PARLANDO E RIPARLANDO DI SCIENZA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PARLANDO E RIPARLANDO DI SCIENZA"

Transcript

1

2 OVVERO PARLANDO E RIPARLANDO DI SCIENZA NUMERI: SIMBOLI E REALTÀ 9 di Franco Brezzi I TRE MOSCHETTIERI DELLA MATEMATICA 11 di Guido Trombetti I GRANDI NUMERI DELLA CHIMICA 13 di Luciano Mayol SOGNANDO CON I NUMERI 15 di Luciano De Menna ANCHE I FISICI DANNO I NUMERI 17 di Fedele Lizzi I NUMERI DELLA FILOSOFIA 19 di Claudia Megale

3

4 Dio ha creato i numeri interi, tutto il resto è opera dell'uomo. Leopold Kronecker Matematico tedesco del XIX secolo Ma ce n era proprio bisogno? Studente di Ingegneria del XXI secolo

5

6 Gli articoli degli incontri si trovano al sito

7

8 Franco Brezzi Nato a Vimercate (Milano) il 29 aprile 1945 e laureato in Matematica nel 1967 presso l'università di Pavia, è stato professore di Analisi Matematica prima presso il Politecnico di Torino (dal 1975 al 1977), poi presso l'università di Pavia dal (1977 al 2006) e infine presso lo IUSS (Istituto Universitario di Studi Superiori) di Pavia dal 2006 a oggi. È attualmente direttore dell Istituto di Matematica Applicata e Tecnologie Informatiche del CNR, coordinatore dei corsi di dottorato dello IUSS, presidente dell'unione Matematica Italiana e membro dell'executive Committee della European Mathematical Society. Fa inoltre parte del Consiglio Scientifico del CNRS Francese, dell'occam di Oxford (UK) e della SMAI francese. Ha anche fatto parte in passato del Consiglio Scientifico di numerosi istituti di ricerca nazionali ed internazionali, tra cui la SIMAI (Società Italiana di Matematica Applicata e Industriale; dalla sua fondazione nel 1990 al 2008), il RICAM di Linz e l'imdea di Madrid. È membro dell Istituto Lombardo, Accademia di Scienze e Lettere, socio corrispondente dell Accademia Nazionale dei Lincei, membro della European Academy of Sciences e membro del Gruppo È Commendatore al Merito della Repubblica Italiana per meriti scientifici dal È autore di circa 160 articoli scientifici pubblicati su riviste internazionali e di cinque libri. Fa inoltre parte del comitato di redazione di una ventina di riviste scientifiche internazionali e di numerose collane di libri. I suoi interessi scientifici riguardano soprattutto l'analisi numerica delle equazioni a derivate parziali, con applicazioni a vari settori di interesse ingegneristico come il calcolo strutturale, la meccanica dei fluidi e l'elettromagnetismo. Ha ottenuto vari premi e riconoscimenti, tra cui il Premio Città di Cagliari nel 1991, la T.H.H. Pian Medal dalla International Society for Computational Engineering and Sciences nel 2000, la Fellowship della IACM (International Associatiation for Computational Mechanics) nel 2002, la nomina a Higly Cited Researcher dello Institute for Scientific Information di Filadelfia nel 2002, la Gauss-Newton Medal della IACM nel 2004, il Von Neumann Award della SIAM (Society for Industrial and Applied Mathematics, Stati Uniti) nel 2009 e il premio Gili-Agostinelli della Accademia delle Scienze di Torino nel 2010.

9

10 Numeri: simboli e realtà NUMERI: SIMBOLI E REALTÀ Franco Brezzi Professore di Analisi matematica IUSS - Istituto Universitario di Studi Superiori di Pavia Il ruolo del Numero nella nostra civiltà è più complesso di quanto non si possa pensare a prima vista. Per cominciare, il numero riveste ancora un carattere cabalistico e misterioso. In generale, l uomo della strada si trova in imbarazzo se gli si chiede di definire cosa sia un numero. Tutti capiscono benissimo il significato di tre caramelle o di tre pere. Non tutti capiscono a fondo il significato di tre. Forse anche questa sottile elusività ha contribuito, nel tempo, a far sì che al numero venissero attribuiti arcani significati simbolici (ad esempio il 3 o il 7) e misteriosi poteri (ad esempio, in modi diversi, il 17 o il 666). Ma anche al di là degli aspetti cabalistici, è tutto il rapporto con gli aspetti quantitativi che riesce difficile, spesso antipatico, a volte totalmente repulsivo. Con la stessa scienza, ed in particolare con tutte le discipline che praticano con serietà il metodo scientifico, la nostra società ha un rapporto di amore-odio quasi schizofrenico. Basta guardare la nostra pubblicità per notare come la scienza e la stessa ragione vengano, a seconda dei casi, esaltate o disprezzate. La stessa schizofrenia si manifesta nelle discipline che pur avvalendosi del nome di Scienze, hanno col metodo scientifico rapporti ancora saltuari. Ma mentre la medicina, da un lato, tende a fare un uso sempre maggiore di strumenti che danno risposte quantitative, ed in generale ad avere rapporti sempre più stretti col metodo scientifico, dall altro lato sembrano in controtendenza la sostituzione dei vecchi voti con giudizi del tipo sufficiente, discreto, buono, ottimo, ed innovazioni pedagogiche simili. L aspetto più ostico del rapporto tra cittadini e numeri si trova però nell uso che viene fatto dei numeri per quantificare i rischi. Indubbiamente tale quantificazione è a volte proibitiva. La probabilità di beccarsi il classico vaso da fiori in testa camminando sul marciapiede potrebbe, almeno teoricamente, essere misurata (ma il risultato dovrebbe dipendere da molti fattori come il tipo di strada, la stagione, l ora, etc.). Ma la probabilità che il Vesuvio esploda, o che un meteorite rada al suolo Pavia sarebbe molto, molto più difficile da misurare. E la stima della probabilità di trovare, nei prossimi mille anni, nella nostra galassia, omini con pelle zebrata verde e gialla avrebbe margini di errore assolutamente ridicoli. Il problema più grave, però, non è tanto la stima delle probabilità: è, piuttosto, l uso che la nostra ragione tende a farsene. Come l esigenza, di cittadini e politici, di avere sempre e solo situazioni a rischio zero (che ovviamente sono del tutto impossibili) o l ingannevole valutazione istintiva delle probabilità, che rende i numeri ritardatari tanto appetibili e i venditori di schemi sicuri (per vincere a Lotto, Roulette e Superenalotto) tanto ricchi. Di tutto questo parleremo. Molto spesso scherzando, ma sempre con qualche sottofondo di verità: è matematica, perbacco!! Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 9

