CORSO BIELLA CONCETTI FONDAMENTALI DI ARITMETICA, ALGEBRA E GEOMETRIA PER LA SCUOLA DELL OBBLIGO MARTEDI 19/02/2013 TEMA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CORSO BIELLA CONCETTI FONDAMENTALI DI ARITMETICA, ALGEBRA E GEOMETRIA PER LA SCUOLA DELL OBBLIGO MARTEDI 19/02/2013 TEMA"

Transcript

1 CORSO BIELLA CONCETTI FONDAMENTALI DI ARITMETICA, ALGEBRA E GEOMETRIA PER LA SCUOLA DELL OBBLIGO MARTEDI 19/02/201 TEMA OPERAZIONI CON I NUMERI E LORO PROPRIETA. NASCONO LE STRUTTURE ALGEBRICHE. 1 TESTO CHE USERO E SUL QUALE POTETE STUDIARE: M. FERRARI, I MONDI NUMERICI DEL PRIMO CICLO SCOLASTICO: TEORIA DIDATTICA STORIA, CRDUM 2011 QUADERNO DIDATTICO N. 20. (COSTA 10 EURO). 2 OSSERVAZIONE POLITICAMENTE SCORRETTA (RISPETTO A SUSSIDIARI E LIBRI DI TESTO): NON PARLERO E NON USERO GLI INSIEMI E LE OPERAZIONI SU DI ESSI (UNIONE, INTERSEZIONE, PRODOTTO CARTESIANO) SIA PERCHE LA TEORIA E FINTAMENTE FACILE (ESEMPI: CHE COSA E UN INSIEME, INSIEME VUOTO, INSIEMI UGUALI, INSIEMI EQUIPOTENTI); SIA PERCHE NON NECESSARI PER FARE BENE L ARITMETICA; SIA PERCHE SONO STATI ESPULSI DAI PROGRAMMI DELLA SCUOLA PRIMARIA (PROGRAMMI DEL 2004) E DELLA SCUOLA SECONDARIA DI PRIMO GRADO (PROGRAMMI DEL 2007 E DEL 2012).

2 USERO, INVECE, QUALCHE PAROLA DEL LINGUAGGIO DEGLI INSIEMI (INSIEME, SOTTOINSIEME) E QUALCHE RAPPRESENTAZIONE (DIAGRAMMI DI EULERO VENN). ARITMETICA: QUALE E IL SIGNIFICATO ETIMOLOGICO DELLA PAROLA? (DA ARITMÒS = NUMERO. QUINDI TEORIA DEI NUMERI) CONSIGLIO: VEDERE IL SIGNIFICATO ETIMOLOGICO DI ALTRE PAROLE MATEMATICHE COME GEOMETRIA, ALGEBRA, ALGORITMO, ISOMETRIA, ECC.) 4 NUMERO: CHE COSA E IL NUMERO? QUESTA DOMANDA, AL SINGOLARE, HA PERCORSO TUTTA LA STORIA DELLA MATEMATICA FINO ALLA FINE DEL SECOLO XIX. LA RISPOSTA DI EUCLIDE: PLURALITA DI UNITA. SOLO I NUMERI NATURALI DA 2 IN POI. LA RISPOSTA DI NEWTON: TUTTI I MONDI NUMERICI, MA SOLO QUELLI POSITIVI. CAMBIO DI PROSPETTIVA: DOMANDA AL PLURALE: CHE COSA SONO I NUMERI, CIOE QUALI SONO LE CARATTERISTICHE CHE DEVE AVERE UNA INSIEME DI OGGETTI PER ESSERE CHIAMATO MONDO NUMERICO. CERCHEREMO DI RISPONDERE A QUESTA DOMANDA CON I PRIMI DUE NOSTRI INCONTRI.

3 5 L ESSENZIALE PER ESSERE UN MONDO NUMERICO. PARLIAMO DI CENTRI DI AGGREGAZIONE PER METTERE IN RISALTO LA VITA SOCIALE DEI NUMERI NATURALI. 5.1 UN PRIMO CENTRO DI AGGREGAZIONE: ADDIZIONE. OPERAZIONE BINARIA: LAVORA SU COPPIE DI NUMERI E AD OGNI COPPIA ASSOCIA SEMPRE UN RISULTATO. INTERNA: SI FANNO LE COSE IN FAMIGLIA. IL VIZIO DEI MATEMATICI: CERCARE LE PROPRIETA. QUALI SONO QUELLE DELLA ADDIZIONE? QUELLA CHE TUTTI SANNO E TUTTI SCRIVONO ESATTAMENTE: COMMUTATIVA: a + b = b + a QUELLA CHE TUTTI SANNO, MA SPESSO SBAGLIANO A SCRIVERE: ASSOCIATIVA: (a + b) + c = a + (b + c) = a + b + c QUELLA CHE SI TROVA SPESSO SUI LIBRI DI TESTO, MA NON ESISTE: DISSOCIATIVA: COME SI SCRIVE? ESISTENZA DELL ELEMENTO NEUTRO: a + 0 = 0 +a = a UN MOMENTO DI RELAX PER LA SCUOLA ELEMENTARE: SOMMARE PERE CON MELE?

4 P + 4 M =? (P = PERE; M = MELE) E km + 4 g =? OMOGENEITA DELLE MARCHE. UN MOMENTO DI RELAX PER TUTTI TRIANGOLI MAGICI CON I NUMERI DA 1 A 6 E SOMME SU OGNI LATO 9, 10, 11, PROBLEMA DIDATTICO. COME SCRIVERE QUESTE PROPRIETA? SCUOLA ELEMENTARE: CERTAMENTE CON I NUMERI (SONO ESEMPLIFICAZIONI). E IL CASO DI SCRIVERLE ANCHE CON LE LETTERE? CI SONO OPINIONI ED ESPERIENZE DIVERSE. IO PENSO CHE IN QUINTA SI POTREBBERO USARE LE LETTERE. RICORDATE L USO MASSICCIO DI LETTERE NELLE FORMULE DI GEOMETRIA (E I RAGAZZI NON SI SPAVENTANO). SCUOLA MEDIA: USARE CERTAMENTE LE LETTERE. E IL PRIMO PASSO VERSO L ALGEBRA CON LE LETTERE CHE HANNO UN SIGNIFICATO. E LA GENERALIZZAZIONE CHE INGLOBA LE INFINITE POSSIBILITA DELL USO DEI NUMERI. 5. A CIASCUNO IL SUO. NEI VARI MONDI NUMERICI (N Z Q R) L OPERAZIONE HA LO STESSO NOME (ADDIZIONE), LO STESSO SIMBOLO (+), MA LE DEFINIZIONI SONO DIVERSE.

