Programmazione Generale. Matematica e Complementi. Classi: 2 Biennio Quarta. Istituto Tecnico Tecnologico Basilio Focaccia Salerno

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Programmazione Generale. Matematica e Complementi. Classi: 2 Biennio Quarta. Istituto Tecnico Tecnologico Basilio Focaccia Salerno"

Transcript

1 Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Generale Matematica e Complementi Classi: 2 Biennio Quarta I Docenti della Disciplina Salerno, lì 12 settembre 2014

2 Finalità della Disciplina La Matematica è conosciuta come una disciplina rigorosa; suo compito, infatti, è quello di sviluppare nell'allievo le capacità logiche, astrattive e deduttive al fine di condurlo a strutturare una mentalità scientifica. Gli uomini da sempre hanno riconosciuto alla Matematica un ruolo fondamentale: all inizio del papiro Rhind uno dei più antichi testi di matematica trascritto dallo scriba Ahmes intorno al 1650 a. C. - si trova questa affermazione: "Il calcolo accurato è la porta d'accesso alla conoscenza di tutte le cose e agli oscuri misteri" ed ancora oggi, a questa disciplina, viene attribuito l appellativo di regina delle scienze a voler sottolineare l indispensabile apporto degli strumenti di analisi, di calcolo e di modellizzazione per la comprensione di argomenti scientifici e tecnici. Nel triennio di studio l'insegnamento della matematica deve ampliare e rafforzare progressivamente gli obiettivi raggiunti a conclusione del 1 biennio, recuperando le conoscenze acquisite e inserendole in un processo di maggiore astrazione e formalizzazione. Si elencano di seguito i principali obiettivi specifici disciplinari relativi al 2 Biennio e 5 anno: Acquisire strumenti fondamentali atti a costruire modelli di descrizione e indagine della realtà (relazioni, formule, corrispondenze, grafici, piano cartesiano) Formalizzare e rappresentare relazioni e dipendenze Convertire informazioni da ed in linguaggi simbolici Saper creare ed applicare algoritmi risolutivi come metodo di lavoro Analizzare un problema ed individuare il modello matematico più adeguato per la sua risoluzione Comprendere i passi di un ragionamento e saperlo ripercorrere Elaborare informazioni utilizzando al meglio metodi e strumenti di calcolo Saper stabilire criteri obiettivi per la auto valutazione di quanto prodotto. Nella stesura della presente Programmazione Generale i saperi sono stati articolati in conoscenze, abilità/capacità e competenze, tenendo presente le seguenti definizioni: Conoscenze: indicano il risultato dell assimilazione di informazioni attraverso l apprendimento. Le conoscenze sono l insieme di fatti, principi, teorie e pratiche, relative a un settore di studio o di lavoro; le conoscenze sono descritte come teoriche e/o pratiche. Abilità/capacità: indicano le capacità di applicare conoscenze e di usare know-how per portare a termine compiti e risolvere problemi; le abilità sono descritte come cognitive (uso del pensiero logico, intuitivo e creativo) e pratiche (che implicano l abilità manuale e l uso di metodi, materiali, strumenti). Competenze: indicano la comprovata capacità di usare conoscenze, abilità e capacità personali, sociali e/o metodologiche, in situazioni di lavoro o di studio e nello sviluppo professionale e/o non specifico; le competenze sono descritte in termine di responsabilità e autonomia. Nei primi giorni dell anno scolastico agli studenti verranno somministrate due Prove di ingresso per la valutazione dei livelli di partenza: una per verificare conoscenze, abilità e competenze relativamente a fondamentali argomenti di Algebra e una per la Geometria. I risultati di queste prove, unitamente alle Indicazioni Generali contenute in questo documento concordate nelle riunioni del Dipartimento di Matematica e degli accordi presi nell ambito dei consigli di classe relativamente all apporto che la Matematica può dare alle materie professionalizzanti, costituiranno la base sulla quale i singoli docenti potranno lavorare per stilare una propria Programmazione di Classe. Si sottolinea che, nelle riunioni di Dipartimento di Matematica, tutti i docenti si sono accordati di trattare, entro la fine del triennio, TUTTI gli argomenti definiti in questa Programmazione Generale, quello che può cambiare è solo il loro livello di approfondimento. 2

3 Classe quarta Modulo n. 1: Recupero e consolidamento dei principali argomenti svolti nella classe terza propedeutici alla classe quarta Conoscere le varie tipologie di equazioni e disequazioni algebriche e trascendentali Avere il concetto di sistema di equazione e di disequazioni Saper risolvere le varie tipologie di equazioni e disequazioni algebriche e trascendentali Saper risolvere sistemi di equazioni e di disequazioni algebriche e trascendentali Saper operare in modo autonomo e con scioltezza i temi trattati nel modulo di recupero Saper riconoscere le varie tipologie di equazioni algebriche e trascendenti Saper risolvere equazioni e disequazioni algebriche e trascendenti semplici U.D.1: Equazioni algebriche e trascendenti U.D. 2: Disequazioni algebriche e trascendenti - Periodo di svolgimento del Modulo: settembre / ottobre - Numero ore previste per lo svolgimento del Modulo: 10 / 12 ore Modulo n.2: Le funzioni e le loro proprietà Avere il concetto di funzione Sapere perché affrontare lo studio delle funzioni reali di variabili reali Saper classificare una funzione Conoscere le proprietà e le caratteristiche di una funzione Saper definire una successione numerica Saper distinguere una progressione aritmetica da una geometrica Saper definire il dominio ed il codominio di una funzione Saper determinare il dominio di una funzione e saperlo rappresentare nel piano cartesiano Saper determinare le caratteristiche di una funzione Saper determinare il segno di una funzione e saper rappresentare i dati nel piano cartesiano Saper calcolare termini e somme di progressioni aritmetiche e geometriche Saper operare in modo autonomo ed organizzato nell ambito degli argomenti trattati nel Modulo Saper scegliere tra i metodi di risoluzione quello più confacente e veloce Saper applicare le formule in modo appropriato Saper adoperare i formalismi Saper utilizzare le conoscenze apprese e le capacità acquisite per risolvere semplici problemi sulle progressioni Saper commentare e motivare i procedimenti e le tecniche risolutive applicate con un linguaggio chiaro, consequenziale e usando la terminologia specifica. Avere il concetto di funzione Saper determinare il dominio di semplici funzioni composte Saper calcolare dei termini di una progressione aritmetica e geometrica Per affrontare lo studio del Modulo l alunno deve: Saper risolvere equazioni, disequazioni e sistemi in campo algebrico e trascendentale 3

4 U.D.1: Le funzioni reali di variabili reali U.D.2: Le successioni: progressioni aritmetiche e geometriche - Periodo di svolgimento del Modulo: Ottobre - Numero ore previste per lo svolgimento del Modulo: 10 / 12 ore Modulo n. 3: I limiti Continuità Discontinuità - Asintoti Conoscere le nozioni fondamentali di topologia della retta Comprendere perché si è introdotto il concetto di limite Saper definire il limite in semplici casi (limite finito per x tendente ad un valore finito) Conoscere le proprietà, le operazioni sui limiti e le forme indeterminate Saper enunciare i teoremi fondamentali sui limiti e saperne dare una interpretazione intuitiva (unicità, permanenza del segno, confronto) Riconoscere i due principali limiti notevoli Comprendere il significato di funzione continua in un punto ed in un intervallo sia analiticamente che geometricamente Saper enunciare i teoremi fondamentali sulle funzioni continue (Weierstrass Bolzano degli zeri) e saperne dare un significato intuitivo Saper riconoscere i punti di discontinuità e saperli classificare Saper definire gli asintoti di una funzione e conoscere i procedimenti per determinare le loro equazioni Saper verificare alcuni semplici limiti (limite finito per x tendente ad un valore finito) Saper operare con i limiti e risolvere le forme di indeterminazione più ricorrenti Saper calcolare limiti applicando i limiti notevoli Saper verificare la continuità di una funzione in un punto Saper cercare i punti di discontinuità di una funzione e saper applicare i procedimenti per la loro classificazione Saper determinare l andamento di una funzione agli estremi del dominio e saperlo rappresentare nel piano cartesiano Saper trovare gli asintoti di una funzione e saperli rappresentare nel piano cartesiano Saper disegnare il grafico probabile di una funzione Saper operare in modo autonomo ed organizzato nell ambito degli argomenti trattati nel Modulo Saper scegliere tra i metodi di risoluzione di un limite quello più confacente e veloce Saper adoperare i formalismi Saper commentare e motivare i procedimenti e le tecniche risolutive applicate con un linguaggio chiaro, consequenziale e usando la terminologia specifica. Avere appreso il concetto di limite Saper calcolare i limiti nelle principali forme di indeterminazione Saper calcolare semplici limiti che coinvolgono l uso di limiti notevoli Avere il concetto di continuità e discontinuità Saper determinare le equazioni degli asintoti almeno nel caso di funzioni semplici Saper abbozzare il grafico di una funzione Per affrontare lo studio del Modulo l alunno deve: Saper scomporre polinomi Saper risolvere semplici disequazioni con un modulo Saper determinare il dominio di una funzione Avere nozioni di base sulla retta nel piano cartesiano U.D.1: I limiti U.D.2: Funzioni continue Punti di discontinuità U.D.3: Gli asintoti di una funzione - Periodo di svolgimento del Modulo: Ottobre / Novembre / Dicembre 4