11 Numeri: simboli e realtà Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 10

12 Numeri: simboli e realtà I TRE MOSCHETTIERI DELLA MATEMATICA Guido Trombetti Professore di Analisi matematica Che i numeri non siano tutti uguali è un ovvietà. Il perché però alcuni godano di una fama maggiore di altri è dovuto a circostanze particolari. Talvolta dettate dal caso. Se c è un numero che più di tutti ha destato l attenzione di matematici e non è sicuramente. Ma chi è? Uno studente delle scuole medie risponderebbe che è Tre e quattordici Il che va certamente bene per risolvere i suoi esercizi. Ma cosa si nasconde dietro questo simbolo? Cosa realmente rappresenta? Nella realtà pigreco nasce dalla necessità di misurare la lunghezza di una circonferenza o l area del cerchio. Fin dall antichità è stato approssimato in tanti modi. Prima dai babilonesi con 3,125. Poi dagli egiziani con 3,160. Bisogna aspettare il III secolo a.c. perché tale numero venga all attenzione di Archimede. Lo stratagemma usato da Archimede per ottenere una approssimazione di fu quello di costruire poligoni inscritti e circoscritti ad una circonferenza di diametro 1 e di considerare poligoni con un numero di lati via via più grande. Aumentando il numero dei lati del poligono inscritto e di quello circoscritto i due perimetri si avvicinano (tendono) ad uno stesso valore. Questo valore è proprio. Con 96 lati Archimede trovò che il perimetro interno era 3,14084 e quello esterno 3, Archimede però ignorava il fatto che tale numero godesse di una proprietà che solo 2000 anni dopo qualcuno avrebbe dimostrato: pigreco è un numero irrazionale ovvero non esprimibile come rapporto di due numeri interi. In realtà pigreco è qualcosa di più. E un numero trascendente. Tanto per capirci la radice quadrata di due non è razionale. Ma è soluzione di una semplicissima equazione: x 2 =2. Una cosa del genere non è vera per pigreco. pigreco non è l unico numero trascendente. I numeri trascendenti sono infiniti, molti di più di quelli non trascendenti. Se ad esempio deposito in banca 1 milione di euro e ricevo l interesse del 100% all anno, dopo un anno avrò 2 milioni di euro. Se la banca mi da un interesse del 50% ogni 6 mesi dopo 6 mesi avrò con 1,5 milioni di euro. E dopo un anno 1,5 più il 50% di 1,5 milioni di euro. Quindi 2,25 milioni di euro. E 2,25 altro non è che (1 +1/2) 2.Se l interesse è 1/12 del 100% al mese dopo un anno avrò di (1+1/12) 12 =2.62 milioni di euro. E così passando all interesse giorno per giorno dopo un anno avrò con (1+1/365) 365 = 2,71 milioni di euro. Sempre la stessa formula: (1+1/n) n. Come fare per avvicinarsi sempre di più al caso limite in cui l interesse è calcolato istante per istante? E istintivo rispondere: basta prendere n uguale ad infinito. Cioè fare quello che in matematica si chiama limite per n che tende all infinito. In tal caso dopo un anno avrò 2, milioni di euro. Questo numero è noto come numero di Nepero. Nella Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 11

13 Numeri: simboli e realtà top ten dei numeri più gettonati è secondo solo a pigreco. Come pigreco anche e è un numero trascendente. Ma cosa hanno in comune pigreco ed e, oltre al fatto di essere trascendenti? Apparentemente nulla ma non è così. Tutti sanno che nessun numero reale elevato al quadrato da risultato -1. Un quadrato è sempre positivo. Così i matematici, quasi per gioco, si sono inventati un nuovo numero. Il numero i, l unità immaginaria battezzato così da Cartesio nel Eppure il suo quadrato di immaginario non ha proprio nulla, infatti è -1. Insieme a lui nascono anche i numeri complessi. A lungo considerati artifici e non numeri. Numeri che non dovrebbero esistere. Perché il numero complesso abbia senso, il concetto stesso di numero deve prima essere deconte- stualizzato dalla realtà. Il numero non deve solo rappresentare uno strumento per contare monete, stimare lunghezze, misurare lo scorrere del tempo. Nella mia fantasia, come ho già scritto in altra sede, questi tre numeri sono come i tre moschettieri. pigreco è gaudente e festaiolo come Porthos. Il numero e invece è meno conosciuto di pigreco. Rispetto al quale appare più riservato. Quasi ritroso. Mi ricorda Athos. Saggio. Il numero i mi sembra raffinato, serafico, misterioso come Aramis. Il collante dei tre moschettieri non lo dimentichiamo era D Artagnan. Quello di pigreco, e ed i, la più bella formula del mondo: (e) ixpigreco + 1=0 Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 12

14 Numeri: simboli e realtà I GRANDI NUMERI DELLA CHIMICA Luciano Mayol Professore di Chimica organica Volendo indicare in forma iperbolica una moltitudine di oggetti, di persone, si ricorre solitamente a espressioni del tipo numero astronomico, folla oceanica, ecc. A nessuno (o quasi) verrebbe mai in mente di usare allo scopo immagini prese dalla Chimica, la scienza dell immensamente piccolo. Eppure, in tema di grandi numeri, la Chimica non è seconda ad alcun altra disciplina. Vediamo perché, introducendo, innanzitutto, il numero della Chimica per antonomasia, il Numero di Avogadro. Ogni sostanza chimica è costituita da atomi, ioni o molecole che non possono essere divisi in particelle più piccole senza cambiare la natura della sostanza stessa. Per ragioni facilmente intuibili, i chimici utilizzano per i loro calcoli un unità di misura, la mole, che contiene un numero fisso di queste particelle elementari. La mole è una quantità di materia manipolabile, dell ordine dei grammi. Ad esempio, una mole di acqua ha una massa di 18 grammi e una di saccarosio di 342 grammi, ed entrambe contengono lo stesso numero di molecole. Tale numero, detto Numero di Avogadro, è straordinariamente grande (6 x 10 23, ossia, 6 seguito da 23 zeri!). Al suo cospetto, i numeri del macrocosmo sono quisquilie, pinzillacchere, direbbe Totò! Facciamo qualche confronto. Si stima che il numero di stelle della nostra galassia sia compreso tra 200 e 600 miliardi (2-6 x ). Quindi, da un semplice calcolo, si può dedurre che il numero di molecole contenute in una sola mole di acqua (18 grammi, una tazzina da caffè) è almeno miliardi (10 12 ) di volte più grande del numero di tutte le stelle presenti nell intera galassia! Un altra considerazione può, forse, servire ancora meglio a dare l idea dell entità dei numeri in gioco. Il volume complessivo della massa oceanica è stimato intorno a milioni di Km 3, pari a circa 1.4 x litri. Immaginiamo di versare a Marechiaro la tazzina di acqua di cui sopra e di attendere un tempo sufficientemente lungo da permettere un perfetto mescolamento dell acqua di tutti gli oceani (tale processo è puramente ipotetico, ovviamente). Si può facilmente calcolare che ogni litro d acqua, raccolto in un punto qualsiasi del globo terracqueo, magari alle Isole Fiji, per esempio, conterrebbe un numero significativo di molecole della tazzina iniziale (circa 400). Sulla base di considerazioni analoghe, posso affermare che, se uno fa una doccia e, dopo qualche giorno, si bagna in uno specchio di mare non troppo distante, ha la ragionevole certezza di venire a contatto con un numero cospicuo di molecole già incontrate nella stanza da bagno. Quindi, l asserzione di Eraclito, secondo cui non ci si bagna mai due volte nella stessa acqua, a livello molecolare, non è poi rigorosamente vera! Giocando con i numeri della Chimica, si può giungere a tante conclusioni interessanti, spesso distanti dalla percezione comune. Se chiediamo a un signore in un bar se il caffè che sta tranquillamente gustando contiene cianuro, risponderà certamente di no (altrimenti non lo berrebbe!). Invece il cianuro c è (e come!), ma è presente in concentrazione tale da non essere Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 13

15 Numeri: simboli e realtà nocivo. Per dare un idea, la concentrazione massima di cianuro legalmente tollerata nell acqua potabile è dell ordine di 10-7 molare, corrispondente a un numero di ioni cianuro per litro 100 mila volte più alto del numero di stelle della galassia! Disponendo di uno strumento sufficientemente sensibile, è possibile evidenziare in un campione la presenza di sostanze insospettate. Se, al contrario, in un campione non è rilevata una particolare sostanza, non si può escludere con assoluta certezza che essa sia presente lo stesso. La soglia di rilevazione dei moderni metodi analitici è, infatti, nel migliore dei casi, intorno a molare (corrispondente a circa 600 milioni di particelle per litro). Così, se, ad esempio, in un litro di una soluzione in esame ci sono 10 milioni di molecole di cocaina, il valore di concentrazione di droga misurato risulterà zero. Appare evidente, dunque, che il significato del numero zero in Chimica è diverso da quello cui siamo comunemente abituati: se una persona possiede 10 milioni di euro, il suo patrimonio non risulterà certo essere zero (tranne, forse, che per il fisco!). Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 14