5 NUMERI NATURALI: a + b = a (b volte) AIUTANO IL CONTEGGIO E LA LINEA DEI NUMERI. QUESTO SI FA NELLA SCUOLA ELEMENTARE IN FORMA OPERATIVA E NON E IL CASO DI RIPETERLA NELLA SCUOLA MEDIA. NUMERI INTERI RELATIVI (QUELLI CON I SEGNI + E -). DEFINIZIONE NOIOSA PER CASI (SONO 8). E ROBA DA SCUOLA MEDIA. ECCOLA. - (+ a) + (+ b) = + (a + b) - (+ a) + (- b) : bisogna distinguere i tre casi: a > b; a = b; a < b. - (- a) + (+ b) : bisogna distinguere i tre casi: a > b; a = b; a < b. - (- a) + (- b) = - (a + b) ATTENZIONE AL MALEDETTO SEGNO +. Dal punto di vista operativo uno strumento efficace è la retta numerica con la convenzione di partire dal primo addendo e di andare verso destra se il secondo addendo è preceduto dal segno + (di tanti passi unitari quanti ne indica il secondo addendo); se, invece, è preceduto dal segno - si va verso sinistra. Anche il modello commerciale dei debiti e dei crediti può aiutare. NUMERI RAZIONALI (LE FRAZIONI) SCUOLA ELEMENTARE: NON PREVISTA L ADDIZIONE. SCUOLA MEDIA Pensando i segni inglobati nelle lettere ed i denominatori sempre positivi si da la seguente definizione:

6 a/b + c/d = (ad + bc)/ bd. La definizione non è molto naturale, anzi è decisamente complicata e spesso gli studenti, anche in prima superiore, pur avendo appreso la definizione appena ricordata, seguono una via più spiccia sommando fra loro i numeratori ed i denominatori: a/b + c/d = (a + c)/ (b + d). ( Si veda in proposito, K. Hart, Le frazioni sono difficili, in Numeri e operazioni nella scuola di base, a cura di L. Artusi Chini, pubblicato dalla Zanichelli nel 1985.) PERCHE QUESTA DEFINIZIONE COSI COMPLICATA? PER ADERENZA ALLA REALTA PER SALVARE IL RUOLO DELLO ZERO NELLA ADDIZIONE. 5.4 QUALCHE ESPANSIONE TABELLA DELLA ADDIZIONE: COSTRUIRLA, USARLA PER MEMORIZZARLA, CONTEMPLARLA PER SCOPRIRE: RUOLO DELLO ZERO PROPRIETA COMMUTATIVA NUMERI AMICI NUMERI PARI E DISPARI TABELLA DELLA ADDIZIONE DEL PARI E DISPARI

7 NUMERI PARI IN N E IN Z: NUMERO PARI E LA SOMMA DI DUE NUMERI UGUALI: n + n = 2n (SIAMO GIA NELL ALGEBRA). ADDIZIONI DI PARI E DISPARI: SONO LE PRIME DIMOSTRAZIONI. CHE COSA SUCCEDE NEI NUMERI RAZIONALI? CI SONO ANCORA I PARI E I DISPARI? PER ESEMPIO: 0,6 è pari? E 0,7 è dispari? NEI NUMERI INTERI RELATIVI CI SONO PERSONAGGI NUOVI: GLI OPPOSTI. OGNI NUMERO HA UN SUO OPPOSTO E LA SOMMA DI UN NUMERO E DEL SUO OPPOSTO DA L ELEMENTO NEUTRO. L ESISTENZA DEGLI OPPOSTI E UNA NUOVA PROPRIETA DELLA ADDIZIONE CHE SI AGGIUNGE ALLE ALTRE TRE. METTENDOLE INSIEME TUTTE E QUATTRO NASCE LA PRIMA STRUTTURA ALGEBRICA: QUELLA DI GRUPPO COMMUTATIVO. UNA IDEA ABBASTANZA GIOVANE (HA MENO DI 200 ANNI) DI CUI E RICCA ANCHE LA MATEMATICA DELLA SCUOLA DELL OBBLIGO. LA SOTTRAZIONE: a b NEI NUMERI NATURALI C E BISOGNO DI UN PALETTO. DEVE ESSERE a b. E OPERAZIONE IN SENSO STRETTO? IL PALETTO DICE DI NO. PROPRIETA. INVARIANTIVA. NEI NUMERI INTERI: CADE IL PALETTO PERCHE a b = a + (-b).

8 6 - L ESSENZIALE PER ESSERE UN MONDO NUMERICO. UN SOLO CENTRO DI AGGREGAZIONE NON E SUFFICIENTE PER CARATTERIZZARE UN MONDO NUMERICO. CI SONO TANTI INSIEMI DI OGGETTI MATEMATICI CHE HANNO UN CENTRO DI AGGREGAZIONE COME QUELLO DESCRITTI, MA NON SONO MONDI NUMERICI. PER ESEMPIO, LE TRASLAZIONI DEL PIANO, LE LUNGHEZZE DEI SEGMENTI, LE ROTAZIONI CHE TRASFORMANO IN SE UN QUADRATO, ECC. 6.1 UN SECONDO CENTRO DI AGGREGAZIONE: LA MOLTIPLICAZIONE ESSA E UNA OPERAZIONE BINARIA INTERNA. IL SOLITO VIZIO DEI MATEMATICI: LE PROPRIETA? QUELLA CHE TUTTI SANNO E TUTTI SCRIVONO ESATTAMENTE: COMMUTATIVA: a x b = b x a QUELLA CHE TUTTI SANNO, MA SPESSO SBAGLIANO A SCRIVERE: ASSOCIATIVA: (a x b) x c = a x (b x c) = a x b x c QUELLA CHE SI TROVA SPESSO SUI LIBRI DI TESTO, MA NON ESISTE: DISSOCIATIVA: COME SI SCRIVE? ESISTENZA DELL ELEMENTO NEUTRO: a x 1 = 1 x a = a LO ZERO RECLAMA I SUOI DIRITTI:

