finanziari Metodi quantitativi per i mercati finanziari Esercizi di probabilità Spazi di probabilità Ex. 1 Sia Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Siano A e B sottoinsiemi di Ω tali che A = {numeri pari},

Dettagli

G. Pareschi FUNZIONI BOOLEANE. 1. Funzioni booleane

G. Pareschi FUNZIONI BOOLEANE. 1. Funzioni booleane G. Pareschi FUNZIONI BOOLEANE 1. Funzioni booleane In questa sezione ci occuperemo principalmente delle funzioni booleane: data un algebra di Boole B finita o infinita), ed un numero naturale n, si considerano

Dettagli

Espressività e limitazioni delle grammatiche regolari

Espressività e limitazioni delle grammatiche regolari Espressività e limitazioni delle grammatiche regolari Vantaggi: Le grammatiche regolari consentono di esprimere una significativa classe di linguaggi: linguaggi con un numero di sequenze infinito grazie

Dettagli

Lezione 4 - Esercitazioni di Algebra e Geometria - Anno accademico

Lezione 4 - Esercitazioni di Algebra e Geometria - Anno accademico Trasformazioni elementari sulle matrici Data una matrice A K m,n definiamo su A le seguenti tre trasformazioni elementari: T : scambiare tra loro due righe (o due colonne) di A; T : sommare ad una riga

Dettagli

Corso di Elementi di Informatica Anno accademico 2015/16

Corso di Elementi di Informatica Anno accademico 2015/16 Corso di Laurea triennale in Ingegneria Navale in condivisione con Corso di Laurea triennale in Ingegneria Chimica (matr. P-Z) Corso di Elementi di Informatica Anno accademico 2015/16 Docente: Ing. Alessandra

Dettagli

Algebra di Boole Cenni all Algebra di Boole

Algebra di Boole Cenni all Algebra di Boole Algebra di Boole Cenni all Algebra di Boole Introduzione Rappresentazione di una funzione combinatoria Proprietà dell algebra di commutazione Forme canoniche Teorema di espansione di Shannon Versione del

Dettagli

1 Minimizzazione di espressioni logiche con le proprietà dell algebra

1 Minimizzazione di espressioni logiche con le proprietà dell algebra 1 Minimizzazione di espressioni logiche con le proprietà dell algebra di Boole 1.1 Esercizi con soluzione Esercizio 1.1 - Data la seguente funzione F: F = a bcd + abcd + ab cd + a bc d 1. Utilizzando le

Dettagli

Elementi di Algebra Lineare Spazi Vettoriali

Elementi di Algebra Lineare Spazi Vettoriali Elementi di Algebra Lineare Spazi Vettoriali Antonio Lanteri e Cristina Turrini UNIMI - 2015/2016 Antonio Lanteri e Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 37 index Spazi vettoriali

Dettagli

Logica proposizionale

Logica proposizionale Logica proposizionale Proposizione: frase compiuta che è sempre o vera o falsa. Connettivi Posti in ordine di precedenza: not, and, or, implica, doppia implicazione Sintassi Le proposizioni sono costituite

Dettagli

Insiemi. Esempio1: i ragazzi del corso di agraria nati nel 1990 formano un insieme.

Insiemi. Esempio1: i ragazzi del corso di agraria nati nel 1990 formano un insieme. Insiemi Definizione: Definizione: Un Un insieme insieme è è una una collezione collezione di di oggetti oggetti individuati individuati da da una una Determinata Determinata specificazione. specificazione.

Dettagli

Algebra di Boole Cenni all Algebra di Boole. Algebra Booleana: definizione

Algebra di Boole Cenni all Algebra di Boole. Algebra Booleana: definizione Algebra Booleana: operazioni e sistema algebrico Algebra di Boole Cenni all Algebra di Boole Introduzione Rappresentazione di una funzione combinatoria Proprietà dell algebra di commutazione Forme canoniche

Dettagli

Linguaggi formali e compilazione

Linguaggi formali e compilazione Linguaggi formali e compilazione Corso di Laurea in Informatica A.A. 2015/2016 Linguaggi formali e compilazione sul corso Sito web: http://algogroup.unimore.it/people/mauro/dida/2015-2016 / Ricevimento:

Dettagli

Elementi di Logica Teoria degli insiemi

Elementi di Logica Teoria degli insiemi Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento Elementi di Logica Teoria degli insiemi Proff. A. Albanese E. Mangino Dipartimento di Matematica e Fisica E. De Giorgi - Università

Dettagli

Presentazioni di gruppi: generatori e relazioni

Presentazioni di gruppi: generatori e relazioni Presentazioni di gruppi: generatori e relazioni Note per il corso di Geometria 4 (relative alla parte dei 6 crediti) Milano, 2011-2012, M.Dedò N.B. Quanto segue si appoggia fortemente al testo [M] consigliato

Dettagli

Cos è un Calcolatore?

Cos è un Calcolatore? Cos è un Calcolatore? Definizione A computer is a machine that manipulates data according to a (well-ordered) collection of instructions. 24/105 Riassumendo... Un problema è una qualsiasi situazione per

Dettagli

Forme Normali. Forma normale di Chomsky. E caratterizzata da regole di due tipi. A! BC dove A, B, C $ V N A! a con a $ V T. Forma normale di Greibach

Forme Normali. Forma normale di Chomsky. E caratterizzata da regole di due tipi. A! BC dove A, B, C $ V N A! a con a $ V T. Forma normale di Greibach Forme Normali A partire da una grammatica Context-free G è sempre possibile costruire una grammatica equivalente G ovvero L(G) = L(G ) che abbiano le produzioni in forme particolari, dette forme normali.

Dettagli

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione

Dettagli

1) Premessa: Al posto dei numeri posso utilizzare delle.. m) La differenza tra due numeri qualsiasi:...

1) Premessa: Al posto dei numeri posso utilizzare delle.. m) La differenza tra due numeri qualsiasi:... IL Calcolo letterale ( o algebrico ). 1) Premessa: Al posto dei numeri posso utilizzare delle.. Esempi:. 2) Introduzione. a) Un numero qualsiasi: b) Il doppio di un numero qualsiasi:. c) Il triplo di un

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione all algebra E. Modica http://dida.orizzontescuola.it Didattica OrizzonteScuola Espressioni letterali come modelli nei problemi Espressioni come modello di calcolo Esempio di decodifica Premessa

Dettagli

Linguaggi di Programmazione Corso C. Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali. Nicola Fanizzi

Linguaggi di Programmazione Corso C. Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali. Nicola Fanizzi Linguaggi di Programmazione Corso C Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali Nicola Fanizzi (fanizzi@di.uniba.it) Dipartimento di Informatica Università degli Studi di Bari Grammatiche

Dettagli

INSIEMI E RELAZIONI. 1. Insiemi e operazioni su di essi

INSIEMI E RELAZIONI. 1. Insiemi e operazioni su di essi INSIEMI E RELAZIONI 1. Insiemi e operazioni su di essi Il concetto di insieme è primitivo ed è sinonimo di classe, totalità. Sia A un insieme di elementi qualunque. Per indicare che a è un elemento di

Dettagli

1 Relazione di congruenza in Z

1 Relazione di congruenza in Z 1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo

Dettagli

ELEMENTI di TEORIA degli INSIEMI

ELEMENTI di TEORIA degli INSIEMI ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)

Dettagli

Elaborazione di File di Dati. Uso di semplici comandi Espressioni regolari AWK

Elaborazione di File di Dati. Uso di semplici comandi Espressioni regolari AWK Elaborazione di File di Dati Uso di semplici comandi Espressioni regolari AWK Sort sort [option] file1... filen Consente di ordinare, fondere o confrontare le linee dei file in input Ha tre modalità di

Dettagli

1 Cenni di teoria degli insiemi

1 Cenni di teoria degli insiemi 1 Cenni di teoria degli insiemi 1.1. Siano A, B, C,... insiemi. Scriveremo a A, a / A per affermare rispettivamente che l elemento a appartiene all insieme A e che l elemento a non appartiene ad A. Diremo

Dettagli

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica erasmo@galois.it MONOMI In una formula si dicono variabili le lettere alle quali può essere