16 Numeri: simboli e realtà SOGNANDO CON I NUMERI Luciano De Menna Professore di Elettrotecnica La prima immagine che mi è venuta in mente, quando mi hanno chiesto di scrivere su cinema e numeri, è stata quella della sequenza iniziale... cinque, quattro tre, due, uno... che si vedeva un tempo nelle pellicole non ancora definitivamente montate. Dopo quel conto alla rovescia, la magia del cinema incominciava. Poi ho provato a contare con i titoli dei film: Il primo cavaliere, La seconda moglie, Il terzo uomo, Quarto potere, Il quinto elemento, Il sesto senso, Il settimo sigillo, Otto donne e un mistero, "9", Dieci piccoli indiani o I dieci comandamenti. Ci sono anche i numeri frazionari come in Otto e mezzo e Nove settimane e mezzo. Insomma, ci sono tutti. Del resto era inevitabile visto che il cinema rappresenta la nostra vita o, a volte, dà corpo alle nostre fantasie, e queste e quella sono infarcite di numeri: numeri come misura, spesso denaro, come in La ragazza da un milione di dollari, ma anche peso, come in Ventuno grammi - dovrebbe essere il peso dell'anima -, o distanza, Mille miglia lontano o Ventimila leghe sotto i mari. Ma anche numeri come simboli, come in Pi greco - il teorema del delirio. E naturalmente i numeri sono presenti non solo nei titoli: ricordate l'allucinante parete ricoperta di numeri di A beautiful mind, o la lavagna piena di formule di Will Hunting - Genio ribelle e di Sipario strappato? Ma comunque i numeri al cinema non rappresentano mai veramente se stessi, sono dei simboli: non si può chiedere allo spettatore di capire, con un colpo d occhio, formule complesse o operazioni matematiche. Il creatore di B.C., Johnny Hart, un cartoonist le cui strip erano abitate da buffi omini dell'età della pietra rigorosamente vestiti di una pelle d'animale gettata su di una spalla, aveva immaginato così la nascita dell'amicizia tra noi e i numeri. Due trogloditi, ma mica tanto, discutono tra loro mentre sullo sfondo si vedono pascolare delle pecore ed un toro solitario. Quello più alto dice all altro Se tu mi dai il tuo toro, io ti do tante pecore. L altro ci pensa su un po e poi dice Sì, ma tante quante?. Chi sa se è andata proprio così, se cioè l esigenza primaria è stata quella di regolare il mondo delle quantità. Alcuni sostengono che è nata prima l esigenza dei numeri ordinali, primo, secondo ecc., per regolare il mondo delle gerarchie: anche nel branco dei lupi il capo mangia per primo ed è il primo in tutto. Ma poi all'improvviso mi ha fulminato una banale verità: i numeri sono il gioco. Con i numeri noi giochiamo e ci sono numeri in tutti i giochi: nelle carte, nella roulette, nei dadi, nelle schedine, nelle lotterie e quindi, a Napoli, nel lotto. E allora ho ricordato quel bellissimo film di Anna Bucchetti sul gioco del lotto, Dreaming by numbers. Una poetica registrazione di una realtà che a Napoli, nel bene e nel male, è di casa. Ci voleva una milanese trapiantata ad Amsterdam, per fare un quadro così affettuoso di questa nostra disgraziata città. Nel documentario veniva Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 15

17 Numeri: simboli e realtà intervistato il mio amico Giuseppe Imbucci, che da un po ci ha lasciato, storico ed esperto del gioco e della povertà, come lui amava definirsi. Lucià - mi diceva - più c è povertà e più si gioca; è un teorema! Ho trascritto uno dei brani dell intervista: Il gioco del lotto non è innocente Il gioco del lotto in se ha un sistema e un ambizione che è quella di interpretare il mondo, perché rinvia ad una cultura antichissima, precristiana, la cultura pitagorica... e alla Kabala. Ta Kabalà è una parola che rinvia alla interpretazione numerologica della vita. Il pitagorismo nasce sulle rive del mare. Lì, se non avevi come scrivere, potevi usare i kalculos. Kalculos in greco significa pietrina, pietra in realtà significa anche far di calcolo. Poi posando sul tavolo un sassolino, continuava: Questo Kalculos, questa pietrina è il numero uno; è anche il punto e due Kalculos fanno la semiretta e tre necessariamente fanno il triangolo, fino al disegno della Tetraktis, i dieci numeri, che era il simbolo che i pitagorici portavano sul petto. Ed in questi dieci numeri è contenuta in nuce tutta l immagine del mondo. Il pitagorismo è un grande sistema simbolico, che si tramanda poi nella Kabala, fino alla nostra Smorfia napoletana. E questa città, che è tra le città più antiche d Europa, nella sua cultura popolare pratica quest antichissima civiltà. La pratica inconsapevolmente... misteriosamente e quotidianamente con semplicità. Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 16

18 Numeri: simboli e realtà ANCHE I FISICI DANNO I NUMERI Fedele Lizzi Professore di Teoria quantistica dei campi In fisica usiamo tanti numeri, in qualche modo il lavoro del fisico consiste nel dare i numeri. Un teorico calcola numeri, un fisico sperimentale misura quantità fisiche, che sono poi altri numeri. Fra i tanti numeri che si calcolano e misurano alcuni hanno uno status speciale, le costanti fondamentali. Tralascio qui le costanti fondamentali matematiche come, o la e di Napier trattane altrove. Queste sono costanti assolute, nel senso che non è possibile concepire un mondo in cui il loro valore sia diverso (almeno io non ci riesco)! Invece parliamo delle costanti fondamentali della fisica. Fra queste tre hanno un ruolo basilare, e su di esse si basano teorie fondamentali. La velocità della luce c, alla base della relatività speciale, la costante di Planck e la costante di gravitazione universale G, rispettivamente alla base della meccanica quantistica e della teoria della gravitazione, soprattutto nella sua moderna versione della relatività generale. Ci sono differenze fondamentali con le costanti matematiche. La prima è che mentre queste si calcolano, le costanti fisiche vanno misurate. Ovvero dobbiamo fare un esperimento per valutarle, ed avremo un numero con una precisione che non sarà mai assoluta, se vogliamo avere altre cifre decimali dovremo fare un altro esperimento migliorato (e più costoso!) Inoltre in generale sono quantità dimensionali, ovvero hanno delle unità di misura, per esempio c= m/sec. Ma avremmo anche potuto scrive c=112,664 miliardi di miglia alla settimana, oppure c=13724,2 calorie per minuto alla libbra al pollice. Il fatto è che c è una quantità dimensionale, con le dimensioni di una lunghezza diviso un tempo, e possiamo scegliere le unità di misura che vogliamo. È possibile immaginare mondi in cui queste costanti sono differenti. Un divertente libro di Gamow, intitolato Mr. Tompkins, immagina un universo dove la velocità della luce è molto più bassa... Quindi il valore numerico di queste costanti universale è accidentale ed ha a che fare con come noi abbiamo scelto le nostre unità di misura. E con una convenzione diversa possiamo cambiarne il valore a piacimento. Ma c è una eccezione, la costante di struttura fine dell elettromagnetismo, che regola l intensità della forza elettromagnetica: = 1/137. Questa è un numero puro, ovvero non necessita di unità di misura, al pari di, ma è anche una quantità fisica misurabile come c, e possiamo immaginarla con un valore diverso (e in effetti ad alte energie il suo valore cambia). E dato che è un numero puro, il suo valore non cambia con le unità di misura scelte. Volendo lo potremmo facilmente comunicare (magari in forma binaria) ad un alieno, che si potrebbe fare un idea del nostro stato di avanzamento tecnologico dal numero di cifre decimali che Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 17

19 Numeri: simboli e realtà siamo stati capaci di calcolare e misurare. E se gli alieni sanno molte più cifre decimali di noi? Allora facciamoci subito dire come hanno fatto a convincere i loro politici a dare più soldi alla ricerca! Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 18