9 ESISTENZA DELL ELEMENTO NULLIFICANTE: a x 0 = 0 x a = 0 DUE CENTRI DI AGGREGAZIONE: QUALI I LORO RAPPORTI? SONO ESPRESSI DALLA PROPRIETA DISTRIBUTIVA DELLA MOLTIPLICAZIONE RISPETTO ALLA ADDIZIONE: a x (b + c) = (a x b) + (a x c) UN QUADRETTO MATEMATICO (DA BATTERE AD UNA ASTA PER POVERI) ADDIZIONE Lavora su coppie ordinate Sempre possibile Proprietà commutativa Proprietà associativa MOLTIPLICAZIONE Lavora su coppie ordinate Sempre possibile Proprietà commutativa Proprietà associativa Elemento neutro: 0 Elemento neutro: 1 Proprietà distributiva della moltiplicazione rispetto alla addizione UN PO DI RELAX PER TUTTI ESISTE QUALCHE NUMERO n PER IL QUALE SI HA n + n = n x n? ESISTONO NUMERI a, b, c CHE VERIFICANO LA UGUAGLIANZA a + b + c = a x b x c?

10 6.2 A CIASCUNO IL SUO. NEI VARI MONDI NUMERICI (N Z Q R) L OPERAZIONE HA LO STESSO NOME (MOLTIPLICAZIONE), LO STESSO SIMBOLO (x), MA LE DEFINIZIONI SONO DIVERSE. NUMERI NATURALI: a x b SE b = 0 ALLORA a x 0 = 0 SE b > 0 CIOE b = c + 1 ALLORA a x b = a x (c + 1) = a x c + a E UNA DEFINIZIONE DI CARATTERE OPERATIVO CHE MI DICE COME FARE PER ESEGUIRE UNA MOLTIPLICAZIONE. ALTRA DEFINIZIONE CHE FA INTERVENIRE L ADDIZIONE: SE b 2 ALLORA a x b = a + a + a + a (b volte). LA LIMITAZIONE SU b E NECESSARIA PERCHE L ADDIZIONE E UNA OPERAZIONE BINARIA. QUESTA DEFINIZIONE NON HA SENSO PER I CASI ESTREMI CIOE PER b = 1 e b = 0. PLURALITA DI APPROCCI DIDATTICI: GLI INCROCI: LA PIU GENERALE PERCHE ACCHIAPPA ANCHE I CASI ESTREMI. GLI SCHIERAMENTI: ACCHIAPPA IL CASO b = 1, MA NON b = 0. E LA PIU RICCA MATEMATICAMENTE PERCHE SVELA I NUMERI PARI E QUELLI DISPARI, I NUMERI PRIMI E QUELLI COMPOSTI, I NUMERI QUADRATI. ADDIZIONE RIPETUTA: I FORTI LIMITI PRIMA SEGNALATI.

11 NUMERI INTERI RELATIVI Nella scuola media è necessario introdurre la moltiplicazione fra numeri interi relativi. L unica possibilità è quella di enunciare la regola dei segni. Sinteticamente: il prodotto di due numeri con segno uguale è positivo, altrimenti è negativo. E il caso di dare qualche giustificazione? Se si, si può seguire questa strada. I casi: più per più e meno per più non presentano difficoltà perché basta pensare alla moltiplicazione come addizione ripetuta. Per gli altri due casi sarebbe completamente fuorviante ricorrere al modello commerciale dei debiti e crediti e anche alla moltiplicazione come addizione ripetuta. Per esempio, dire che (+) x (-4) è uguale a + sommato a se stesso - 4 volte è fare una affermazione priva di senso. E contro la logica, poi, invocare la proprietà commutativa della moltiplicazione prima ancora di averla definita. L unica giustificazione, se si vuole darla, è di tipo matematico: se si vuole salvare il ruolo dello zero e la proprietà distributiva anche nel mondo degli interi relativi è necessario che più per meno faccia meno e che meno per meno faccia più. Per esempio, tutti accettano senza difficoltà che (+) + (-) = 0. Quindi (+4) x [ (+) + (-) ] = 0 per la legge di annullamento del prodotto. Se vogliamo salvare la proprietà distributiva il primo membro della uguaglianza deve essere (+4) x (+) + (+4) x (-). Siccome (+4) x (+) = +12 allora (+4) x (-) deve fare -12 se vogliamo che il risultato finale sia 0.

12 In modo analogo si ragiona sostituendo +4 con -4. Questa giustificazione è una nuova occasione per sottolineare un atteggiamento costante dei matematici: quando costruiscono un nuovo insieme numerico a partire da un mondo già noto cercano di definire le operazioni in modo da conservare il più possibile le loro proprietà. In particolare essi non sono disponibili a rinunciare alle cosiddette proprietà formali, cioè la proprietà commutativa, la associativa e la distributiva della moltiplicazione rispetto alla addizione. NUMERI RAZIONALI E quanto di più semplice si possa immaginare: a/b c/d = ac/bd. Nelle lettere a e c dobbiamo pensare incorporati i loro segni distintivi perché essi sono numeri interi relativi. Per il prodotto ac vale la regola dei segni prima ricordata. I denominatori b e d li possiamo sempre supporre positivi senza perdita di generalità. La definizione data è legittima perché il denominatore bd è diverso da zero per la legge di annullamento del prodotto. La definizione formale di moltiplicazione è semplice, ma è difficile la sua interpretazione, cioè l attribuzione di un significato convincente per i ragazzi. I modelli migliori, forse, sono quelli che, in qualche modo, fanno intervenire l area. Esempio: x4 può essere interpretato come l area di un rettangolo con lati lunghi e 4 rispettivamente. La sua area è 12 e possiamo pensare il rettangolo diviso in 12 quadretti (se il disegno mi fosse venuto bene)

13 x è l area di un rettangolo di lati lunghi, rispettivamente, 2 e. Quale sarà la sua area? Si riprende il rettangolo di 2 prima costruendo i di un lato e i dell altro e poi il 4 rettangolo avente come area il prodotto. 2 Quindi 2 x 4 = QUALCHE ESPANSIONE 6..1 CONTEMPLARE LA TABELLA PER FARE SCOPERTE INTERESSANTI LA TABELLA DEL PARI E DISPARI CON RELATIVE DIMOSTRAZIONI