5 - Numero ore previste per lo svolgimento del Modulo: 12 / 14 ore Modulo n. 4: Calcolo combinatorio Comprendere i caratteri distintivi delle disposizioni, permutazioni e combinazioni Saper definire le disposizioni, le permutazioni e le combinazioni semplici e composte Comprendere e saper definire la probabilità classica, frequentistica e soggettiva Comprendere l impostazione assiomatica della probabilità e le sue proprietà Calcolare le disposizioni, le permutazioni e le combinazioni semplici e composte Sapere determinare la probabilità di eventi elementari e di eventi composti. Risolvere problemi applicando le formule del calcolo combinatorio Utilizzare il calcolo combinatorio per il calcolo della probabilità Saper risolvere semplici problemi applicando il calcolo combinatorio Saper risolvere semplici problemi di probabilità classica Non ci sono prerequisiti particolari U.D.1: Il calcolo combinatorio U.D.1: La probabilità - cenni - Periodo di svolgimento del Modulo: Novembre / Dicembre - Numero ore previste per lo svolgimento del Modulo: 6/8 ore Modulo n. 5: La derivata di una funzione e lo studio delle funzioni Saper definire il rapporto incrementale di una funzione in un punto Conoscere il significato geometrico di rapporto incrementale Saper definire la derivata di una funzione in un punto e in un intervallo Conoscere il significato geometrico della derivata in un punto ed in un intervallo Conoscere le regole di derivazione di funzioni elementari e composte Saper definire il differenziale di una funzione e conoscerne il significato geometrico Conoscere le condizioni di continuità e derivabilità Saper definire i punti di non derivabilità Saper parlare del legame tra monotonia e segno della derivata e saper dare le definizioni di punti stazionari Saper parlare del legame tra concavità di una curva e segno della derivata seconda e saper definire i vari punti di flesso Saper calcolare il rapporto incrementale di una funzione in un punto e determinare l equazione della secante ad una curva per due punti Essere capaci di applicare le regole di derivazioni di funzioni elementari e composte Saper calcolare il differenziale di una funzione in un punto Saper determinare i punti di non derivabilità e saper applicare i procedimenti per classificarli Saper applicare il calcolo delle derivate per determinare la monotonia di una funzione e i max/min Saper calcolare derivate seconde per determinare le concavità di una curva e i flessi Saper operare in modo autonomo ed organizzato nell ambito degli argomenti trattati nel Modulo Saper individuare procedimenti confacenti e veloci Saper adoperare i formalismi Saper commentare e motivare i procedimenti e le tecniche risolutive applicate con un linguaggio chiaro, consequenziale e usando la terminologia specifica Saper organizzare in modo chiaro e ordinato le conoscenze apprese e le abilità acquisite al fine di tracciare il grafico di una funzione Dato il grafico di una funzione, saper dedurre le caratteristiche analitiche della funzione (dominio, positività/negatività, andamento, asintoti, monotonia e segno della derivata prima, concavità e segno della derivata seconda) 5

6 Conoscere il significato di rapporto incrementale e di derivata Saper applicare le regole di derivazione per calcolare derivate di funzioni elementari e di semplici funzioni composte Saper applicare il calcolo delle derivate per determinare la monotonia (max/min) le concavità (flessi) di semplici funzioni Saper tracciare il grafico di semplici funzioni sulla scorta dei dati acquisiti Per affrontare lo studio del Modulo l alunno deve: Saper calcolare limiti Saper operare con le espressioni algebriche Saper risolvere disequazioni algebriche e trascendentali U.D.1: La derivata e il suo calcolo U.D.2: Monotonia e derivabilità U.D.3: Concavità e derivabilità U.D.4: Studio di funzioni di vario tipo - Periodo di svolgimento del Modulo: Gennaio / Febbraio / Marzo / Aprile - Numero ore previste per lo svolgimento del Modulo: 30 / 40 ore Modulo n. 6: I Teoremi del calcolo differenziale Conoscere l enunciato e il significato geometrico del Teorema di Rolle Conoscere l enunciato il significato geometrico del Teorema di Lagrange Conoscere l enunciato e il significato geometrico del Teorema di Cauchy Conoscere gli enunciati e l utilità pratica dei Teoremi di De l Hospital Saper dimostrare il teorema di Rolle Saper dimostrare il Teorema di Lagrange Saper calcolare limiti indeterminati con l applicazione dei Teoremi di de L Hospital Saper operare in modo autonomo ed organizzato nell ambito degli argomenti trattati nel Modulo Saper individuare procedimenti confacenti e veloci Saper adoperare i formalismi Saper commentare e motivare i procedimenti e le tecniche risolutive applicate con un linguaggio chiaro, consequenziale e usando la terminologia specifica Saper risolvere esercizi con l applicazione dei Teoremi Saper enunciare correttamente e conoscere il significato geometrico dei Teoremi Saper applicare i Teoremi in semplici casi Per affrontare lo studio del Modulo l alunno deve: Saper risolvere equazioni Saper calcolare derivate U.D.1: i Teoremi sulle funzioni continue e derivabili - Periodo di svolgimento del Modulo: Aprile / Maggio - Numero ore previste per lo svolgimento del Modulo: 6 / 8 ore 6

7 Modulo n. 7: Statistica Istituto Tecnico Tecnologico Basilio Focaccia Salerno Conoscere i caratteri e le modalità di una popolazione statistica Conoscere le principali tipologie di grafici statistici Sapere cosa significa fare l analisi delle distribuzioni statistiche Conoscere e comprendere il concetto di variabilità statistica Conoscere i concetti di distribuzioni statistiche congiunte,condizionate, marginali Indipendenza o dipendenza di due variabili statistiche, coefficiente di correlazione, retta di regressione. Costruire tabelle di frequenza o di intensità partendo da dati grezzi Saper tradurre in un grafico una tabella di frequenza o di intensità Saper calcolare medie, moda e mediana di una serie di dati Saper calcolare indici di variabilità sarto semplice, varianza e scarto quadratico medio Saper costruire un diagramma a dispersione Saper costruire tabelle di correlazione e di connessione Saper calcolare il coefficiente di correlazione e la retta di regressione di una serie di dati semplici Saper operare in modo autonomo ed organizzato nell ambito degli argomenti trattati nel Modulo Saper individuare procedimenti confacenti e veloci Saper adoperare i formalismi Saper commentare e motivare i procedimenti e le tecniche risolutive applicate con un linguaggio chiaro, consequenziale e usando la terminologia specifica Conoscere gli elementi base della statistica descrittiva, della statistica descrittiva bivariata e le nozioni di dipendenza statistica, correlazione e regressione Non sono richieste abilità particolari U.D.1: I rilevamenti statistici (terminologia, le fasi della ricerca statistica, le rappresentazioni grafiche) U.D.2: L analisi delle distribuzioni statistiche (le medie algebriche, le medie di posizione, la variabilità, varianza e scarto quadratico medio) U.D.3: Regressione e correlazione (distribuzioni doppie di frequenza, rappresentazioni grafiche, la dipendenza statistica, retta di regressione nel caso di dati semplici, la correlazione) - Periodo di svolgimento del Modulo: Aprile / Maggio - Numero ore previste per lo svolgimento del Modulo: 10 / 12 ore 7