20 Numeri: simboli e realtà I NUMERI DELLA FILOSOFIA Claudia Megale Dottoranda in Scienze Filosofiche Siamo anche numeri, la nostra vita ne è scandita da una serie infinita, codici personali di conto corrente e di carte di credito; numeri degli anni che passano per quel tempo che irreversibilmente dà forma al nostro esistere come teorizzava, agli inizi del Novecento il francese Bergson, scrivendo di Materia e memoria. Oggi, non stupisce che è il numero scelto da Mattia Balossino e che il sia quello cui si associa Alice Della Rocca, i due protagonisti del fortunato romanzo di Paolo Giordano da cui è stata tratta di recente l omonima pellicola diretta da Saverio Costanzo. I due ragazzi sono infatti paragonati a coppie di numeri primi che se ne stanno vicini, anzi quasi vicini perché tra di loro c è sempre un numero pari che gli impedisce di toccarsi per davvero ; sono attratti l'uno dall altro, ma divisi da un invalicabile ostacolo. Si avvertono emarginati da una società che non li comprende o forse che loro non comprendono. E sono Numeri, simboli e realtà in questa età del post moderno che riscopre a suo modo e vive anche nella letteratura l intimo significato filosofico del numero. Esso ha una storia antichissima che attraversa tutto il pensiero occidentale con un versante ontologico (la natura dei numeri) e uno epistemologico corrispondente alla svolta cartesiana (la giustificazione delle matematiche). Per gli antichi Greci i numeri erano figure cui si riducono tutte le cose tutte le cose che si conoscono come si legge in un frammento di Filolao; è un appartenenza non molto diversa da quella sostenuta da Galileo Galilei a proposito del gran libro della natura ( ) scritto in caratteri matematici, in triangoli, linee e punti ma questa volta espressione di una misura e non più di una qualità-copia dell idea come nel Timeo platonico. Dalla fase realistica di matrice pitagorica secondo la quale il numero è elemento costitutivo della realtà, accessibile non ai sensi ma alla ragione al moderno con Cartesio, Newton, Leibniz e Kant tanto per ricordare i matematici e filosofi più noti che hanno aperto la fase soggettivistica: il numero è un idea, una manifestazione del pensiero. Per Kant è uno schema, la cui novità sta nel suo non rappresentare un operazione empirica, cioè effettuata sul materiale sensibile, ma di essere un attività intellettuale che opera sul molteplice dato dall intuizione sensibile pura (nelle forme dello spazio e del tempo). Con lo scritto di Frege sui Fondamenti dell aritmetica del 1884 si può indicare l inizio di un altra fase delle relazioni tra matematica e filosofia a noi più vicina: il numero è oggettivo ma non reale, nel senso che gli viene riconosciuta l estensione del concetto e la capacità di rappresentazione. Il che è in sintonia con il vissuto dell uomo contemporaneo al centro del messaggio numerico del fortunato testo letterario che, non a caso, ricorda lo studio di Riemann per aver mescolato i numeri immaginari con la funzione zeta descritta da un paesaggio in quattro dimensioni, le prime due Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 19

21 Numeri: simboli e realtà utili a tracciare le coordinate di detti numeri nella funzione; le altre per descrivere il numero immaginario prodotto dalla funzione, quell im- maginario e quella funzione di cui hanno ancora bisogno i nostri pensieri e le nostre solitudini nel mondo moderno delle globali comunicazioni. Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 20

22

23

24

25

Intervista a Andrew Wiles

Intervista a Andrew Wiles Intervista a Andrew Wiles di Claudio Bartocci Immagine da http://www.cs.princeton.edu/~dpd/deanoffaculty/depts.html 15 ottobre 2004 La grande passione di Pierre de Fermat - nato nel 1601 in una cittadina

Dettagli

LA PSICOLOGA VA A SCUOLA!

LA PSICOLOGA VA A SCUOLA! LA PSICOLOGA VA A SCUOLA! I piccoli reporter della Guglielmo Marconi intervistano la dott.ssa Laura Bottini, psicologa che collabora con il nostro istituto. A cura del gruppo 4 dei Piccoli Reporter Quando

Dettagli

Le metafore della scienza. di Tommaso Castellani. S. Ho saputo che hai fatto un seminario intitolato Le metafore della scienza.

Le metafore della scienza. di Tommaso Castellani. S. Ho saputo che hai fatto un seminario intitolato Le metafore della scienza. Le metafore della scienza di Tommaso Castellani Un dialogo tra: F. Un fisico che fa ricerca all università. I. Un fisico che si occupa di insegnamento a scuola. S. Uno studente sulla strada della fisica.

Dettagli

La sezione di Matematica della prova nazionale

La sezione di Matematica della prova nazionale La sezione di Matematica della prova nazionale Giorgio Bolondi Roma, 18 aprile 2008 Presentazione Prova Nazionale 1 Cosa può valutare? I diversi processi valutativi messi in atto dall insegnante accompagnano

Dettagli

Mete e coerenze formative. Dalla scuola dell infanzia al biennio della scuola secondaria di II grado

Mete e coerenze formative. Dalla scuola dell infanzia al biennio della scuola secondaria di II grado Mete e coerenze formative Dalla scuola dell infanzia al biennio della scuola secondaria di II grado Area disciplinare: Area Matematica Finalità Educativa Acquisire gli alfabeti di base della cultura Disciplina

Dettagli

MACROARGOMENTI--MATEMATICA Relativi alle classi prime e seconde degli indirizzi di :ordinamento, bilinguismo, indirizzo biologico e PNI.

MACROARGOMENTI--MATEMATICA Relativi alle classi prime e seconde degli indirizzi di :ordinamento, bilinguismo, indirizzo biologico e PNI. MACROARGOMENTI--MATEMATICA Relativi alle classi prime e seconde degli indirizzi di :ordinamento, bilinguismo, indirizzo biologico e PNI. Classi prime Gli insiemi con relative operazioni Operazioni ed espressioni

Dettagli

CURRICOLO MATEMATICA

CURRICOLO MATEMATICA 1 CURRICOLO MATEMATICA Competenza 1 al termine della scuola dell Infanzia 2 NUMERI Raggruppare, ordinare, contare, misurare oggetti, grandezze ed eventi direttamente esperibili. Utilizzare calendari settimanali

Dettagli

CURRICOLO MATEMATICA ABILITA COMPETENZE

CURRICOLO MATEMATICA ABILITA COMPETENZE CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando

Dettagli

N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi

N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi Tra i molteplici interessi scientifici di Leonardo non dobbiamo dimenticare la matematica.

Dettagli

1. LA MOTIVAZIONE. Imparare è una necessità umana

1. LA MOTIVAZIONE. Imparare è una necessità umana 1. LA MOTIVAZIONE Imparare è una necessità umana La parola studiare spesso ha un retrogusto amaro e richiama alla memoria lunghe ore passate a ripassare i vocaboli di latino o a fare dei calcoli dei quali

Dettagli

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ;

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; Primo anno Secondo anno Terzo anno Primo anno MATEMATICA Scuola dell Infanzia Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; legge

Dettagli

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte Competenza chiave europea: MATEMATICA Scuola Primaria DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte TAB. A TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE al termine della Scuola Primaria

Dettagli

Filopoesia per l educazione. Gemellaggi tra bambini e studenti alla LUMSA.

Filopoesia per l educazione. Gemellaggi tra bambini e studenti alla LUMSA. Filopoesia per l educazione. Gemellaggi tra bambini e studenti alla LUMSA. Di tutto quello che anche quest anno abbiamo cercato di fare, dei bambini della scuola dell Infanzia che continuano a giocare

Dettagli

MATEMATICA Competenza chiave europea: COMPETENZA MATEMATICA E COMPETENZE DI BASE IN SCIENZA E TECNOLOGIA Competenza specifica: MATEMATICA

MATEMATICA Competenza chiave europea: COMPETENZA MATEMATICA E COMPETENZE DI BASE IN SCIENZA E TECNOLOGIA Competenza specifica: MATEMATICA MATEMATICA Competenza chiave europea: COMPETENZA MATEMATICA E COMPETENZE DI BASE IN SCIENZA E TECNOLOGIA Competenza specifica: MATEMATICA Le conoscenze matematiche contribuiscono alla formazione culturale

Dettagli

La matematica dello spazio; le diverse geometrie

La matematica dello spazio; le diverse geometrie La matematica dello spazio; le diverse geometrie Marco Andreatta Facoltá di Scienze MMFFNN Universitá di Trento Simmetrie-giochi di specchi p.1/36 Il primo: filosofo, matematico... Talete, Mileto 624-547

Dettagli

LABORATORIO GIOCHI MATEMATICI ANNO SCOLASTICO 2010/2011 PRIMO QUADRIMESTRE

LABORATORIO GIOCHI MATEMATICI ANNO SCOLASTICO 2010/2011 PRIMO QUADRIMESTRE LABORATORIO GIOCHI MATEMATICI ANNO SCOLASTICO 2010/2011 PRIMO QUADRIMESTRE Le immagini contenute in questa presentazione sono estratte da pagine web, se qualcuno dovesse trovare immagini coperte da copyright,