14 6.. I NUMERI PRIMI: UN MONDO AFFASCINANTE E MISTERIOSO PER GRANDI E PICCINI LE POSSIBILI DEFINIZIONI A CHE COSA SERVONO IL CRIVELLO DI ERATOSTENE DUE MISTERI ANCORA ATTUALI IL TEOREMA DI DIVISIBILITA : per ogni coppia ordinata (a, b) con b > 0 esiste una coppia ordinata ed una sola (q, r) con 0 r < b tale che a = b x q + r LA TABELLA DELLE DIVISIONI CON QUOZIENTE E RESTO 6..5 LA DIVISIONE SOLITA CON I SUOI PALETTI CONTEMPLARE LA SUA TABELLINA 6..6 NEI NUMERI RAZIONALI NASCONO NUOVI PERSONAGGI: GLI INVERSI O RECIPROCI. OGNI NUMERO a/b DIVERSO DA ZERO (cioè a 0) POSSIEDE UN INVERSO b/a E IL LORO PRODOTTO E UGUALE A 1. METTENDO INSIEME TUTTE LE PROPRIETA DELLA MOLTIPLICAZIONE (SI PRESCINDE DALLA DISTRIBUTIVITA ) SI OTTIENE UN NUOVO GRUPPO COMMUTATIVO. IN ALTRE PAROLE: L INSIEME Q DEI NUMERI RAZIONALI, TOLTO LO ZERO CHE NON HA INVERSO, E UN GRUPPO COMMUTATIVO RISPETTO ALLA MOLTIPLICAZIONE.

Aritmetica: operazioni ed espressioni

Aritmetica: operazioni ed espressioni / A SCUOLA DI MATEMATICA Lezioni di matematica a cura di Eugenio Amitrano Argomento n. : operazioni ed espressioni Ricostruzione di un abaco dell epoca romana - Museo RGZ di Magonza (Germania) Libero da

Dettagli

ESERCIZI DI PREPARAZIONE E

ESERCIZI DI PREPARAZIONE E ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI si campa anche senza sapere che cos è un equazione, senza sapere suonare uno strumento musicale, senza conoscere il nome del

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

MATEMATICA SCUOLE DELL INFANZIA

MATEMATICA SCUOLE DELL INFANZIA MATEMATICA SCUOLE DELL INFANZIA CAMPO DI ESPERIENZA: LA CONOSCENZA DEL MONDO (ordine, misura, spazio, tempo, natura) È l'ambito relativo all'esplorazione, scoperta e prima sistematizzazione delle conoscenze

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

SCUOLA PRIMARIA CURRICOLO MATEMATICA DELIBERATO ANNO SCOL. 2015/2016

SCUOLA PRIMARIA CURRICOLO MATEMATICA DELIBERATO ANNO SCOL. 2015/2016 SCUOLA PRIMARIA CURRICOLO MATEMATICA DELIBERATO ANNO SCOL. 2015/2016 SCUOLA PRIMARIA CLASSE PRIMA MATEMATICA AREA DISCIPLINARE: MATEMATICO- SCIENTIFICO-TECNOLOGICA COMPETENZA DI Mettere in relazione il

Dettagli

CURRICOLO MATEMATICA SCUOLA PRIMARIA

CURRICOLO MATEMATICA SCUOLA PRIMARIA CURRICOLO MATEMATICA SCUOLA PRIMARIA CLASSE PRIMA Traguardi per lo sviluppo delle competenze Sviluppare un atteggiamento positivo nei confronti della matematica. Obiettivi di apprendimento NUMERI Acquisire

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA 2 LEZIONE

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA 2 LEZIONE METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA 2 LEZIONE LE AZIONI DEL FARE MATEMATICA OSSERVARE OSSERVARE Dalla spontanea formazione dei concetti nella mente del bambino fino alla concezione

Dettagli

Scheda I. 3 La non possibilità di duplicare il cubo con riga e compasso.

Scheda I. 3 La non possibilità di duplicare il cubo con riga e compasso. Scheda I. La non possibilità di duplicare il cubo con riga e compasso. Dopo Menecmo, Archita, Eratostene molti altri, sfidando gli dei hanno trovato interessante dedicare il loro tempo per trovare una

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA. 2. Insiemi numerici. A. A. 2014-2015 L.Doretti

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA. 2. Insiemi numerici. A. A. 2014-2015 L.Doretti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 2. Insiemi numerici A. A. 2014-2015 L.Doretti 1 INSIEMI NUMERICI rappresentano la base su cui la matematica si è sviluppata costituiscono le tappe

Dettagli

A.S. 2012-1013 CLASSE PRIMA SCUOLA PRIMARIA D ISTITUTO COMPETENZA CHIAVE EUROPEA DISCIPLINA

A.S. 2012-1013 CLASSE PRIMA SCUOLA PRIMARIA D ISTITUTO COMPETENZA CHIAVE EUROPEA DISCIPLINA ISTITUTO COMPRENSIVO STATALE di Scuola dell Infanzia, Scuola Primaria e Scuola Secondaria di 1 grado San Giovanni Teatino (CH) CURRICOLO A.S. 2012-1013 CLASSE PRIMA SCUOLA PRIMARIA OBIETTIVI DI Sviluppa

Dettagli

Le soluzioni dei quesiti sono in fondo alla prova

Le soluzioni dei quesiti sono in fondo alla prova SCUOLA MEDIA STATALE GIULIANO DA SANGALLO Via Giuliano da Sangallo,11-Corso Duca di Genova,135-00121 Roma Tel/fax 06/5691345-e.mail:scuola.sangallo@libero.it SELEZIONE INTERNA PER LA MARATONA DI MATEMATICA

Dettagli

ISTITUTO COMPRENSIVO RIGNANO - INCISA PROGRAMMAZIONE ANNUALE DI MATEMATICA. Scuola primaria classe quinta 1 quadrimestre

ISTITUTO COMPRENSIVO RIGNANO - INCISA PROGRAMMAZIONE ANNUALE DI MATEMATICA. Scuola primaria classe quinta 1 quadrimestre ISTITUTO COMPRENSIVO RIGNANO - INCISA PROGRAMMAZIONE ANNUALE DI MATEMATICA Scuola primaria classe quinta 1 quadrimestre INDICATORI OBIETTIVI ATTIVITÀ - Leggere, scrivere, confrontare numeri naturali fino

Dettagli

Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE. Operare con i numeri

Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE. Operare con i numeri COMPETENZA CHIAVE MATEMATICA Fonte di legittimazione Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE L alunno utilizza il calcolo scritto e mentale con i numeri

Dettagli

Ogni primino sa che...