8 - Verifiche e Metodologia Indicazioni valide per le tre classi Le verifiche, delle tipologie sotto indicate, saranno scritte ed orali. Le verifiche scritte formali (compiti in classe) saranno almeno 6 ripartite in tutto l anno scolastico. Sugli argomenti di ogni Unità Didattica gli studenti si eserciteranno: a) a scuola utilizzando le metodologie vedi box sottostante - che il docente riterrà più adeguate per la situazione della classe ed in relazione all argomento che si sta trattando, b) a casa in modo da poter valutare il grado di sicurezza e di autonomia non specifico conseguito nella comprensione, acquisizione delle abilità/capacità ed il grado delle competenze. - Tipologia Verifiche: Prove non strutturate stimolo aperto e risposta aperta risposte non univoche e non programmabili - Colloqui/discussioni con interventi mirati su singoli e/o su gruppi Riflessione parlata (verbalizzazione delle operazioni mentali che si stanno utilizzando per la soluzione di un problema/esercizio) Prove semistrutturate stimolo chiuso e riposta aperta risposte non univoche ma in gran parte predeterminabili grazie a vincoli posti dagli stimoli Risoluzione di problemi Esercizi di calcolo Prove strutturate stimolo chiuso e risposta chiusa risposte univoche e predeterminabili - Test vero/falso Test a scelta multipla Close test Corrispondenze - Modalità didattiche: Apprendimento cooperativo Brain storming Didattica laboratoriale Debriefing (riflessione Lavoro di gruppo Problem solving autocritica di ciò che si è (pianificazione delle fatto) azioni) Team teaching per le attività di recupero/consolidamento Individualizzazione/personalizzazione Metodo didattico (organizzazione tecniche, procedure, strumenti idonei a conseguire un obiettivo) - Strumenti didattici: Libro di testo Appunti Calcolatrice Computer LIM Lavagna - Valutazione Concorreranno alla valutazione: l osservazione del lavoro non specifico dell alunno svolto sia in classe che a casa; l analisi degli interventi fatti durante la discussione degli esercizi e la sua partecipazione alle lezioni. Nella valutazione finale si terrà conto dei progressi dimostrati dai singoli studenti rispetto alla situazione di partenza, tenuto conto dell impegno evidenziato. Per la valutazione delle verifiche si terrà presente che: il punteggio andrà da 1 a 10; peseranno in modo diverso gli errori di distrazione rispetto a quelli di concetto; il procedimento scelto per l esecuzione inciderà sul giudizio finale; negli esercizi che richiedono una discussione, questa avrà un peso preponderante; si terrà conto della leggibilità e dell ordine (un compito corretto per quanto riguarda lo svolgimento degli esercizi ma disordinato verrà valutato al massimo con un voto pari a 9). Per la valutazione dei risultati si utilizzeranno le griglie di valutazione sotto riportate. 8

9 - Griglie di valutazione Per la valutazione degli elaborati scritti si consiglia di attribuire ad ogni esercizio/quesito/situazione problematica, un punteggio dedotto dalla colonna Valutazione abilità / competenze scritto. Il voto dell elaborato sarà la media dei punteggi ottenuti. Giudizio / Voto Ottimo 9-10 Buono /Discreto 7-8 Sufficiente 6 Insufficiente 5 Gravemente Insufficiente 3-4 Del tutto Insufficiente Valutazione conoscenze teoriche orale - Valutazione abilità / competenze scritto - Lo studente ha approfondita conoscenza di contenuti e metodi, opera collegamenti validi e personali, dimostra spiccate capacità di giudizio. L esposizione, appropriata e consapevole, risulta fluida o pregevole per qualità logico/grafiche. Lo studente ha una conoscenza solida e consapevole, rielabora e collega i contenuti autonomamente disponendo di una sicura base metodologica. Espone in modo corretto e ordinato sul piano logico/grafico.. Lo studente conosce, pur con qualche incertezza, i contenuti essenziali della disciplina obiettivi minimi -; rielabora in modo sostanzialmente corretto, senza particolari approfondimenti, adoperando un linguaggio semplice, non rigoroso. L alunno non conosce in modo sicuro e corretto contenuti e metodi richiesti e/o dimostra di non avere acquisito adeguate capacità di assimilazione e rielaborazione e/o espone in modo incerto o con insufficiente ordine logico/grafico. L alunno dimostra di conoscere in modo frammentario e superficiale i contenuti della disciplina o di possedere una base metodologica inadeguata; commette numerosi errori e/o espone in modo improprio, scorretto E carente sul piano dell ordine logico/grafico. L alunno è incapace di riconoscere i contenuti della disciplina o evidenzia carenze molto gravi e diffuse, nonché lacune di base. Espone in Lo svolgimento degli esercizi è chiaro, corretto, appropriato e originale; lo studente è padrone delle tecniche e dei procedimenti; lo svolgimento è senza errori ed imprecisioni; è ordinato. Lo svolgimento degli esercizi è chiaro, corretto, appropriato; lo studente applica le tecniche ed i procedimenti talvolta con qualche imprecisione e/o talvolta senza originalità; lo svolgimento è senza grandi errori ed imprecisioni; è generalmente ordinato Lo svolgimento degli esercizi è sostanzialmente corretto anche se non sempre chiaro; lo studente è padrone delle tecniche e dei procedimenti ma le applica solo in modo pedissequo; lo svolgimento presenta talvolta errori ed imprecisioni; è generalmente ordinato. Lo studente mostra incertezze nell applicare strumenti e tecniche di calcolo appropriate alla risoluzione del problema/quesito; lo svolgimento degli esercizi è spesso incompleto e con errori; non è sempre ordinato L applicazione delle tecniche e dei procedimenti risolutivi è solo parzialmente corretta con gravi errori nel calcolo e/o rispondente in minima parte al quesito posto; non è ordinato Lo studente non risolve gli esercizi mostrando nessuna/molto confusa padronanza delle tecniche e dei procedimenti. 9

10 1-2 modo disordinato o incoerente. I Docenti della Disciplina Campa Aldo Cioffi Maria Rita Campisi Rosario Falchetta Michele Galdi Biondina Direttore del Dipartimento - La Vecchia Maria Teresa Marino Maddalena Mastrandrea Alessandra Passarella Maria Rosaria Romano Raffaella Sessa Eliana Tarantino Maria Rosaria Turco Ester 10

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

ANNO SCOLASTICO 2015 2016. Piano di lavoro individuale

ANNO SCOLASTICO 2015 2016. Piano di lavoro individuale ANNO SCOLASTICO 2015 2016 Piano di lavoro individuale Classe: Materia: Docente: IV^ D S.I.A. MAA MATEMATICA Prof. Michele PAVEGGIO Situazione di partenza della classe La classe risulta formata da 18 alunni,

Dettagli

PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE SECONDO BIENNIO TECNICO AMM FIN E MARKETING

PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE SECONDO BIENNIO TECNICO AMM FIN E MARKETING http://suite.sogiscuola.com/documenti_web/vris017001/documenti/9.. 1 di 7 04/12/2013 118 PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE SECONDO BIENNIO TECNICO AMM FIN E MARKETING ANNO SCOLASTICO2013/2014

Dettagli

ISTITUTO STATALE ISTRUZIONE SUPERIORE ZENALE E BUTINONE

ISTITUTO STATALE ISTRUZIONE SUPERIORE ZENALE E BUTINONE pag.1 ISTITUTO STATALE ISTRUZIONE SUPERIORE ZENALE E BUTINONE Vale la pena di insegnare un argomento solo se si ritiene di poterlo approfondire ad un punto tale da poter formulare domande non banali con

Dettagli

Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi)

Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi) Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi) Via Firenze, 51 - Tel. 0587/213400 - Fax 0587/52742 http://www.itcgfermi.it E-mail: mail@itcgfermi.it PIANO DI LAVORO Prof. FRUZZETTI

Dettagli

Matematica SECONDO BIENNIO NUOVO ORDINAMENTO I.T.Ag Noverasco PIANO DI LAVORO ANNUALE 2014/2015

Matematica SECONDO BIENNIO NUOVO ORDINAMENTO I.T.Ag Noverasco PIANO DI LAVORO ANNUALE 2014/2015 Istituto di Istruzione Superiore ITALO CALVINO telefono: 0257500115 via Guido Rossa 20089 ROZZANO MI fax: 0257500163 Sezione Associata: telefono: 025300901 via Karl Marx 4 - Noverasco - 20090 OPERA MI