Dettagli

CURRICOLO MATEMATICA OBIETTIVI E COMPETENZE

CURRICOLO MATEMATICA OBIETTIVI E COMPETENZE CURRICOLO MATEMATICA OBIETTIVI E COMPETENZE CLASSE OBIETTIVI COMPETENZE PRIMA Conoscere ed operare con i numeri Contare oggetti o eventi, con la voce e mentalmente, in senso progressivo e regressivo. Leggere

Dettagli

PER LA PSICANALISI LAICA INTERVENTO M. PLON

PER LA PSICANALISI LAICA INTERVENTO M. PLON PER LA PSICANALISI LAICA INTERVENTO M. PLON C è un libro sui ragazzini agitati, dal titolo On agite un enfant: è un gioco di parole, perché c era una pubblicità di una bevanda gassata che se non ricordo

Dettagli

Lezione 15: Un po di cose in generale

Lezione 15: Un po di cose in generale Lezione 15: Un po di cose in generale Abbiamo visto come possiamo associare ad alcune forme del piano o dello spazio delle espressioni analitiche che le rappresentano. Come un equazione sia una relazione

Dettagli

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO. L alunno ha rafforzato un atteggiamento positivo rispetto

Dettagli

MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE ALLA FINE DELLA SCUOLA PRIMARIA

MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE ALLA FINE DELLA SCUOLA PRIMARIA MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE ALLA FINE DELLA SCUOLA PRIMARIA L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e sa valutare l opportunità di

Dettagli

SCRIVERE UNA (BUONA) TESINA PER L ESAME DI STATO

SCRIVERE UNA (BUONA) TESINA PER L ESAME DI STATO SCRIVERE UNA (BUONA) TESINA PER L ESAME DI STATO di Aurelio Alaimo I. I. S. Caduti della Direttissima - Castiglione dei Pepoli (Bologna) aurelio.alaimo@iperbole.bologna.it (critiche, osservazioni e commenti

Dettagli

Buonasera e grazie dell invito rivoltomi e a tutti voi per essere qui.

Buonasera e grazie dell invito rivoltomi e a tutti voi per essere qui. Buonasera e grazie dell invito rivoltomi e a tutti voi per essere qui. E un grande momento questo perché si mette a tema l educazione e questo tema per me che sono un imprenditore è quello centrale della

Dettagli

SCUOLA SECONDARIA DI I GRADO

SCUOLA SECONDARIA DI I GRADO Operare in situazioni reali e/o disciplinari con tecniche e procedure di calcolo L alunno si muove con sicurezza nel calcolo anche con i numeri razionali, ne padroneggia le diverse e stima la grandezza

Dettagli

COME AGGIORNARE IL PROPRIO SISTEMA DI CREDENZE

COME AGGIORNARE IL PROPRIO SISTEMA DI CREDENZE 11 November 2014 COME AGGIORNARE IL PROPRIO SISTEMA DI CREDENZE Articolo a cura di Nicola Doro - Responsabile Commerciale Ad Hoc Ti sei mai chiesto perché alcune persone falliscono in tutto quello che

Dettagli

Ecco un gruppo di cinque storielle inventate per far riflettere sull'aritmetica e i suoi fondamenti. CARLETTO E LA MATEMATICA

Ecco un gruppo di cinque storielle inventate per far riflettere sull'aritmetica e i suoi fondamenti. CARLETTO E LA MATEMATICA info@didatticaperprogetti.it PROGETTO 2.1.9 TITOLO Carletto e la matematica AREA Matematica (Aritmetica) SCUOLA Elementare: classi 3-4 - 5 Media: classe 1 OBIETTIVO Riflettere sui fondamenti della matematica

Dettagli

IPOTESI di CURRICOLO MATEMATICA SCUOLA PRIMARIA E SECONDARIA DI PRIMO GRADO con riferimento alle Indicazioni Nazionali 2012

IPOTESI di CURRICOLO MATEMATICA SCUOLA PRIMARIA E SECONDARIA DI PRIMO GRADO con riferimento alle Indicazioni Nazionali 2012 IPOTESI di CURRICOLO MATEMATICA SCUOLA PRIMARIA E SECONDARIA DI PRIMO GRADO con riferimento alle Indicazioni Nazionali 2012 6 IC PADOVA COMPETENZE SPECIFICHE Numeri conoscere e padroneggiare i contenuti

Dettagli

I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA

I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA Indice Introduzione Il sistema decimale Il sistema binario Conversione di un numero da base 10 a base 2 e viceversa Conversione in altri sistemi di numerazione

Dettagli

Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia

Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia L'educazione matematica ha il compito di avviare l'alunno verso una maggiore consapevolezza e padronanza del pensiero

Dettagli

Successioni ricorsive

Successioni ricorsive Capitolo 1 Successioni ricorsive Un modo spesso usato per assegnare una successione è quello ricorsivo che consiste nell assegnare alcuni termini iniziali (il primo, oppure i primi due, oppure i primi...

Dettagli

Convegno Cristina Rossi 2012. Dono del sangue e seconde generazioni Quali prospettive

Convegno Cristina Rossi 2012. Dono del sangue e seconde generazioni Quali prospettive Convegno Cristina Rossi 2012 Dono del sangue e seconde generazioni Quali prospettive Paolo Guiddi Anna Granata http://www.youtube.com/watch?v=sqflj Wp2EMk&feature=relmfu Donare il sangue Forma di inclusione?

Dettagli

Che cosa è la fisica? Per arrivare ad una legge fisica si fa un insieme di cose pratiche (procedura) che si chiama metodo scientifico.

Che cosa è la fisica? Per arrivare ad una legge fisica si fa un insieme di cose pratiche (procedura) che si chiama metodo scientifico. 01 Che cosa è la fisica? In questa lezione iniziamo a studiare questa materia chiamata fisica. Spesso ti sarai fatto delle domande su come funziona il mondo e le cose che stanno attorno a te. Il compito

Dettagli

ESERCIZI DI PREPARAZIONE E

ESERCIZI DI PREPARAZIONE E ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI si campa anche senza sapere che cos è un equazione, senza sapere suonare uno strumento musicale, senza conoscere il nome del

Dettagli

PRIMO ISTITUTO COMPRENSIVO di PALAZZOLO S/O via Zanardelli n.34 Anno scolastico 2014/2015

PRIMO ISTITUTO COMPRENSIVO di PALAZZOLO S/O via Zanardelli n.34 Anno scolastico 2014/2015 PRIMO ISTITUTO COMPRENSIVO di PALAZZOLO S/O via Zanardelli n.34 Anno scolastico 2014/2015 CURRICOLI DISCIPLINARI SCUOLA DELL INFANZIA e PRIMO CICLO di ISTRUZIONE Percorso delle singole discipline sulla

Dettagli

Ponzio a Bologna Maggio 2009

Ponzio a Bologna Maggio 2009 Ponzio a Bologna Maggio 2009 Intervento di Gregorio Scalise Il filosofo Hans Blumenberg parla di esistenza di un inadeguatezza del linguaggio rispetto alla sensazione, topos che ricorre nella poesia, e

Dettagli

Sono nato in Marocco. Ho un esperienza di lavoro di 14 anni nel mio paese. Ho fatto anche ruolo di sindacato anche nel mio paese. Sono venuto qua in

Sono nato in Marocco. Ho un esperienza di lavoro di 14 anni nel mio paese. Ho fatto anche ruolo di sindacato anche nel mio paese. Sono venuto qua in Sono nato in Marocco. Ho un esperienza di lavoro di 14 anni nel mio paese. Ho fatto anche ruolo di sindacato anche nel mio paese. Sono venuto qua in Italia non solo per motivi di lavoro, ma per motivi

Dettagli

Spinoza e il Male. Saitta Francesco

Spinoza e il Male. Saitta Francesco Spinoza e il Male di Saitta Francesco La genealogia del male è sempre stato uno dei problemi più discussi nella storia della filosofia. Trovare le origini del male è sempre stato l oggetto principale di

Dettagli

IL NUMERO. PRIMO BIENNIO: 1a - 2a elementare COMPETENZE ABILITA' CONOSCENZE

IL NUMERO. PRIMO BIENNIO: 1a - 2a elementare COMPETENZE ABILITA' CONOSCENZE IL NUMERO PRIMO BIENNIO: 1a - 2a elementare Utilizzare i numeri naturali fino a 100 per contare e per eseguire operazioni aritmetiche di addizione e sottrazione, sia nel calcolo mentale che scritto. Raggruppare