Ogni primino sa che... Ogni primino sa che... A cura della équipe di matematica 25 giugno 2015 Competenze in ingresso Tradizionalmente, nei primi giorni di scuola, gli studenti delle classi prime del Pascal sostengono una prova

Dettagli

SCHEDA DI RECUPERO SUI NUMERI RELATIVI

SCHEDA DI RECUPERO SUI NUMERI RELATIVI SCHEDA DI RECUPERO SUI NUMERI RELATIVI I numeri relativi sono l insieme dei numeri negativi (preceduti dal segno -) numeri positivi (il segno + è spesso omesso) lo zero. Valore assoluto di un numero relativo

Dettagli

Insiemi con un operazione

Insiemi con un operazione Capitolo 3 Insiemi con un operazione 3.1 Gruppoidi, semigruppi, monoidi Definizione 309 Un operazione binaria su un insieme G è una funzione: f : G G G Quindi, un operazione binaria f su un insieme G è

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

CURRICOLO di MATEMATICA Scuola Primaria

CURRICOLO di MATEMATICA Scuola Primaria CURRICOLO di MATEMATICA Scuola Primaria MATEMATICA CLASSE I Indicatori Competenze Contenuti e processi NUMERI Contare oggetti o eventi con la voce in senso progressivo e regressivo Riconoscere e utilizzare

Dettagli

E costituito da un indice.

E costituito da un indice. Questo semplice quaderno di matematica è pensato sia per bambini e bambine che hanno problemi specifici di apprendimento sia per quei bambini e bambine che hanno solo bisogno di un ripasso prima di un

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

MATEMATICA - CLASSE TERZA

MATEMATICA - CLASSE TERZA MATEMATICA - CLASSE TERZA I NUMERI NATURALI E LE 4 OPERAZIONI U. A. 1 - IL NUMERO 1. Comprendere la necessità di contare e usare i numeri. 2. Conoscere la struttura dei numeri naturali. 3. Conoscere e

Dettagli

MATEMATICA. Classe I Classe II Classe III Classe IV Classe V Traguardo 1

MATEMATICA. Classe I Classe II Classe III Classe IV Classe V Traguardo 1 MATEMATICA COMPETENZE Dimostra conoscenze matematiche che gli consentono di analizzare dati e fatti della realtà e di verificare l'attendibilità delle analisi quantitative e statistiche proposte da altri.

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

GRUPPO DI LAVORO DI PARMA

GRUPPO DI LAVORO DI PARMA ATTIVITÀ DI ANALISI QUESITI INVALSI GRUPPO DI LAVORO DI PARMA Coordinamento prof. P. VIGHI ANALISI QUESITI RELATIVI A: FASCICOLO somministrato nella 2^ classe PRIMARIA a.s. 2013-2014 FASCICOLO somministrato

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

MATEMATICA PRIMO BIENNIO CLASSE PRIMA DELLA SCUOLA PRIMARIA

MATEMATICA PRIMO BIENNIO CLASSE PRIMA DELLA SCUOLA PRIMARIA MATEMATICA PRIMO BIENNIO CLASSE PRIMA DELLA SCUOLA PRIMARIA COMPETENZA 1 UTILIZZARE CON SICUREZZA LE TECNICHE E LE PROCEDURE DI CALCOLO ARITMETICO SCRITTO E MENTALE CON RIFERIMENTO A CONTESTI REALI Stabilire

Dettagli

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA Tutti gli anni, affrontando l argomento della divisibilità, trovavo utile far lavorare gli alunni sul Crivello di Eratostene. Presentavo ai ragazzi una

Dettagli

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5 ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA PER IL CORSO DI LAUREA IN SCIENZE DELLA FORMAZIONE PRIMARIA Ana Millán Gasca Luigi Regoliosi La lettura e lo studio del libro Pensare in matematica da parte degli

Dettagli

CURRICOLO MATEMATICA ABILITA COMPETENZE

CURRICOLO MATEMATICA ABILITA COMPETENZE CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando

Dettagli

ISTITUTO COMPRENSIVO MONTEGROTTO TERME SCUOLA PRIMARIA DISCIPLINA: MATEMATICA - CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO

ISTITUTO COMPRENSIVO MONTEGROTTO TERME SCUOLA PRIMARIA DISCIPLINA: MATEMATICA - CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO PRIMA DELLA DISCIPLINA: MATEMATICA - CLASSE PRIMA L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali. Legge e comprende testi che coinvolgono aspetti logici e matematici.

Dettagli

CONTENUTI METODOLOGIA STRUMENTI METODO DI STUDIO VALUTAZIONE ANNO COMPETENZE OBIETTIVI DI APPRENDIMENTO

CONTENUTI METODOLOGIA STRUMENTI METODO DI STUDIO VALUTAZIONE ANNO COMPETENZE OBIETTIVI DI APPRENDIMENTO NNO COMPETENZE OBIETTIVI DI PPRENDIMENTO CONTENUTI METODOLOGI STRUMENTI METODO DI STUDIO VLUTZIONE 4^ M T E M T I C L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

ISTITUTO COMPRENSIVO DELLA VALLE DEI LAGHI

ISTITUTO COMPRENSIVO DELLA VALLE DEI LAGHI ISTITUTO COMPRENSIVO DELLA VALLE DEI LAGHI PROGRAMMA DI MATEMATICA PER LE CLASSI SECONDA E TERZA DELLA SCUOLA PRIMARIA SETTEMBRE 2003 COMPETENZE IN NUMERO Obiettivi: - Contare, eseguire semplici operazioni

Dettagli

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi Evelina De Gregori Alessandra Rotondi al via 1 Percorsi guidati per le vacanze di matematica e scienze per la Scuola secondaria di primo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio Test d'ingresso NUMERI