Dettagli

DIPARTIMENTO SCIENTIFICO

DIPARTIMENTO SCIENTIFICO DIPARTIMENTO SCIENTIFICO PROGRAMMAZIONE PER COMPETENZE DI MATEMATICA CLASSI QUINTE Anno scolastico 2015/2016 Ore di lezione previste nell anno: 165 (n. 5 ore sett. x 33 settimane) 1. FINALITÀ DELL INSEGNAMENTO

Dettagli

M i n i s t e r o d e l l a P u b b l i c a I s t r u z i o n e ISTITUTO STATALE DI ISTRUZIONE SUPERIORE

M i n i s t e r o d e l l a P u b b l i c a I s t r u z i o n e ISTITUTO STATALE DI ISTRUZIONE SUPERIORE PROGRAMMAZIONE ANNUALE MATEMATICA-INFORMATICA CLASSI QUINTE TECNICO DEI SERVIZI SOCIO SANITARI ANNO SCOLASTICO 2014/2015 1 FINALITÀ OBIETTIVI E COMPETENZE DELLA DISCIPLINA Il docente di Matematica concorre

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Classe: 5A SIA A.S. 20015/16 ANALISI DI SITUAZIONE - LIVELLO COGNITIVO

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Classe: 5A SIA A.S. 20015/16 ANALISI DI SITUAZIONE - LIVELLO COGNITIVO Disciplina: MATEMATICA Classe: 5A SIA A.S. 20015/16 Docente: POLONIO NADIA ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe risponde adeguatamente alle proposte formative, e lavora in modo disciplinato,

Dettagli

Programmazione. Disciplinare: Gestione Progetto e Organizzazione Impresa Classe: V. Istituto Tecnico Tecnologico Basilio Focaccia Salerno

Programmazione. Disciplinare: Gestione Progetto e Organizzazione Impresa Classe: V. Istituto Tecnico Tecnologico Basilio Focaccia Salerno Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Disciplinare: Gestione Progetto e Organizzazione Impresa Classe: V I Docenti della Disciplina Salerno, lì... ottobre 2014 Finalità della

Dettagli

I.T.G. <> Battipaglia (SA) PROGRAMMAZIONE DI MATEMATICA CORSO SERALE SIRIO RELAZIONE

I.T.G. <<G.C.Gloriosi>> Battipaglia (SA) PROGRAMMAZIONE DI MATEMATICA CORSO SERALE SIRIO RELAZIONE I.T.G. Battipaglia (SA) PROGRAMMAZIONE DI MATEMATICA CORSO SERALE SIRIO Prof. Lucia D Aniello, CLASSI 3 A, 4 A, 5 A GEOMETRI- SIRIO RELAZIONE Premesse La programmazione è stata redatta

Dettagli

ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORI MINERARIO "G. ASPRONI E. FERMI" PROGRAMMAZIONE DIDATTICA ANNUALE a.s. 2015-2016

ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORI MINERARIO G. ASPRONI E. FERMI PROGRAMMAZIONE DIDATTICA ANNUALE a.s. 2015-2016 ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORI MINERARIO "G. ASPRONI E. FERMI" PROGRAMMAZIONE DIDATTICA ANNUALE a.s. 2015-2016 Docente: Carla Ada Piu Disciplina: Matematica e Complementi di matematica CLASSE

Dettagli

LICEO CLASSICO C. CAVOUR DISCIPLINA : MATEMATICA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA

LICEO CLASSICO C. CAVOUR DISCIPLINA : MATEMATICA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA 1. OBIETTIVI SPECIFICI DELLA DISCIPLINA PROGRAMMAZIONE PER COMPETENZE Le prime due/tre settimane sono state dedicate allo sviluppo di un modulo di allineamento per

Dettagli

Istituto Professionale - Settore Industriale Indirizzo: Abbigliamento e Moda

Istituto Professionale - Settore Industriale Indirizzo: Abbigliamento e Moda Ministero dell Istruzione, dell Università e della Ricerca I.I.S. CATERINA CANIANA Via Polaresco 19 24129 Bergamo Tel: 035 250547 035 253492 Fax: 035 4328401 http://www.istitutocaniana.it email: canianaipssc@istitutocaniana.it

Dettagli

PROGRAMMAZIONE DIDATTICA ANNUALE ANNO SCOLASTICO 2014/2015

PROGRAMMAZIONE DIDATTICA ANNUALE ANNO SCOLASTICO 2014/2015 PROGRAMMAZIONE DIDATTICA ANNUALE ANNO SCOLASTICO 2014/2015 DOCENTE PROF./ PROF.SSA LORETTA BETTINI MATERIA DI INSEGNAMENTO MATEMATICA CLASSE IVB I.T.T. Finalità formative Nel corso del triennio superiore

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE ANALISI DI SITUAZIONE - LIVELLO COGNITIVO DEFINIZIONE DEGLI OBIETTIVI COMPORTAMENTALI

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE ANALISI DI SITUAZIONE - LIVELLO COGNITIVO DEFINIZIONE DEGLI OBIETTIVI COMPORTAMENTALI SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE Disciplina: Matematica e Complementi di Matematica Classe: 4 AI A.S. 2015/16 Docente: Carollo Maristella ANALISI DI SITUAZIONE - LIVELLO COGNITIVO

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PROGRAMMA CONSUNTIVO a.s. 2014/2015 MATERIA MATEMATICA CLASSE DOCENTE 5^ SEZIONE D DI LEO CLELIA Liceo Scientifico delle Scienze Applicate ORE DI LEZIONE 4 **************** OBIETTIVI saper definire e classificare

Dettagli

1. Competenze trasversali

1. Competenze trasversali 1 ISTITUTO D ISTRUZIONE SUPERIORE G. CENA SEZIONE TECNICA ANNO SCOLASTICO 2015/2016 PROGRAMMAZIONE DIDATTICA DI MATEMATICA DOCENTI: PROF. ANGERA GIANFRANCO CLASSE V U TUR Secondo le linee guida, il corso

Dettagli

ROGRAMMAZIONE ATTIVITA' DIDATTICA A.S. 2014-2015

ROGRAMMAZIONE ATTIVITA' DIDATTICA A.S. 2014-2015 ISTITUTO TECNICO ECONOMICO AMBROGIO FUSINIERI VICENZA Via G. D Annunzio, 15-36100 VICENZA Tel. 0444563544 Fax 0444962574 sito web: www.itcfusinieri.eu E-mail: protocollo@itcfusinieri.it -vitd010003@pec.istruzione.it

Dettagli

Scuola statale Italiana di Madrid Sezione Liceo Scientifico Programmazione curricolare di Matematica Classe IV B Anno scolastico 2015/2016

Scuola statale Italiana di Madrid Sezione Liceo Scientifico Programmazione curricolare di Matematica Classe IV B Anno scolastico 2015/2016 Scuola statale Italiana di Madrid Sezione Liceo Scientifico Programmazione curricolare di Matematica Classe IV B Anno scolastico 2015/2016 Prof. Novaresio Domenico Obiettivi generali trasversali Nel corso

Dettagli

PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE QUINT... SERVIZI SOCIO-SANITARI

PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE QUINT... SERVIZI SOCIO-SANITARI 1 di 5 23/01/2015 12.36 PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE QUINTO ANNO PROFESSIONALE SERVIZI SOCIO-SANITARI 1. QUINTO ANNO DISCIPLINA: Matematica DOCENTI : Provoli, Silva, Vassallo MODULI CONOSCENZE

Dettagli

I.S.I.S. Zenale e Butinone - Dipartimento di Matematica P.A.L. CLASSE 5^ TECNICO TUR. a.s. 14/15 pag.1

I.S.I.S. Zenale e Butinone - Dipartimento di Matematica P.A.L. CLASSE 5^ TECNICO TUR. a.s. 14/15 pag.1 I.S.I.S. Zenale e Butinone - Dipartimento di Matematica P.A.L. CLASSE 5^ TECNICO TUR. a.s. 14/15 pag.1 ISTITUTO STATALE ISTRUZIONE SUPERIORE ZENALE E BUTINONE Vale la pena di insegnare un argomento solo