Dettagli

IL POTERE DELLA MENTE

IL POTERE DELLA MENTE PARTE PRIMA IL POTERE DELLA MENTE Dimagrisci senza dieta_ testo.indd 1 28/02/13 09.28 Aspettati di farcela Ci sono cose che vi posso insegnare, altre che potete imparare dai libri. Ma ci sono cose che,

Dettagli

Istituto Comprensivo Caposele (Av) Curricolo verticale d istituto a.sc. 2013-2014

Istituto Comprensivo Caposele (Av) Curricolo verticale d istituto a.sc. 2013-2014 CURRICOLO DI MATEMATICA SCUOLA PRIMARIA CLASSE PRIMA 1. Contare oggetti o eventi, a voce e mentalmente, in senso progressivo e regressivo e per salti di due, tre, 2. Leggere e scrivere i numeri naturali

Dettagli

INDICE. MOD. 5 L INDAGINE STATISTICA Come si svolge un indagine statistica... Verifica...» 121

INDICE. MOD. 5 L INDAGINE STATISTICA Come si svolge un indagine statistica... Verifica...» 121 Prefazione Si racconta che il re Tolomeo stava cercando di leggere il libro di matematica di Euclide, un grande matematico greco dei tempi antichi che visse intorno al 3 a.c. ad Alessandria d Egitto. Euclide

Dettagli

Opere di misericordia 1

Opere di misericordia 1 Percorso di riscoperta delle Opere di misericordia 1 DAR DA MANGIARE AGLI AFFAMATI INSEGNARE AGLI IGNORANTI Spunti di riflessione per un dibattito sull Opera di misericordia corporale Dar da mangiare agli

Dettagli

Dispense di Filosofia del Linguaggio

Dispense di Filosofia del Linguaggio Dispense di Filosofia del Linguaggio Vittorio Morato II settimana Gottlob Frege (1848 1925), un matematico e filosofo tedesco, è unanimemente considerato come il padre della filosofia del linguaggio contemporanea.

Dettagli

I NUMERI DI PADOVAN (CONNESSIONI TRA LA SERIE DI PADOVAN ED ALTRE SERIE NUMERICHE)

I NUMERI DI PADOVAN (CONNESSIONI TRA LA SERIE DI PADOVAN ED ALTRE SERIE NUMERICHE) I NUMERI DI PADOVAN (CONNESSIONI TRA LA SERIE DI PADOVAN ED ALTRE SERIE NUMERICHE) Gruppo B. Riemann Francesco Di Noto, Michele Nardelli Abstract In this paper we show some connections between Padovan

Dettagli

Francesco Biccari (biccari@gmail.com) Maria Grazia Polidoro (mariagraziapolidoro@gmail.com) 31 gennaio 2013. Prerequisiti

Francesco Biccari (biccari@gmail.com) Maria Grazia Polidoro (mariagraziapolidoro@gmail.com) 31 gennaio 2013. Prerequisiti Schema dettagliato di una lezione rivolta a una classe di studenti del quinto anno del liceo scientifico. Calcolo approssimato dei numeri trascendenti π ed e Francesco Biccari (biccari@gmail.com) Maria

Dettagli

2. Il problema del metodo

2. Il problema del metodo 2. Il problema del metodo 2.1 Lo sviluppo del pensiero filosofico-scientifico tra Cinque e Seicento porta in primo piano il problema del metodo, vero e proprio filo continuo tra vari pensatori che pure

Dettagli

CURRICOLO VERTICALE DI MATEMATICA

CURRICOLO VERTICALE DI MATEMATICA CURRICOLO VERTICALE DI MATEMATICA Traguardo per lo sviluppo delle competenze Sviluppa un atteggiamento positivo rispetto alla matematica, attraverso esperienze significative, che gli hanno fatto intuire

Dettagli

Maschere a Venezia CAP I

Maschere a Venezia CAP I Maschere a Venezia 7 CAP I In un pomeriggio di fine marzo Altiero Ranelli, un giovane giornalista de Il Gazzettino di Venezia, entra nell ufficio del direttore. - Ho una grande notizia. - grida contento.

Dettagli

Franco Taggi Reparto Ambiente e Traumi Dipartimento Ambiente e connessa Prevenzione Primaria Istituto Superiore di Sanità

Franco Taggi Reparto Ambiente e Traumi Dipartimento Ambiente e connessa Prevenzione Primaria Istituto Superiore di Sanità Il metodo del Rispondente Cancellato (ERM) per i controlli su strada della guida sotto l influenza di alcol o sostanze (e non solo): un paradigma illustrativo. Franco Taggi Reparto Ambiente e Traumi Dipartimento

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

PROGRAMMAZIONE D ISTITUTO a.s. 2012/2013

PROGRAMMAZIONE D ISTITUTO a.s. 2012/2013 PROGRAMMAZIONE D ISTITUTO a.s. 2012/2013 CURRICOLO DI MATEMATICA classi prime, seconde e terze Riferimenti alle INDICAZIONI NAZIONALI: PECUP - Obiettivi formativi OSA -Obiettivi specifici di apprendimento

Dettagli

La cooperazione per lo sviluppo sociale e economico sostenibile delle comunità locali nei Paesi poveri

La cooperazione per lo sviluppo sociale e economico sostenibile delle comunità locali nei Paesi poveri Alberto Majocchi La cooperazione per lo sviluppo sociale e economico sostenibile delle comunità locali nei Paesi poveri Dato che sono del tutto incompetente sul tema oggetto dell incontro odierno, sono

Dettagli

La Democrazia spiegata dal Difensore Civico del Comune di Segrate, avv. Fabrizia Vaccarella, al Consiglio Comunale dei Ragazzi

La Democrazia spiegata dal Difensore Civico del Comune di Segrate, avv. Fabrizia Vaccarella, al Consiglio Comunale dei Ragazzi La Democrazia spiegata dal Difensore Civico del Comune di Segrate, avv. Fabrizia Vaccarella, al Consiglio Comunale dei Ragazzi Vi avevo anticipato l anno scorso che il Difensore Civico s interessa dei

Dettagli

Fare geometria come e perchè

Fare geometria come e perchè Fare geometria come e perchè La matematica non è una materia, è un metodo. Non è uno scaffale del sapere, quello che contiene formule, costruzioni mentali, astrazioni, che sembrano nascere le une dalle

Dettagli

NONA LEZIONE L AUTOSTOP

NONA LEZIONE L AUTOSTOP NONA LEZIONE L AUTOSTOP NONA LEZIONE 96 L autostop Scendi pure tu dalla macchina? Devo spingere anch io? Sì, se vuoi. Ma scusa, quanto è distante il distributore di benzina? Non lo so qualche chilometro.

Dettagli

MATEMATICA LINEE GENERALI E COMPETENZE

MATEMATICA LINEE GENERALI E COMPETENZE MATEMATICA LINEE GENERALI E COMPETENZE Al termine del percorso del liceo scientifico lo studente conoscerä i concetti e i metodi elementari della matematica, sia interni alla disciplina in så considerata,

Dettagli

Luca Zeffiro 4C Liceo Scientifico Galileo Galilei

Luca Zeffiro 4C Liceo Scientifico Galileo Galilei Luca Zeffiro 4C Il problema sulla conservazione del moto nacque con Cartesio: nei suoi «Principia philosophiae» egli affermò la conservazione della quantità di moto a partire da Dio: gli errori presenti

Dettagli

AREA LOGICO-MATEMATICA

AREA LOGICO-MATEMATICA SCUOLA DELL INFANZIA AREA LOGICO-MATEMATICA TRAGUARDI SCUOLA DELL INFANZIA 3 ANNI 4 ANNI 5 ANNI NUCLEO: NUMERO E SPAZIO PREREQUISITI -Raggruppare e ordinare secondo criteri diversi, confrontare e valutare

Dettagli

SERIE NUMERICHE. prof. Antonio Greco 6-11-2013

SERIE NUMERICHE. prof. Antonio Greco 6-11-2013 SERIE NUMERICHE prof. Antonio Greco 6--203 Indice Motivazioni........... 3 Definizione........... 3 Errore tipico........... 3 Un osservazione utile...... 3 Condizione necessaria...... 4 Serie armonica.........