Dettagli

LA CONOSCENZA DEL MONDO SCUOLA DELL INFANZIA. OBIETTIVI DI APPRENDIMENTO 3 anni 4 anni 5 anni

LA CONOSCENZA DEL MONDO SCUOLA DELL INFANZIA. OBIETTIVI DI APPRENDIMENTO 3 anni 4 anni 5 anni SCUOLA DELL INFANZIA INDICATORI LA CONOSCENZA DEL MONDO OBIETTIVI DI APPRENDIMENTO 3 anni 4 anni 5 anni Riconoscere la quantità. Ordinare piccole quantità. Riconoscere la quantità. Operare e ordinare piccole

Dettagli

MATEMATICA U. A. 1 INSIEME PER RICOMINCIARE SITUAZIONI DI APPRENDIMENTO TEMPI

MATEMATICA U. A. 1 INSIEME PER RICOMINCIARE SITUAZIONI DI APPRENDIMENTO TEMPI MATEMATICA U. A. 1 INSIEME PER RICOMINCIARE ABILITA : 1.a Riconoscere il valore posizionale delle cifre. 1.b Individuare e definire numeri pari e dispari. 2.a Stabilire relazioni d ordine, contare in senso

Dettagli

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana Schemi delle Lezioni di Matematica Generale Pierpaolo Montana Al-giabr wa al-mukabalah di Al Khuwarizmi scritto approssimativamente nel 820 D.C. Manuale arabo da cui deriviamo due nomi: Algebra Algoritmo

Dettagli

La sezione di Matematica della prova nazionale

La sezione di Matematica della prova nazionale La sezione di Matematica della prova nazionale Giorgio Bolondi Roma, 18 aprile 2008 Presentazione Prova Nazionale 1 Cosa può valutare? I diversi processi valutativi messi in atto dall insegnante accompagnano

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

NUMERI E SUCCESSIONI

NUMERI E SUCCESSIONI NUMERI E SUCCESSIONI Giovanni Maria Troianiello 1 Notazioni insiemistiche. Numeri naturali, interi, razionali Notazioni insiemistiche Si sa cosa s intende quando si parla di insieme (o famiglia, o classe)

Dettagli

MATEMATICA OBIETTIVI DI APPRENDIMENTO TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE

MATEMATICA OBIETTIVI DI APPRENDIMENTO TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE Il bambino raggruppa e ordina oggetti e materiali secondo criteri diversi. Identifica alcune proprietà dei materiali. Confronta e valuta quantità. Utilizza simboli per registrare materiali e quantità.

Dettagli

MATEMATICA CLASSE PRIMA

MATEMATICA CLASSE PRIMA CLASSE PRIMA L alunno/a si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e sa valutare l opportunità di ricorrere a una calcolatrice. Contare oggetti o eventi, a voce e mentalmente,

Dettagli

La trigonometria prima della trigonometria. Maurizio Berni

La trigonometria prima della trigonometria. Maurizio Berni La trigonometria prima della trigonometria Maurizio Berni 9 maggio 2010 Negli istituti tecnici agrari la trigonometria viene affrontata: nella seconda classe in Disegno e Topografia (risoluzione di triangoli

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

ESERCIZI PER SCIENZE DELLA FORMAZIONE PRIMARIA

ESERCIZI PER SCIENZE DELLA FORMAZIONE PRIMARIA ESERCIZI PER SCIENZE DELLA FORMAZIONE PRIMARIA In questo documento sono proposti esercizi rivolti agli studenti di Scienze della Formazione relativi ai capitoli 1, 2, 3, 4, 5, 7 e 8 del libro. Alcuni di

Dettagli

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti

Dettagli

Area matematico-scientifico-tecnologica: matematica

Area matematico-scientifico-tecnologica: matematica Campo/ area/ materia Periodo di riferimento Nucleo tematico??? Macroindicato re??? Traguardo di competenza Area matematico-scientifico-tecnologica: matematica Scuola primaria: classe 1^ NUMERI L alunno

Dettagli

Progettazione Classe Prima. Area matematico-scientifica. Matematica Processi cognitivi attivati al termine della classe prima della Scuola Primaria

Progettazione Classe Prima. Area matematico-scientifica. Matematica Processi cognitivi attivati al termine della classe prima della Scuola Primaria Progettazione Classe Prima Processi cognitivi attivati al termine della classe prima della Scuola Primaria Contare oggetti o eventi con la voce e mentalmente, in senso progressivo e regressivo. Leggere

Dettagli

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una

Dettagli

PRIMAVERA IN BICOCCA

PRIMAVERA IN BICOCCA PRIMAVERA IN BICOCCA 1. Numeri primi e fattorizzazione Una delle applicazioni più rilevanti della Teoria dei Numeri si ha nel campo della crittografia. In queste note vogliamo delineare, in particolare,

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

SCUOLA PRIMARIA Anno Scolastico 2014/2015 CURRICOLO DI MATEMATICA OBIETTIVI DI APPRENDIMENTO AL TERMINE DELLA CLASSE TERZA DELLA SCUOLA PRIMARIA

SCUOLA PRIMARIA Anno Scolastico 2014/2015 CURRICOLO DI MATEMATICA OBIETTIVI DI APPRENDIMENTO AL TERMINE DELLA CLASSE TERZA DELLA SCUOLA PRIMARIA Ministero dell Istruzione, dell Università e della Ricerca Istituto Comprensivo Statale di Calolziocorte Via F. Nullo,6 23801 CALOLZIOCORTE (LC) e.mail: lcic823002@istruzione.it - Tel: 0341/642405/630636

Dettagli

LICEO STATALE G. MAZZINI

LICEO STATALE G. MAZZINI LICEO STATALE G. MAZZINI LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO DELLE SCIENZE UMANE OPZIONE ECONOMICO-SOCIALE Viale Aldo Ferrari, 37 Tel. 0187743000 19122 La Spezia Fax 0187743208 www.liceomazzini.org

Dettagli

Pitagora e la scoperta delle grandezze incommensurabili

Pitagora e la scoperta delle grandezze incommensurabili Pitagora e la scoperta delle grandezze incommensurabili Periodo della scoperta: V sec. a.c. Autore della scoperta: Pitagora? Pitagora iniziò la trattazione delle grandezze irrazionali (Proclo). Ippaso

Dettagli

Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta

Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Il concetto di similitudine è innato: riconosciamo lo stesso oggetto se è più o meno distante

Dettagli

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte Competenza chiave europea: MATEMATICA Scuola Primaria DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte TAB. A TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE al termine della Scuola Primaria