Dettagli

PIANO DI LAVORO a.s. 2014-2015

PIANO DI LAVORO a.s. 2014-2015 PIANO DI LAVORO a.s. 2014-2015 MATERIA: MATEMATICA APPLICATA CORSO: INTERO CORSO 1. obiettivi didattici 2. contenuti 3. metodi e strumenti 4. criteri di valutazione CLASSE PRIMA 1.OBIETTIVI DIDATTICI Gli

Dettagli

ISIS G. Tassinari a.s. 2015-2016. Programmazione di Matematica. Classe V I

ISIS G. Tassinari a.s. 2015-2016. Programmazione di Matematica. Classe V I ISIS G. Tassinari a.s. 2015-2016 Programmazione di Matematica Classe V I Prof.ssa C. Pirozzi Analisi della situazione di partenza La classe V sezione I è costituita da un gruppo di 16 allievi non sempre

Dettagli

PIANO DI LAVORO DEL PROFESSORE

PIANO DI LAVORO DEL PROFESSORE ISTITUTO DI ISTRUZIONE SUPERIORE STATALE IRIS VERSARI - Cesano Maderno (MB) PIANO DI LAVORO DEL PROFESSORE Indirizzo: LICEO SCIENTIFICO MATERIA: MATEMATICA ANNO SCOLASTICO: 2014-2015 PROF: MASSIMO BANFI

Dettagli

Programmazione Matematica classe V A. Finalità

Programmazione Matematica classe V A. Finalità Finalità Acquisire una formazione culturale equilibrata in ambito scientifico; comprendere i nodi fondamentali dello sviluppo del pensiero scientifico, anche in una dimensione storica, e i nessi tra i

Dettagli

Piano di Lavoro di MATEMATICA. a cura del dipartimento di Matematica e Fisica QUINTO ANNO

Piano di Lavoro di MATEMATICA. a cura del dipartimento di Matematica e Fisica QUINTO ANNO Liceo Scientifico Istituto Tecnico Industriale ISTITUTO DI ISTRUZIONE SUPERIORE ALDO MORO Via Gallo Pecca n.4/6 10086 RIVAROLO CANAVESE Tel. 0124/45.45.11 Cod.Fisc. 85502120018 E-mail: segreteria@istitutomoro.it

Dettagli

ISTITUTO STATALE D ISTRUZIONE SUPERIORE Vincenzo Manzini

ISTITUTO STATALE D ISTRUZIONE SUPERIORE Vincenzo Manzini ISTITUTO STATALE D ISTRUZIONE SUPERIORE Vincenzo Manzini Corsi di Studio: Amministrazione, Finanza e Marketing/IGEA- Costruzioni, Ambiente e Territorio/Geometra Liceo Linguistico/Linguistico Moderno -

Dettagli

LICEO CLASSICO C. CAVOUR DISCIPLINA : MATEMATICA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA

LICEO CLASSICO C. CAVOUR DISCIPLINA : MATEMATICA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA 1. OBIETTIVI SPECIFICI DELLA DISCIPLINA PROGRAMMAZIONE PER COMPETENZE Le prime due/tre settimane sono state dedicate allo sviluppo di un modulo di allineamento per

Dettagli

PROGRAMMAZIONE DIDATTICA DISCIPLINARE. Indirizzo: ITC. Anno scolastico Materia Classi 2012 2013 MATEMATICA Terze

PROGRAMMAZIONE DIDATTICA DISCIPLINARE. Indirizzo: ITC. Anno scolastico Materia Classi 2012 2013 MATEMATICA Terze PROGRAMMAZIONE DIDATTICA DISCIPLINARE Indirizzo: ITC Anno scolastico Materia Classi 22 23 MATEMATICA Terze. Competenze al termine del percorso di studi Padroneggiare il linguaggio formale e i procedimenti

Dettagli

Piano di Lavoro Di MATEMATICA. Secondo Biennio

Piano di Lavoro Di MATEMATICA. Secondo Biennio ISTITUTO DI ISTRUZIONE SUPERIORE ALDO MORO Liceo Scientifico Istituto Tecnico Via Gallo Pecca n. 4/6-10086 Rivarolo Canavese Tel 0124 454511 - Cod. Fiscale 85502120018 E-mail: segreteria@istitutomoro.it

Dettagli

Piano di Lavoro. Di Matematica. Secondo Biennio

Piano di Lavoro. Di Matematica. Secondo Biennio SEZIONE TECNICA A.S. 2014 2015 Piano di Lavoro Di Matematica Secondo Biennio DOCENTE CENA LUCIA MARIA CLASSI 4 BM Libri di testo: Bergamini-Trifone-Barozzi Mod.U verde Funzioni e limiti Mod.V verde Calcolo

Dettagli

PROGRAMMAZIONE DIDATTICA INDIVIDUALE a.s. 2012/2013

PROGRAMMAZIONE DIDATTICA INDIVIDUALE a.s. 2012/2013 Pag. 1 di 7 PROGRAMMAZIONE DIDATTICA INDIVIDUALE a.s. 2012/2013 Prof.ssa Paola VERGANI Materia MATEMATICA Classe V Sez. D ss Testi adottati: - Bergamini- Trifone- Barozzi Fondamenti di calcolo algebrico

Dettagli

DOCUMENTO DEL CONSIGLIO DI CLASSE (AI SENSI DELL ARTICOLO 5 Legge n. 425 10/12/1997)

DOCUMENTO DEL CONSIGLIO DI CLASSE (AI SENSI DELL ARTICOLO 5 Legge n. 425 10/12/1997) ISTITUTO DI ISTRUZIONE SUPERIORE LEON BATTISTA ALBERTI Via A. Pillon n. 4-35031 ABANO T. (PD) Tel. 049 812424 - Fax 049 810554 Distretto 45 - PD Ovest PDIS017007- Cod. fiscale 80016340285 sito web: http://www.lbalberti.it/

Dettagli

PROGRAMMAZIONE ANNUALE MATEMATICA-INFORMATICA. Classe Quarta. (Aggiornato) ANNO SCOLASTICO 2011/12

PROGRAMMAZIONE ANNUALE MATEMATICA-INFORMATICA. Classe Quarta. (Aggiornato) ANNO SCOLASTICO 2011/12 Ministero dell Istruzione, dell Università e della Ricerca I.I.S. CATERINA CANIANA Via Polaresco 19 24129 Bergamo Tel:035 250547 035 253492 Fax:035 4328401 http://www.istitutocaniana.it email: canianaipssc@istitutocaniana.it

Dettagli

Anno Scolastico 2014-2015. INDIRIZZO: Manutenzione e assistenza tecnica DISCIPLINA: MATEMATICA. CLASSI: Terza Quarta Quinta

Anno Scolastico 2014-2015. INDIRIZZO: Manutenzione e assistenza tecnica DISCIPLINA: MATEMATICA. CLASSI: Terza Quarta Quinta ISTITUTO PROFESSIONALE PER L INDUSTRIA E L ARTIGIANATO E. BERNARDI PADOVA Anno Scolastico 2014-2015 INDIRIZZO: Manutenzione e assistenza tecnica DISCIPLINA: MATEMATICA CLASSI: Terza Quarta Quinta Anno

Dettagli

Programmazione didattica di Matematica a. s. 2015/2016 IV I

Programmazione didattica di Matematica a. s. 2015/2016 IV I ISIS Guido Tassinari Programmazione didattica di Matematica a. s. 2015/2016 IV I Prof.ssa Costigliola Analisi della situazione di partenza La classe IV sezione I è costituita da un gruppo di 21 allievi

Dettagli

ANNO SCOLASTICO 2015 2016. Piano di lavoro individuale

ANNO SCOLASTICO 2015 2016. Piano di lavoro individuale ANNO SCOLASTICO 2015 2016 Piano di lavoro individuale Classe: Materia: 4A ind. TURISMO Matematica Docente: CABERLOTTO GRAZIAMARIA Situazione di partenza della classe La classe è composta da 24 alunni di

Dettagli

PROGRAMMAZIONE ANNUALE

PROGRAMMAZIONE ANNUALE PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2010/11 Docente: Antonio Gottardo Materia: Matematica Classe: 5BSo Liceo delle Scienze Sociali 1. Nel primo consiglio di classe sono stati definiti gli obiettivi