Dettagli

Decisioni in condizioni di rischio. Roberto Cordone

Decisioni in condizioni di rischio. Roberto Cordone Decisioni in condizioni di rischio Roberto Cordone Decisioni in condizioni di rischio Rispetto ai problemi in condizioni di ignoranza, oltre all insieme Ω dei possibili scenari, è nota una funzione di

Dettagli

Se analizziamo quel segnale luminoso possiamo capire parecchie cose sulla sorgente che lo ha emesso (che si chiama sorgente luminosa).

Se analizziamo quel segnale luminoso possiamo capire parecchie cose sulla sorgente che lo ha emesso (che si chiama sorgente luminosa). Ciao a tutti! Il segnale che arriva, sotto forma di luce visibile, è quello che permette di studiare quei puntini luminosi che vediamo in cielo la notte. Se analizziamo quel segnale luminoso possiamo capire

Dettagli

LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO

LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO Pagina 1 di 8 LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO Ing. Pier Franz Roggero, Dott. Michele Nardelli, P.A. Francesco Di Noto Abstract: This paper explains that all physical constants and consequently

Dettagli

INTERVISTA ALLA SCRITTRICE

INTERVISTA ALLA SCRITTRICE Tratto da: M. Cecconi, La morte raccontata ai bambini: il ciclo della vita. Intervista ad Angela Nanetti, Il Pepeverde n. 10, 2001, pp. 10 11. Copyright INTERVISTA ALLA SCRITTRICE ANGELA NANETTI LA MORTE

Dettagli

60 indicazioni nazionali per la scuola dell infanzia e del primo ciclo. matematica

60 indicazioni nazionali per la scuola dell infanzia e del primo ciclo. matematica 60 indicazioni nazionali per la scuola dell infanzia e del primo ciclo matematica Le conoscenze matematiche contribuiscono alla formazione culturale delle persone e delle comunità, sviluppando le capacità

Dettagli

TRAGUARDI FORMATIVI NELLA PRE-DISCIPLINA MATEMATICA

TRAGUARDI FORMATIVI NELLA PRE-DISCIPLINA MATEMATICA Fo.Svi.Co International s.a.s. Formazione Sviluppo Competenze (per la competitività in campo internazionale) SEDE LEGALE Corso Magenta, 83 20 123 Milano SEDE OPERATIVA 00100 ROMA, via Arduino, 46 SEDE

Dettagli

- 1 reference coded [3,14% Coverage]

<Documents\bo_min_11_M_16_ita_stu> - 1 reference coded [3,14% Coverage] - 1 reference coded [3,14% Coverage] Reference 1-3,14% Coverage quindi ti informi sulle cose che ti interessano? sì, sui blog dei miei amici ah, i tuoi amici hanno dei

Dettagli

COMPETENZE SPECIFICHE

COMPETENZE SPECIFICHE COMPETENZE IN MATEMATICA DISCIPLINA DI RIFERIMENTO: MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE FISSATI DALLE INDICAZIONI NAZIONALI PER IL CURRICOLO 2012. MATEMATICA TRAGUARDI ALLA FINE DELLA

Dettagli

LE SFIDE SULLE SPALLE!

LE SFIDE SULLE SPALLE! LE SFIDE Questo quarto incontro vuole aiutare a riflettere sulle sfide che l animatore si trova a vivere, sia in rapporto all educazione dei ragazzi, sia in riferimento alla propria crescita. Le attività

Dettagli

L attimo fuggente. Charlot soldato. Charlot soldato

L attimo fuggente. Charlot soldato. Charlot soldato L attimo fuggente Charlot soldato L attimo fuggente Charlot soldato Due sequenze tratte da due film assai diversi e lontani nel tempo: Charlot soldato di Charlie Chaplin (1918) e L attimo fuggente di Peter

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA. 2. Insiemi numerici. A. A. 2014-2015 L.Doretti

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA. 2. Insiemi numerici. A. A. 2014-2015 L.Doretti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 2. Insiemi numerici A. A. 2014-2015 L.Doretti 1 INSIEMI NUMERICI rappresentano la base su cui la matematica si è sviluppata costituiscono le tappe

Dettagli

CORSO BIELLA CONCETTI FONDAMENTALI DI ARITMETICA, ALGEBRA E GEOMETRIA PER LA SCUOLA DELL OBBLIGO MARTEDI 19/02/2013 TEMA

CORSO BIELLA CONCETTI FONDAMENTALI DI ARITMETICA, ALGEBRA E GEOMETRIA PER LA SCUOLA DELL OBBLIGO MARTEDI 19/02/2013 TEMA CORSO BIELLA CONCETTI FONDAMENTALI DI ARITMETICA, ALGEBRA E GEOMETRIA PER LA SCUOLA DELL OBBLIGO MARTEDI 19/02/201 TEMA OPERAZIONI CON I NUMERI E LORO PROPRIETA. NASCONO LE STRUTTURE ALGEBRICHE. 1 TESTO

Dettagli

La filosofia umanistica e rinascimentale. Da Telesio a Giordano Bruno. La Riforma protestante e il principio del libero esame delle Scritture

La filosofia umanistica e rinascimentale. Da Telesio a Giordano Bruno. La Riforma protestante e il principio del libero esame delle Scritture Programma di Filosofia Classe IV A A.S. 2012/2013 La filosofia umanistica e rinascimentale. Da Telesio a Giordano Bruno All alba della modernità Che cos è l Umanesimo? Che cos è il Rinascimento? La Riforma

Dettagli

IL COMPITO DELL ADULTO NEL PROCESSO DI CRESCITA DEL BAMBINO Cosa significa chiedere autonomia al bambino? Come sostenerlo?

IL COMPITO DELL ADULTO NEL PROCESSO DI CRESCITA DEL BAMBINO Cosa significa chiedere autonomia al bambino? Come sostenerlo? IL COMPITO DELL ADULTO NEL PROCESSO DI CRESCITA DEL BAMBINO Cosa significa chiedere autonomia al bambino? Come sostenerlo? Il senso dei due incontri che vengono proposti sta nel riflettere sulla nostra

Dettagli

SETTIMA LEZIONE LUCIA NON LO SA

SETTIMA LEZIONE LUCIA NON LO SA SETTIMA LEZIONE LUCIA NON LO SA SETTIMA LEZIONE 72 Lucia non lo sa Claudia Claudia Come? Avete fatto conoscenza in ascensore? Non ti credo. Eppure devi credermi, perché è la verità. E quando? Un ora fa.

Dettagli

Testi a cura di Paola Platania, ricercatrice CNR. In collaborazione con Euresis

Testi a cura di Paola Platania, ricercatrice CNR. In collaborazione con Euresis Indice La matematica è irresistibile 2 Meglio in compagnia! 6 Se osservi bene... 14 Qui abbiamo qualche problema 24 Se non ci credi te lo dimostro 30 Verso l infinito 36 Problemi di primo livello 46 Problemi

Dettagli

Aritmetica: operazioni ed espressioni

Aritmetica: operazioni ed espressioni / A SCUOLA DI MATEMATICA Lezioni di matematica a cura di Eugenio Amitrano Argomento n. : operazioni ed espressioni Ricostruzione di un abaco dell epoca romana - Museo RGZ di Magonza (Germania) Libero da

Dettagli

belotti1.indd 1 10/06/11 15:35

belotti1.indd 1 10/06/11 15:35 belotti1.indd 1 10/06/11 15:35 CLAUDIO BELOTTI LA VITA COME TU LA VUOI La belotti1.indd vita come tu 2 la vuoi_testo intero.indd 3 23/05/11 10/06/11 14.02 15:35 la vita come tu la vuoi Proprietà Letteraria

Dettagli

La destinazione dell uomo

La destinazione dell uomo Lettura 2 Johann Gottlieb Fichte La destinazione dell uomo Johann Gottlieb Fichte, Lezioni sulla missione del dotto, a cura di G.P. Marotta, Bergamo, Minerva Italica, 1969, pp. 47-53, 56-57, 59-60 Nel