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

CURRICOLO DI MATEMATICA CLASSE PRIMA

CURRICOLO DI MATEMATICA CLASSE PRIMA CURRICOLO DI MATEMATICA CLASSE PRIMA TRAGUARDI DI COMPETENZA NUCLEI FONDANTI OBIETTIVI DI APPRENDIMENTO CONOSCITIVA IL NUMERO CARATTERISTICHE Quantità entro il numero 20 Cardinalità Posizionalità RELAZIONI

Dettagli

Tavola riepilogativa degli insiemi numerici

Tavola riepilogativa degli insiemi numerici N : insieme dei numeri naturali Z : insieme dei numeri interi Q : insieme dei numeri razionali I : insieme dei numeri irrazionali R : insieme dei numeri reali Tavola riepilogativa degli insiemi numerici

Dettagli

Matematica classe 1^

Matematica classe 1^ NUCLEO TEMATICO 1 Numeri 1 L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali. 7 legge e comprende testi che coinvolgono aspetti logici e matematici. NUCLEO TEMATICO 2

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Curricolo scuola primaria: AREA LOGICO MATEMATICA

Curricolo scuola primaria: AREA LOGICO MATEMATICA Curricolo scuola primaria: AREA LOGICO MATEMATICA COMPETENZE CONOSCENZE ABILITA CLASSE I - Leggere e scrivere i numeri, ordinarli e usarli per contare in senso progressivo e regressivo. - Effettuare calcoli

Dettagli

Laboratorio con le macchine matematiche Analizziamo la Pascalina!

Laboratorio con le macchine matematiche Analizziamo la Pascalina! Laboratorio con le macchine matematiche Analizziamo la Pascalina! Francesca Martignone francesca.martignone@unipmn.it Cristina Coppola ccoppola@unisa.it Laura Lombardi llombardi@unisa.it Tiziana Pacelli

Dettagli

SCUOLA PRIMARIA MATEMATICA

SCUOLA PRIMARIA MATEMATICA SCUOLA PRIMARIA MATEMATICA IL NUMERO CLASSE PRIMA Operare con il numero e impiegare specifiche abilità disciplinari come strumenti per affrontare esperienze di vita quotidiana. Comprende il significato

Dettagli

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI In matematica, per semplificare la stesura di un testo, si fa ricorso ad un linguaggio specifico. In questo capitolo vengono fornite in maniera sintetica le nozioni

Dettagli

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive.

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Lezione 6 Prerequisiti: L'insieme dei numeri interi. Lezione 5. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Questa è la prima lezione dedicata all'anello

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA (Classe 7) Corso di Matematica per l Economia (Prof. F. Eugeni) TEST DI INGRESSO Teramo, ottobre 00 SEZIONE

Dettagli

I sistemi di numerazione

I sistemi di numerazione I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono

Dettagli

L unità immaginaria si indica con la lettera i oppure con la lettera j

L unità immaginaria si indica con la lettera i oppure con la lettera j I s t i t u t o P r o f e s s i o n a l e d i S t a t o p e r l I n d u s t r i a e l A r t i g i a n a t o CAVOUR-MARCONI Loc. Piscille Via Assisana, 40/d-06154 PERUGIA Tel. 075/5838322 Fax 075/32371

Dettagli

Scuola Primaria Statale Falcone e Borsellino

Scuola Primaria Statale Falcone e Borsellino ISTITUTO COMPRENSIVO STATALE DI LOVERE VIA DIONIGI CASTELLI, 2 - LOVERE Scuola Primaria Statale Falcone e Borsellino PROGRAMMAZIONE DIDATTICA ANNUALE Le programmazioni didattiche sono state stese in base

Dettagli

SCUOLA PRIMARIA I.C. di CRESPELLANO PROGRAMMAZIONE ANNUALE MATEMATICA

SCUOLA PRIMARIA I.C. di CRESPELLANO PROGRAMMAZIONE ANNUALE MATEMATICA SCUOLA PRIMARIA I.C. di CRESPELLANO PROGRAMMAZIONE ANNUALE MATEMATICA ANNO SCOLASTICO 2013/2014 INSEGNANTI Gabellone, Silvagni,Damiano TRAGUARDI DELLE COMPETENZE AL TERMINE della CLASSE QUARTA Sviluppa

Dettagli

Obiettivi Cognitivi OBIETTIVI MINIMI

Obiettivi Cognitivi OBIETTIVI MINIMI Docente Materia Classe Mugno Eugenio Matematica 1F Programmazione Preventiva Anno Scolastico 2012/2013 Data 25/11/2012 Obiettivi Cognitivi OBIETTIVI MINIMI conoscere il concetto di numero intero; conoscere

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI Lezione 1. lunedí 17 settembre 2011 (1 ora) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero 052631578947368421,

Dettagli

31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando

31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando FUNZIONI MATEMATICHE Introduzione Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando tra le due esiste un legame di tipo matematico. La teoria

Dettagli

COMPETENZA NUMERICA I SISTEMI DI NUMERAZIONE

COMPETENZA NUMERICA I SISTEMI DI NUMERAZIONE COMPETENZA NUMERICA I SISTEMI DI NUMERAZIONE Macroindicatori di conoscenze/abilità Comprensione: -del significato dei numeri -dei modi per rappresentarli -della notazione posizionale dei traguardi per

Dettagli

CURRICOLO VERTICALE DI MATEMATICA PER LA SCUOLA DELL'INFANZIA -

CURRICOLO VERTICALE DI MATEMATICA PER LA SCUOLA DELL'INFANZIA - CURRICOLO VERTICALE DI MATEMATICA PER LA SCUOLA DELL'INFANZIA - TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA DELL INFANZIA. 1. Il bambino raggruppa e ordina secondo criteri diversi,

Dettagli

MATEMATICA: COMPETENZA 1 TERMINE DEL PRIMO BIENNIO ( classe seconda scuola primaria) COMPETENZE ABILITA CONOSCENZE

MATEMATICA: COMPETENZA 1 TERMINE DEL PRIMO BIENNIO ( classe seconda scuola primaria) COMPETENZE ABILITA CONOSCENZE MATEMATICA: COMPETENZA 1 TERMINE DEL PRIMO BIENNIO ( classe seconda scuola primaria) Utilizzare le tecniche e le procedure del calcolo aritmetico scritto e mentale partendo da contesti reali Rappresentare

Dettagli

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso di Matematica - NUCT 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor, matematico

Dettagli

Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto

Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Carissimi, eccovi gli argomenti trattati in quest anno scolastico. Ti servono quale ripasso!!!se qualcosa non fosse chiaro batti

Dettagli

CURRICULUM SCUOLA PRIMARIA MATEMATICA

CURRICULUM SCUOLA PRIMARIA MATEMATICA Ministero dell istruzione, dell università e della ricerca Istituto Comprensivo Giulio Bevilacqua Via Cardinale Giulio Bevilacqua n 8 25046 Cazzago San Martino (Bs) telefono 030 / 72.50.53 - fax 030 /

Dettagli

La prof.ssa SANDRA VANNINI svolge da diversi anni. questo percorso didattico sulle ARITMETICHE FINITE.