Dettagli

ISIS: G. Tassinari Pozzuoli

ISIS: G. Tassinari Pozzuoli ISIS: G. Tassinari Pozzuoli Programmazione di Matematica classe 5 a B a.s. 05/06 Docente M.Rosaria Vassallo Modulo : Funzioni e limiti di funzioni Gli obiettivi generali : Iniziare un approccio più rigoroso

Dettagli

CLASSI PRIME tecnico 4 ORE

CLASSI PRIME tecnico 4 ORE PIANO ANNUALE a.s. 2012/2013 CLASSI PRIME tecnico 4 ORE Settembre Ottobre Novembre dicembre dicembre gennaio- 15 aprile 15 aprile 15 maggio Somministrazione di test di ingresso. Insiemi numerici Operazioni

Dettagli

ANALISI DELLA SITUAZIONE DI PARTENZA

ANALISI DELLA SITUAZIONE DI PARTENZA ISTITUTO TECNICO STATALE AD INDIRIZZO COMMERCIALE IGEA - MARKETING GEOMETRI - PROGRAMMATORI TURISTICO G FILANGIERI PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE ANNO SCOLASTICO 2010/2011 INDIRIZZO DI STUDI

Dettagli

Programmazione del dipartimento di MATEMATICA per il quinquennio

Programmazione del dipartimento di MATEMATICA per il quinquennio IPIA C. CORRENTI Programmazione del dipartimento di MATEMATICA per il quinquennio FINALITA DELL INSEGNAMENTO DELLA MATEMATICA Promuovere le facoltà intuitive e logiche Educare ai processi di astrazione

Dettagli

MATEMATICA LINEE GENERALI E COMPETENZE

MATEMATICA LINEE GENERALI E COMPETENZE MATEMATICA LINEE GENERALI E COMPETENZE Al termine del percorso del liceo scientifico lo studente conoscerä i concetti e i metodi elementari della matematica, sia interni alla disciplina in så considerata,

Dettagli

OBIETTIVI EDUCATIVI e DIDATTICI TRASVERSALI

OBIETTIVI EDUCATIVI e DIDATTICI TRASVERSALI Programmazione di Matematica Anno Scolastico 2015/2016 4^BCAT Costruzioni Ambiente Territorio IIS Cigna-Baruffi-Garelli 1) Contesto della classe: classe collaborativa e nel complesso disciplinata. La classe

Dettagli

Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi)

Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi) Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi) Via Firenze, 51 - Tel. 0587/213400 - Fax 0587/52742 http://www.itcgfermi.it E-mail: mail@itcgfermi.it PIANO DI LAVORO Prof. Fogli

Dettagli

Matematica PRIMO BIENNIO NUOVO ORDINAMENTO I.T.Ag Noverasco PIANO DI LAVORO ANNUALE

Matematica PRIMO BIENNIO NUOVO ORDINAMENTO I.T.Ag Noverasco PIANO DI LAVORO ANNUALE Istituto di Istruzione Superiore ITALO CALVINO telefono: 0257500115 via Guido Rossa 20089 ROZZANO MI fax: 0257500163 Sezione Associata: telefono: 025300901 via Karl Marx 4 - Noverasco - 20090 OPERA MI

Dettagli

LICEO SCIENTIFICO STATALE E.FERMI SEDE: VIA MAZZINI, 172/2-40139 BOLOGNA

LICEO SCIENTIFICO STATALE E.FERMI SEDE: VIA MAZZINI, 172/2-40139 BOLOGNA LICEO SCIENTIFICO STATALE E.FERMI SEDE: VIA MAZZINI, 172/2-40139 BOLOGNA Telefono: 051/4298511 - Fax: 051/392318 - Codice fiscale: 80074870371 Sede Associata: Via Nazionale Toscana, 1-40068 San Lazzaro

Dettagli

LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA LICEO SCIENTIFICO MATEMATICA

LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA LICEO SCIENTIFICO MATEMATICA LICEO SCIENTIFICO MATEMATICA PROFILO GENERALE E COMPETENZE Al termine del percorso liceale lo studente dovrà padroneggiare i principali concetti e metodi di base della matematica, sia aventi valore intrinseco

Dettagli

LICEO CLASSICO, LICEO DELLE SCIENZE UMANE, LICEO MUSICALE E COREUTICO, LICEO LINGUISTICO MATEMATICA

LICEO CLASSICO, LICEO DELLE SCIENZE UMANE, LICEO MUSICALE E COREUTICO, LICEO LINGUISTICO MATEMATICA LICEO CLASSICO, LICEO DELLE SCIENZE UMANE, LICEO MUSICALE E COREUTICO, LICEO LINGUISTICO MATEMATICA PROFILO GENERALE E COMPETENZE Al termine del percorso liceale lo studente dovrà padroneggiare i principali

Dettagli

LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA

LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA PROFILO GENERALE E COMPETENZE Al termine del percorso liceale lo studente dovrà padroneggiare i principali concetti e metodi di base della matematica,

Dettagli

I.P.S.A.R. - ARBUS SEDE COORDINATA I.P.S.I.A.

I.P.S.A.R. - ARBUS SEDE COORDINATA I.P.S.I.A. I.P.S.A.R. - ARBUS SEDE COORDINATA I.P.S.I.A. - Guspini Programmazione annuale di MATEMATICA a.s. 2013-2014 Classi seconde Docente: Prof. Walter Concas A. OBIETTIVI 1. Obiettivi educativi generali. La

Dettagli

a.s. 2015/2016 Prof.ssa MARIA GRAZIA SCIABICA

a.s. 2015/2016 Prof.ssa MARIA GRAZIA SCIABICA PROGRAMMAZIONE DIDATTICA MATEMATICA 1 a B AMMINISTRAZIONE, FINANZA E MARKETING a.s. 2015/2016 Prof.ssa MARIA GRAZIA SCIABICA FINALITA' L'insegnamento della Matematica nel primo biennio degli Istituti Tecnici

Dettagli

Programmazione Disciplinare: ELETTRONICA E TELECOMUNICAZIONE Classi: 3^-4^-5^

Programmazione Disciplinare: ELETTRONICA E TELECOMUNICAZIONE Classi: 3^-4^-5^ Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Disciplinare: ELETTRONICA E TELECOMUNICAZIONE Classi: 3^-4^-5^ I Docenti della Disciplina Salerno, lì 10/11 settembre 2013 Finalità

Dettagli

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI Obiettivi del triennio: ; elaborando opportune soluzioni; 3) utilizzare le reti e gli strumenti informatici

Dettagli

PIANO DI LAVORO a.s. 2013-2014

PIANO DI LAVORO a.s. 2013-2014 PIANO DI LAVORO a.s. 2013-2014 1. obiettivi didattici 2. contenuti 3. metodi e strumenti 4. criteri di valutazione MATERIA: MATEMATICA APPLICATA CORSO: INTERO CORSO CLASSE PRIMA 1.OBIETTIVI DIDATTICI Gli

Dettagli

Indirizzo odontotecnico a.s. 2015/2016

Indirizzo odontotecnico a.s. 2015/2016 I.P.S.I.A E. DE AMICIS - ROMA PROGRAMMAZIONE DIDATTICA DI MATEMATICA Classe 5C Indirizzo odontotecnico a.s. 2015/2016 Prof. Rossano Rossi La programmazione è stata sviluppata seguendo le linee guida ministeriali

Dettagli

DISCIPLINA TECNICHE PROFESSIONALI DEI SERVIZI COMMERCIALI DOCENTI MARCO TEODORO

DISCIPLINA TECNICHE PROFESSIONALI DEI SERVIZI COMMERCIALI DOCENTI MARCO TEODORO http://suite.sogiscuola.com/documenti_web/vris017001/documenti/9.. 1 di 6 21/11/2013 10.58 PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE PRIMO BIENNIO PROFESSIONALE SERVIZI COMMERCIALI ANNO SCOLASTICO 2013/2014

Dettagli

Istituto Tecnico Tecnologico Basilio Focaccia Salerno. Programmazione Disciplinare: INFORMATICA Classe: V. Anno scolastico 2014-2015

Istituto Tecnico Tecnologico Basilio Focaccia Salerno. Programmazione Disciplinare: INFORMATICA Classe: V. Anno scolastico 2014-2015 Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Disciplinare: INFORMATICA Classe: V I Docenti della Disciplina Salerno, lì 20 settembre 2014 Finalità della Disciplina: Mettere lo studente