Dettagli

Algebra relazionale D O C E N T E P R O F. A L B E R T O B E L U S S I. Anno accademico 2012/13

Algebra relazionale D O C E N T E P R O F. A L B E R T O B E L U S S I. Anno accademico 2012/13 Algebra relazionale D O C E N T E P R O F. A L B E R T O B E L U S S I Anno accademico 2012/13 Riepilogo operatori algebra Operatori insiemistici Applicabili SOLO a relazioni con lo stesso schema: BASE

Dettagli

Prodotto elemento per elemento, NON righe per colonne Unione: M R S

Prodotto elemento per elemento, NON righe per colonne Unione: M R S Relazioni binarie Una relazione binaria può essere rappresentata con un grafo o con una matrice di incidenza. Date due relazioni R, S A 1 A 2, la matrice di incidenza a seguito di varie operazioni si può

Dettagli

Linguaggi regolari e automi a stati finiti

Linguaggi regolari e automi a stati finiti utomi a stati finiti Gli automi a stati finiti sono usati come modello per Software per la progettazione di circuiti digitali. Analizzatori lessicali di un compilatore. Ricerca di parole chiave in un file

Dettagli

9.4 Esercizi. Sezione 9.4. Esercizi 253

9.4 Esercizi. Sezione 9.4. Esercizi 253 Sezione 9.. Esercizi 5 9. Esercizi 9..1 Esercizi dei singoli paragrafi 9.1 - Espressioni letterali e valori numerici 9.1. Esprimi con una formula l area della superficie della zona colorata della figura

Dettagli

In molte applicazioni sorge il problema di sapere in quanti modi possibili si può presentare un certo fenomeno.

In molte applicazioni sorge il problema di sapere in quanti modi possibili si può presentare un certo fenomeno. Definizione Oggetto del calcolo combinatorio è quello di determinare il numero dei modi mediante i quali possono essere associati, secondo prefissate regole, gli elementi di uno stesso insieme o di più

Dettagli

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore MCD in N e Polinomi Giovanna Carnovale October 18, 2011 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole e Circuiti Logici Prof. Christian Esposito Corso di Laurea in Ingegneria Meccanica e Gestionale (Classe I) A.A. 2016/17 Algebra di Boole e Circuiti Logici L Algebra

Dettagli

I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP)

I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP) I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP) Prof. Alberto Borghese Dipartimento di Informatica borghese@di.unimi.it Università degli Studi di Milano Riferimento al testo: Sezione C.3;

Dettagli

Primo modulo: Aritmetica

Primo modulo: Aritmetica Primo modulo: Aritmetica Obiettivi 1. ordinamento e confronto di numeri;. riconoscere la rappresentazione di un numero in base diversa dalla base 10; 3. conoscere differenza tra numeri razionali e irrazionali;

Dettagli

4 + 7 = 11. Possiamo quindi dire che:

4 + 7 = 11. Possiamo quindi dire che: Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +

Dettagli

IL LINGUAGGIO MATEMATICO

IL LINGUAGGIO MATEMATICO 1 Lezioni 1-2 Connettivi logici IL LINGUAGGIO MATEMATICO (non); (e); (oppure); = (se...allora/...implica...); (...se e solo se...) Quantificatori (per ogni);... :... (esiste...tale che...) Proposizioni

Dettagli

INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti.

INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti. INSIEMI DEF. Un INSIEME è una qualsiasi collezione di oggetti. Esso è ben definito quando è chiaro se un oggetto appartiene o non appartiene all insieme stesso. Esempio. E possibile definire l insieme

Dettagli

Algebra di Boole X Y Z V. Algebra di Boole

Algebra di Boole X Y Z V. Algebra di Boole L algebra dei calcolatori L algebra booleana è un particolare tipo di algebra in cui le variabili e le funzioni possono solo avere valori 0 e 1. Deriva il suo nome dal matematico inglese George Boole che

Dettagli

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16 Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana - 015/16 Esercizio 1 Per quali valori n Z \ {0} l espressione è un numero intero positivo? (n + 5)(n + 6) 6n Soluzione. Il problema

Dettagli