La prof.ssa SANDRA VANNINI svolge da diversi anni. questo percorso didattico sulle ARITMETICHE FINITE. La prof.ssa SANDRA VANNINI svolge da diversi anni questo percorso didattico sulle ARITMETICHE FINITE. La documentazione qui riportata è ricavata dalla trascrizione dei lucidi che vengono prodotti dall

Dettagli

COMPETENZE SPECIFICHE

COMPETENZE SPECIFICHE COMPETENZE IN MATEMATICA DISCIPLINA DI RIFERIMENTO: MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE FISSATI DALLE INDICAZIONI NAZIONALI PER IL CURRICOLO 2012. MATEMATICA TRAGUARDI ALLA FINE DELLA

Dettagli

SCUOLA PRIMARIA: MATEMATICA

SCUOLA PRIMARIA: MATEMATICA SCUOLA PRIMARIA: MATEMATICA Traguardi per lo sviluppo delle competenze al termine della scuola primaria L'alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e sa valutare

Dettagli

STIMA PIU CHE PUOI Un gioco per diventare abili stimatori

STIMA PIU CHE PUOI Un gioco per diventare abili stimatori ISTITUTO COMPRENSIVO DI MONTALE ISTITUTO COMPRENSIVO B. da Montemagno DI QUARRATA a.s. 2012-2013 GRUPPO DI RICERCA-AZIONE DI MATEMATICA STIMA PIU CHE PUOI Un gioco per diventare abili stimatori Classi

Dettagli

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane)

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane) 1/7 PRIMO ANNO Testo consigliato: BERGAMINI TRIFONE BAROZZI, Matematica.azzurro, vol. 1, Zanichelli Obiettivi minimi. Acquisire il linguaggio specifico della disciplina; sviluppare espressioni algebriche

Dettagli

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO. L alunno ha rafforzato un atteggiamento positivo rispetto

Dettagli

Curricolo di MATEMATICA

Curricolo di MATEMATICA Istituto Comprensivo Gandhi a.s 2014/2015 Curricolo di MATEMATICA Scuola Primaria COMPETENZA CHIAVE EUROPEA: Competenza matematica e competenze di base in scienza e tecnologie Imparare a imparare - Spirito

Dettagli

PROGRAMMAZIONE DIDATTICA DI MATEMATICA

PROGRAMMAZIONE DIDATTICA DI MATEMATICA PROGRAMMAZIONE DIDATTICA DI MATEMATICA CLASSE PRIMA 1. : PADRONEGGIARE ABILITÀ DI CALCOLO ORALE E SCRITTO 1.1 Leggere, scrivere, comporre, scomporre, confrontare, ordinare i numeri fino a 20 1.2 Eseguire

Dettagli

MATEMATICA - CLASSE SECONDA

MATEMATICA - CLASSE SECONDA ELABORATO DAI DOCENTI DELLA SCUOLA PRIMARIA DIREZIONE DIDATTICA 5 CIRCOLO anno scolastico 2012-2013 MATEMATICA - CLASSE PRIMA TRAGUARDI DI COMPETENZA DA SVILUPPARE AL TERMINE DELLA CLASSE PRIMA Padroneggia

Dettagli

Matematica 3. Dipartimento di Matematica. ITIS V.Volterra San Donà di Piave. Versione [2015-16]

Matematica 3. Dipartimento di Matematica. ITIS V.Volterra San Donà di Piave. Versione [2015-16] Matematica 3 Dipartimento di Matematica ITIS V.Volterra San Donà di Piave Versione [05-6] Indice I Numeri e Funzioni Numeri 3. Premessa............................................. 3. Tipi di numeri..........................................

Dettagli

INFANZIA PRIMARIA SECONDARIA

INFANZIA PRIMARIA SECONDARIA INFANZIA PRIMARIA SECONDARIA MATEMATICA - TRAGUARDI DI SVILUPPO DELLE COMPETENZE Raggruppa e ordina secondo criteri diversi. Confronta e valuta quantità. Utilizza semplici simboli per registrare. Compie

Dettagli

DIREZIONE DIDATTICA ALBERT SABIN C.so Vercelli 157 10155 Torino PROGRAMMAZIONE DI ISTITUTO PRIMA DISCIPLINA: MATEMATICA

DIREZIONE DIDATTICA ALBERT SABIN C.so Vercelli 157 10155 Torino PROGRAMMAZIONE DI ISTITUTO PRIMA DISCIPLINA: MATEMATICA DIREZIONE DIDATTICA ALBERT SABIN C.so Vercelli 157 10155 Torino PROGRAMMAZIONE DI ISTITUTO PRIMA DISCIPLINA: MATEMATICA COMPETENZE CONTENUTI METODOLOGIE LOGICA INTRODUZIONE AL PENSIERO RAZIONALE: * INSIEMI

Dettagli

I PROBLEMI ALGEBRICI

I PROBLEMI ALGEBRICI I PROBLEMI ALGEBRICI La risoluzione di problemi è una delle attività fondamentali della matematica. Una grande quantità di problemi è risolubile mediante un modello algebrico costituito da equazioni e

Dettagli

INDICATORI OBIETTIVI DI APPRENDIMENTO classe prima

INDICATORI OBIETTIVI DI APPRENDIMENTO classe prima INDICATORI OBIETTIVI DI APPRENDIMENTO classe prima NUMERI Descrivere e simbolizzare la realtà utilizzando il linguaggio e gli strumenti matematici Imparare ad usare il numero naturale per contare, confrontare,

Dettagli