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate

ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate PROGRAMMAZIONE DISCIPLINARE MATEMATICA CLASSE 3 AS ANNO SCOLASTICO 2013/2014

Dettagli

MATEMATICA LINEE GENERALI E COMPETENZE

MATEMATICA LINEE GENERALI E COMPETENZE MATEMATICA LINEE GENERALI E COMPETENZE Al termine del percorso dei licei classico, linguistico, musicale coreutico e della scienze umane lo studente conoscerà i concetti e i metodi elementari della matematica,

Dettagli

CLASSE PRIMA LICEO LINGUISTICO

CLASSE PRIMA LICEO LINGUISTICO www.scientificoatripalda.gov.it PROGRAMMAZIONE EDUCATIVO DIDATTICA DI MATEMATICA CLASSE PRIMA LICEO LINGUISTICO ANNO SCOLASTICO 2015/2016 PARTE PRIMA PREMESSA La riforma del secondo ciclo d istruzione

Dettagli

FONDAZIONE MALAVASI LICEO SCIENTIFICO SPORTIVO. PIANO DI LAVORO E PROGRAMMAZIONE DIDATTICA DISCIPLINA: MATEMATICA DOCENTE: Prof.

FONDAZIONE MALAVASI LICEO SCIENTIFICO SPORTIVO. PIANO DI LAVORO E PROGRAMMAZIONE DIDATTICA DISCIPLINA: MATEMATICA DOCENTE: Prof. FONDAZIONE MALAVASI LICEO SCIENTIFICO SPORTIVO PIANO DI LAVORO E PROGRAMMAZIONE DIDATTICA DISCIPLINA: MATEMATICA DOCENTE: Prof. ssa Laura Piazzi CLASSE I A.S.2014 /2015 2 OBIETTIVI E COMPETENZE 2.1 OBIETTIVI

Dettagli

TORINO PIANO DI LAVORO DI MATEMATICA

TORINO PIANO DI LAVORO DI MATEMATICA Liceo Scientifico Statale Piero Gobetti TORINO PIANO DI LAVORO DI MATEMATICA a.s. 2015/2016 Classe IVB Prof. Genta Silvio TITOLO PIANO DI LAVORO ANNUALE OBIETTIVI TRASVERSALI Rispetto del regolamento d

Dettagli

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico Competenza matematica n. BIENNIO, BIENNIO Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica BIENNIO BIENNIO Operare sui dati comprendendone

Dettagli

MATEMATICA PRIMO BIENNIO LICEO DELLE SCIENZE UMANE

MATEMATICA PRIMO BIENNIO LICEO DELLE SCIENZE UMANE MATEMATICA PRIMO BIENNIO LICEO DELLE SCIENZE UMANE Profilo generale e competenze Al termine del percorso liceale lo studente dovrà padroneggiare i principali concetti e metodi di base della matematica,

Dettagli

PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE SECONDO BIENNIO TECNICO CLASSE TERZA

PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE SECONDO BIENNIO TECNICO CLASSE TERZA 1 di 5 04/12/2013 100 PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE SECONDO BIENNIO TECNICO PER IL TURISMO ANNO SCOLASTICO 2013/2014 SECONDO BIENNIO DISCIPLINA DIRITTO E LEGISLAZIONE TURISTICA MODINA DOCENTI

Dettagli

PIANO DI LAVORO ANNUALE anno scolastico 2010-2011

PIANO DI LAVORO ANNUALE anno scolastico 2010-2011 PIANO DI LAVORO ANNUALE anno scolastico 2010-2011 Docente Materia Classe DE CERCE LINA MATEMATICA 5 C I.T.C. 1. Finalità... 2. Obiettivi didattici... 3. Contenuti... 4. Tempi... 5. Metodologia e strumenti...

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

Programmazione didattica per Matematica. Primo Biennio. a.s. 2014-2015

Programmazione didattica per Matematica. Primo Biennio. a.s. 2014-2015 Programmazione didattica per Matematica Primo Biennio a.s. 2014-2015 Obiettivi educativi e didattici. Lo studio della matematica, secondo le indicazioni nazionali, concorre con le altre discipline, alla

Dettagli

RELAZIONE E PROGRAMMA FINALE DI MATEMATICA

RELAZIONE E PROGRAMMA FINALE DI MATEMATICA Allegato A Istituto paritario di Istruzione Secondaria Superiore Ivo de Carneri Civezzano Indirizzo I.T.A.S. indirizzo Biologico RELAZIONE E PROGRAMMA FINALE DI MATEMATICA A.S. 2013/2014 CLASSE: 5 a I.T.A.S.

Dettagli

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA Anno Scolastico 2014/15 LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA : MATEMATICA PRIMO BIENNIO L asse matematico ha l obiettivo di far acquisire allo studente saperi e competenze

Dettagli

VOTO In riferimento a: conoscenze, abilità, competenze disciplinari

VOTO In riferimento a: conoscenze, abilità, competenze disciplinari GRIGLIE DI VALUTAZIONE DELLE VERIFICHE E VALUTAZIONI QUADRIMESTRALI E DEL COMPORTAMENTO DEGLI ALUNNI DELLA SCUOLA PRIMARIA: ANNO SCOLASTICO 2012/2013. L introduzione della scala numerica ha fatto sì che

Dettagli

PIANO DI LAVORO ANNUALE

PIANO DI LAVORO ANNUALE PIANO DI LAVORO ANNUALE ISTITUTO TECNICO ECONOMICO: INSEGNANTE: Consiglia Mazzone MATERIA DI INSEGNAMENTO: Matematica Applicata CLASSE IV sezione ITE Anno Scolastico 2014/2015 PARTE 1 LIVELLO COMPETENZE

Dettagli

TEMA A : COMPLEMENTI DI ALGEBRA Unità didattica Contenuti Obiettivi Conoscenze/ Abilità. LE FUNZIONI REALI Le funzioni e le loro caratteristiche

TEMA A : COMPLEMENTI DI ALGEBRA Unità didattica Contenuti Obiettivi Conoscenze/ Abilità. LE FUNZIONI REALI Le funzioni e le loro caratteristiche CLASSE : 3 TURISTICO MATEMATICA (Ramella) Situazione di partenza : 25 alunni. Valutazione d ingresso: 40% negativa, 60% positiva. 1. Articolazione (moduli, unità didattiche ) delle conoscenze e dei contenuti.

Dettagli

VALLAURI L ASSE MATEMATICO

VALLAURI L ASSE MATEMATICO Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Via B. Peruzzi, 13 41012 CARPI (MO) VALLAURI www.vallauricarpi.it Tel. 059 691573 Fax 059 642074 vallauri@vallauricarpi.it

Dettagli

PROGRAMMAZIONE DIDATTICA

PROGRAMMAZIONE DIDATTICA ISTITUTO ISTRUZIONE SUPERIORE STATALE CARLO GEMMELLARO CATANIA PROGRAMMAZIONE DIDATTICA MATERIA: MATEMATICA E COMPLEMENTI DI MATEMATICA PROFESSORE: Tropea Giacomo CLASSE: V sez. B A.F.M. A.S.: 2015/2016

Dettagli

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Anno scolastico 01-01 I Docenti della Disciplina Salerno, settembre 01 Anno scolastico

Dettagli

Liceo delle Scienze Umane Sofonisba Anguissola PRIMA PROVA SCRITTA

Liceo delle Scienze Umane Sofonisba Anguissola PRIMA PROVA SCRITTA PRIMA PROVA SCRITTA CANDIDATO CLASSE DATA INDICATORI DESCRITTORI PUNTI Livello espressivo trascurato, con errori e improprietà lessicali Correttezza generale, sia pure con qualche lieve errore 2 CORRETTEZZA

Dettagli

PIANO DI LAVORO ANNUALE DEL DIPARTIMENTO DI MATERIA NUCLEI FONDAMENTALI DI CONOSCENZE

PIANO DI LAVORO ANNUALE DEL DIPARTIMENTO DI MATERIA NUCLEI FONDAMENTALI DI CONOSCENZE Pag. 1 di 7 ANNO SCOLASTICO 2014/2015 DIPARTIMENTO DI MATEMATICA INDIRIZZO AFM, RIM, SIA CLASSE BIENNIO TRIENNIO DOCENTI: Alemagna, Bartalotta, Bergamaschi, Mangione NUCLEI FONDAMENTALI DI CONOSCENZE I