Dettagli

Un racconto di Guido Quarzo. Una gita in LA BUONA STRADA DELLA SICUREZZA

Un racconto di Guido Quarzo. Una gita in LA BUONA STRADA DELLA SICUREZZA Un racconto di Guido Quarzo Una gita in LA BUONA STRADA DELLA SICUREZZA Una gita in Un racconto di Guido Quarzo è una bella fortuna che la scuola dove Paolo e Lucia frequentano la seconda elementare, ospiti

Dettagli

- 1 reference coded [1,02% Coverage]

<Documents\bo_min_2_M_17_ita_stu> - 1 reference coded [1,02% Coverage] - 1 reference coded [1,02% Coverage] Reference 1-1,02% Coverage Sì, adesso puoi fare i filmati, quindi alla fine se non hai niente da fare passi anche un ora al cellulare

Dettagli

IPOTESI di CURRICOLO SCUOLA PRIMARIA E SECONDARIA DI PRIMO GRADO 6 IC PADOVA con riferimento alle Indicazioni Nazionali 2012

IPOTESI di CURRICOLO SCUOLA PRIMARIA E SECONDARIA DI PRIMO GRADO 6 IC PADOVA con riferimento alle Indicazioni Nazionali 2012 IPOTESI di CURRICOLO SCUOLA PRIMARIA E SECONDARIA DI PRIMO GRADO 6 IC PADOVA con riferimento alle Indicazioni Nazionali 2012 COMPETENZE SPECIFICHE Numeri! Conoscere e utilizzare algoritmi e procedure in

Dettagli

La trigonometria prima della trigonometria. Maurizio Berni

La trigonometria prima della trigonometria. Maurizio Berni La trigonometria prima della trigonometria Maurizio Berni 9 maggio 2010 Negli istituti tecnici agrari la trigonometria viene affrontata: nella seconda classe in Disegno e Topografia (risoluzione di triangoli

Dettagli

Abilità Contenuti Metodologie Strumenti Verifiche Possibili raccordi con altre discipline Contare oggetti.

Abilità Contenuti Metodologie Strumenti Verifiche Possibili raccordi con altre discipline Contare oggetti. MATEMATICA NUCLEO TEMATICO: I NUMERI Classe prima Abilità Contenuti Metodologie Strumenti Verifiche Possibili raccordi con altre discipline Contare oggetti. Inglese (concetto di grande e piccolo; Costruire

Dettagli

MODULO 1 Le grandezze fisiche

MODULO 1 Le grandezze fisiche MODULO 1 Le grandezze fisiche Quante volte, ogni giorno, utilizziamo il metro, i secondi, i kilogrammi Ma forse non sappiamo quante menti di uomini ingegnosi hanno dato un senso a quei simboli per noi

Dettagli

Mediterranea INTRODUZIONE

Mediterranea INTRODUZIONE 7 INTRODUZIONE guerrieri Palermo, anno 1076. Dopo che - per più di duecento anni - gli arabi erano stati i padroni della Sicilia, a quel tempo nell isola governavano i normanni, popolo d i guerrieri venuti

Dettagli

I NUMERI DECIMALI. che cosa sono, come si rappresentano

I NUMERI DECIMALI. che cosa sono, come si rappresentano I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all

Dettagli

4. Funzioni elementari

4. Funzioni elementari ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari A. A. 2014-2015 L.Doretti 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

MATEMATICA I NUMERI - SCUOLA PRIMARIA

MATEMATICA I NUMERI - SCUOLA PRIMARIA MATEMATICA I NUMERI - SCUOLA PRIMARIA L alunno sviluppa un atteggiamento positivo rispetto alla matematica, anche grazie a molte esperienze in contesti significativi che gli hanno fatto intuire come gli

Dettagli

ISTITUTO COMPRENSIVO MONTEGROTTO TERME SCUOLA PRIMARIA DISCIPLINA: MATEMATICA - CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO

ISTITUTO COMPRENSIVO MONTEGROTTO TERME SCUOLA PRIMARIA DISCIPLINA: MATEMATICA - CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO PRIMA DELLA DISCIPLINA: MATEMATICA - CLASSE PRIMA L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali. Legge e comprende testi che coinvolgono aspetti logici e matematici.

Dettagli

DIOCESI DI RIETI Ufficio per la Pastorale della Salute IL DIRETTORE

DIOCESI DI RIETI Ufficio per la Pastorale della Salute IL DIRETTORE Grazie a voi ragazzi, ai vostri Professori, ai vostri Presidi che vi hanno dato il permesso di partecipare al nostro incontro. Il nostro incontro formativo di oggi ha un titolo particolare: Facebook: Dalla

Dettagli

Scuola Primaria Pisani Dossi. Istituto Comprensivo Erasmo da Rotterdam ALBAIRATE

Scuola Primaria Pisani Dossi. Istituto Comprensivo Erasmo da Rotterdam ALBAIRATE Scuola Primaria Pisani Dossi Istituto Comprensivo Erasmo da Rotterdam ALBAIRATE Autori: alunni 3^B Anno scolastico 2012-2013 Il 10 maggio abbiamo incominciato questa esperienza. Ci sono 4 materie: italiano,

Dettagli

MATEMATICA SCUOLE DELL INFANZIA

MATEMATICA SCUOLE DELL INFANZIA MATEMATICA SCUOLE DELL INFANZIA CAMPO DI ESPERIENZA: LA CONOSCENZA DEL MONDO (ordine, misura, spazio, tempo, natura) È l'ambito relativo all'esplorazione, scoperta e prima sistematizzazione delle conoscenze

Dettagli

DAL LIBRO AL TEATRO Caduto dal basso

DAL LIBRO AL TEATRO Caduto dal basso DAL LIBRO AL TEATRO Caduto dal basso LIBERI PENSIERI PER LIBERI SENTIMENTI La riflessione circa In viaggio verso l incontro come ci è stato proposto, nasce attorno alla lettura del romanzo : C è nessuno?

Dettagli

Prof. F. Rota 2002-2003 ISS Romero Albino (Bg) Materiale di supporto alle lezioni ERRORI NELLE MISURE ERRORI NELLE MISURE

Prof. F. Rota 2002-2003 ISS Romero Albino (Bg) Materiale di supporto alle lezioni ERRORI NELLE MISURE ERRORI NELLE MISURE LA MATEMATICA E LA FISICA Sia la matematica che la fisica hanno a che fare con i numeri. Non lo fanno però allo stesso modo. Se pensiamo, per esempio, all'espressione 1 1 5 ( + ) 1 2 3 il risultato vale

Dettagli

PROGRAMMAZIONE di MATEMATICA CLASSE PRIMA

PROGRAMMAZIONE di MATEMATICA CLASSE PRIMA PROGRAMMAZIONE di MATEMATICA 1.NUMERI CLASSE PRIMA Comprende il significato Comprendere il significato Insiemi numerici NQZ Utilizzare le tecniche e le procedure del calcolo aritmetico e algebrico rappresentandole

Dettagli

PROVA NAZIONALE INVALSI per la classe III della Scuola Sec. Di I grado MATEMATICA- a.s. 2007-08

PROVA NAZIONALE INVALSI per la classe III della Scuola Sec. Di I grado MATEMATICA- a.s. 2007-08 PROVA NAZIONALE INVALSI per la classe III della Scuola Sec. Di I grado MATEMATICA- a.s. 2007-08 4 C1- Le potenze 3 2 2 e 4 3 hanno lo stesso valore? A. No, la prima vale 3 16 e la seconda 9 16. 16 16 B.

Dettagli

Il GPS di Dio Schema riassuntivo del messaggio e domande per i Piccoli Gruppi

Il GPS di Dio Schema riassuntivo del messaggio e domande per i Piccoli Gruppi Il GPS di Dio Schema riassuntivo del messaggio e domande per i Piccoli Gruppi Matteo 5:6 Beati quelli che sono affamati e assetati di giustizia, perché saranno saziati. Giovanni 10:27 Le mie pecore ascoltano

Dettagli

Giocando con le parole: auto-referenza e logica matematica

Giocando con le parole: auto-referenza e logica matematica Giocando con le parole: auto-referenza e logica matematica Claudio Bernardi (Sapienza, Università di Roma) autoreferente qualcosa che parla di se stesso o che si riferisce a se stesso un'autoreferenza

Dettagli