Dettagli

Programmazione Disciplinare: INGLESE Classe: quinta

Programmazione Disciplinare: INGLESE Classe: quinta Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Disciplinare: INGLESE Classe: quinta I Docenti della Disciplina Salerno, lì... settembre 2012 Secondo le indicazioni ministeriali i

Dettagli

PROGRAMMAZIONE DIDATTICA ANNUALE

PROGRAMMAZIONE DIDATTICA ANNUALE PROGRAMMAZIONE DIDATTICA ANNUALE Anno Scolastico: 2013 / 2014 Dipartimento: MATEMATICA Coordinatore: ROVETTA ROBERTA Classe: 5 Indirizzo: TECNICO DEI SERVIZI TURISTICI Ore di insegnamento settimanale:

Dettagli

Stampa Preventivo. A.S. 2009-2010 Pagina 1 di 8

Stampa Preventivo. A.S. 2009-2010 Pagina 1 di 8 Stampa Preventivo A.S. 2009-2010 Pagina 1 di 8 Insegnante MARINO CRISTINA Classe 5AT Materia matematica preventivo consuntivo 99 0 titolo modulo 51 RIPASSO 52 FUNZIONI REALI DI VARIABILE 53 CALCOLO INFINITESIMALE

Dettagli

Liceo Linguistico I.F.R.S. Marcelline. Curriculum di Matematica

Liceo Linguistico I.F.R.S. Marcelline. Curriculum di Matematica Liceo Linguistico I.F.R.S. Marcelline Curriculum di Matematica Introduzione La matematica nel nostro Liceo Linguistico ha come obiettivo quello di far acquisire allo studente saperi e competenze che lo

Dettagli

Al Dirigente Scolastico dell I.T.S.T. F. Algarotti Venezia

Al Dirigente Scolastico dell I.T.S.T. F. Algarotti Venezia PIANO DI LAVORO ANNUALE Al Dirigente Scolastico dell I.T.S.T. F. Algarotti Venezia prof.ssa LAURA MARCHETTO Classe 3 sez. H MATEMATICA a.s 2014/15 B Obiettivi generali da raggiungere: Lo studente rispetti

Dettagli

COORDINAMENTO PER MATERIE SETTEMBRE 2014

COORDINAMENTO PER MATERIE SETTEMBRE 2014 Pagina 1 di 8 COORDINAMENTO PER MATERIE SETTEMBRE 2014 AREA DISCIPLINARE [ ] Biennio, Attività e Insegnamenti di area generale (Settore Tecnologico) [ ] Biennio, Attività e Insegnamenti obbligatori di

Dettagli

PIANO DI LAVORO DEL PROFESSORE

PIANO DI LAVORO DEL PROFESSORE ISTITUTO DI ISTRUZIONE SUPERIORE STATALE IRIS V ERSA RI - Cesano Maderno (MB) PIANO DI LAVORO DEL PROFESSORE Indirizzo LICEO TECNICO MATERIA M ATEMATICA APPLICATA ANNO SCOLASTICO 2011-2012 PROF PIZZILEO

Dettagli

DIPARTIMENTO DI MATEMATICA ED INFORMATICA 1

DIPARTIMENTO DI MATEMATICA ED INFORMATICA 1 SEDE LEGALE: Via Roma, 125-04019 - Terracina (LT) - Tel. +39 0773 70 28 77 - +39 0773 87 08 98 - +39 331 18 22 487 SUCCURSALE: Via Roma, 116 - Tel. +39 0773 70 01 75 - +39 331 17 45 691 SUCCURSALE: Via

Dettagli

DIPARTIMENTO SCIENTIFICO PROGRAMMAZIONE DIDATTICO METODOLOGICA ANNUALE DI MATEMATICA. CLASSI PRIME Anno scolastico 2015/2016

DIPARTIMENTO SCIENTIFICO PROGRAMMAZIONE DIDATTICO METODOLOGICA ANNUALE DI MATEMATICA. CLASSI PRIME Anno scolastico 2015/2016 DIPARTIMENTO SCIENTIFICO PROGRAMMAZIONE DIDATTICO METODOLOGICA ANNUALE DI MATEMATICA CLASSI PRIME Anno scolastico 2015/2016 Ore di lezione previste nell anno: 165 (n. 5 ore sett. x 33 settimane) 1. FINALITÀ

Dettagli

PIANO DI LAVORO A.S. 2013/14. Liceo SCIENTIFICO GOBETTI OMEGNA

PIANO DI LAVORO A.S. 2013/14. Liceo SCIENTIFICO GOBETTI OMEGNA PIANO DI LAVORO A.S. 2013/14 Liceo SCIENTIFICO GOBETTI OMEGNA Professoressa LILIANA PIZZI Disciplina MATEMATICA Classe PRIMA sezione B Data: 12 Ottobre 2013 A. LIVELLI DI PARTENZA TEST E/O GRIGLIE DI OSSERVAZIONE

Dettagli

PIANO DI LAVORO PERSONALE MATERIA: MATEMATICA

PIANO DI LAVORO PERSONALE MATERIA: MATEMATICA OBIETTIVI GENERALI DELLA DISCIPLINA NEL BIENNIO Lo studio della matematica contribuisce alla crescita intellettuale e alla formazione critica degli studenti promuovendo: lo sviluppo di capacità sia intuitive

Dettagli

Allegato al documento di classe no. 1.6 RELAZIONE FINALE

Allegato al documento di classe no. 1.6 RELAZIONE FINALE Allegato al documento di classe no. 1.6 Docente Materia Classe Maria Stefania Strati Matematica P.N.I. 5D RELAZIONE FINALE 1. Considerazioni generali La classe ha avuto una stessa insegnante di matematica

Dettagli

Competenze. -Saper semplificare le frazioni algebriche -Saper eseguire le operazioni con le frazioni algebriche

Competenze. -Saper semplificare le frazioni algebriche -Saper eseguire le operazioni con le frazioni algebriche Disciplina MATEMATICA Secondo biennio e anno conclusivo Liceo Economico sociale Classe terza Finalità Conoscenze Obiettivi minimi Finalità della matematica nel corso del secondo biennio è di proseguire

Dettagli

PROGRAMMAZIONE ANNUALE

PROGRAMMAZIONE ANNUALE Ministero dell Istruzione, dell Università e della Ricerca I.I.S. CATERINA CANIANA Via Polaresco 19 24129 Bergamo Tel:035 250547 035 253492 Fax:035 4328401 http://www.istitutocaniana.it email: canianaipssc@istitutocaniana.it

Dettagli

Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi)

Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi) Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi) Via Firenze, 51 - Tel. 0587/213400 - Fax 0587/52742 http://www.itcgfermi.it E-mail: mail@itcgfermi.it PIANO DI LAVORO Prof. Elisabetta

Dettagli

PROGRAMMAZIONE DIDATTICA ANNUALE DI DIPARTIMENTO-CORSI SERALI DIPARTIMENTO DI MATEMATICA

PROGRAMMAZIONE DIDATTICA ANNUALE DI DIPARTIMENTO-CORSI SERALI DIPARTIMENTO DI MATEMATICA ISTITUTO TECNICO INDUSTRIALE STATALE ALESSANDRO ROSSI - VICENZA PROGRAMMAZIONE DIDATTICA ANNUALE DI DIPARTIMENTO-CORSI SERALI ANNO SCOLASTICO 014-015 DIPARTIMENTO DI MATEMATICA VICENZA, 10 Ottobre 014

Dettagli

Liceo scientifico Albert Einstein. Anno scolastico 2009-2010. Classe V H. Lavoro svolto dalla prof.ssa Irene Galbiati. Materia: MATEMATICA

Liceo scientifico Albert Einstein. Anno scolastico 2009-2010. Classe V H. Lavoro svolto dalla prof.ssa Irene Galbiati. Materia: MATEMATICA Liceo scientifico Albert Einstein Anno scolastico 2009-2010 Classe V H Lavoro svolto dalla prof.ssa Irene Galbiati Materia: MATEMATICA PROGRAMMA DI MATEMATICA CLASSE V H Contenuti Ripasso dei prerequisiti

Dettagli