PARLANDO E RIPARLANDO DI SCIENZA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PARLANDO E RIPARLANDO DI SCIENZA"

Transcript

1

2 OVVERO PARLANDO E RIPARLANDO DI SCIENZA NUMERI: SIMBOLI E REALTÀ 9 di Franco Brezzi I TRE MOSCHETTIERI DELLA MATEMATICA 11 di Guido Trombetti I GRANDI NUMERI DELLA CHIMICA 13 di Luciano Mayol SOGNANDO CON I NUMERI 15 di Luciano De Menna ANCHE I FISICI DANNO I NUMERI 17 di Fedele Lizzi I NUMERI DELLA FILOSOFIA 19 di Claudia Megale

3

4 Dio ha creato i numeri interi, tutto il resto è opera dell'uomo. Leopold Kronecker Matematico tedesco del XIX secolo Ma ce n era proprio bisogno? Studente di Ingegneria del XXI secolo

5

6 Gli articoli degli incontri si trovano al sito

7

8 Franco Brezzi Nato a Vimercate (Milano) il 29 aprile 1945 e laureato in Matematica nel 1967 presso l'università di Pavia, è stato professore di Analisi Matematica prima presso il Politecnico di Torino (dal 1975 al 1977), poi presso l'università di Pavia dal (1977 al 2006) e infine presso lo IUSS (Istituto Universitario di Studi Superiori) di Pavia dal 2006 a oggi. È attualmente direttore dell Istituto di Matematica Applicata e Tecnologie Informatiche del CNR, coordinatore dei corsi di dottorato dello IUSS, presidente dell'unione Matematica Italiana e membro dell'executive Committee della European Mathematical Society. Fa inoltre parte del Consiglio Scientifico del CNRS Francese, dell'occam di Oxford (UK) e della SMAI francese. Ha anche fatto parte in passato del Consiglio Scientifico di numerosi istituti di ricerca nazionali ed internazionali, tra cui la SIMAI (Società Italiana di Matematica Applicata e Industriale; dalla sua fondazione nel 1990 al 2008), il RICAM di Linz e l'imdea di Madrid. È membro dell Istituto Lombardo, Accademia di Scienze e Lettere, socio corrispondente dell Accademia Nazionale dei Lincei, membro della European Academy of Sciences e membro del Gruppo È Commendatore al Merito della Repubblica Italiana per meriti scientifici dal È autore di circa 160 articoli scientifici pubblicati su riviste internazionali e di cinque libri. Fa inoltre parte del comitato di redazione di una ventina di riviste scientifiche internazionali e di numerose collane di libri. I suoi interessi scientifici riguardano soprattutto l'analisi numerica delle equazioni a derivate parziali, con applicazioni a vari settori di interesse ingegneristico come il calcolo strutturale, la meccanica dei fluidi e l'elettromagnetismo. Ha ottenuto vari premi e riconoscimenti, tra cui il Premio Città di Cagliari nel 1991, la T.H.H. Pian Medal dalla International Society for Computational Engineering and Sciences nel 2000, la Fellowship della IACM (International Associatiation for Computational Mechanics) nel 2002, la nomina a Higly Cited Researcher dello Institute for Scientific Information di Filadelfia nel 2002, la Gauss-Newton Medal della IACM nel 2004, il Von Neumann Award della SIAM (Society for Industrial and Applied Mathematics, Stati Uniti) nel 2009 e il premio Gili-Agostinelli della Accademia delle Scienze di Torino nel 2010.

9

10 Numeri: simboli e realtà NUMERI: SIMBOLI E REALTÀ Franco Brezzi Professore di Analisi matematica IUSS - Istituto Universitario di Studi Superiori di Pavia Il ruolo del Numero nella nostra civiltà è più complesso di quanto non si possa pensare a prima vista. Per cominciare, il numero riveste ancora un carattere cabalistico e misterioso. In generale, l uomo della strada si trova in imbarazzo se gli si chiede di definire cosa sia un numero. Tutti capiscono benissimo il significato di tre caramelle o di tre pere. Non tutti capiscono a fondo il significato di tre. Forse anche questa sottile elusività ha contribuito, nel tempo, a far sì che al numero venissero attribuiti arcani significati simbolici (ad esempio il 3 o il 7) e misteriosi poteri (ad esempio, in modi diversi, il 17 o il 666). Ma anche al di là degli aspetti cabalistici, è tutto il rapporto con gli aspetti quantitativi che riesce difficile, spesso antipatico, a volte totalmente repulsivo. Con la stessa scienza, ed in particolare con tutte le discipline che praticano con serietà il metodo scientifico, la nostra società ha un rapporto di amore-odio quasi schizofrenico. Basta guardare la nostra pubblicità per notare come la scienza e la stessa ragione vengano, a seconda dei casi, esaltate o disprezzate. La stessa schizofrenia si manifesta nelle discipline che pur avvalendosi del nome di Scienze, hanno col metodo scientifico rapporti ancora saltuari. Ma mentre la medicina, da un lato, tende a fare un uso sempre maggiore di strumenti che danno risposte quantitative, ed in generale ad avere rapporti sempre più stretti col metodo scientifico, dall altro lato sembrano in controtendenza la sostituzione dei vecchi voti con giudizi del tipo sufficiente, discreto, buono, ottimo, ed innovazioni pedagogiche simili. L aspetto più ostico del rapporto tra cittadini e numeri si trova però nell uso che viene fatto dei numeri per quantificare i rischi. Indubbiamente tale quantificazione è a volte proibitiva. La probabilità di beccarsi il classico vaso da fiori in testa camminando sul marciapiede potrebbe, almeno teoricamente, essere misurata (ma il risultato dovrebbe dipendere da molti fattori come il tipo di strada, la stagione, l ora, etc.). Ma la probabilità che il Vesuvio esploda, o che un meteorite rada al suolo Pavia sarebbe molto, molto più difficile da misurare. E la stima della probabilità di trovare, nei prossimi mille anni, nella nostra galassia, omini con pelle zebrata verde e gialla avrebbe margini di errore assolutamente ridicoli. Il problema più grave, però, non è tanto la stima delle probabilità: è, piuttosto, l uso che la nostra ragione tende a farsene. Come l esigenza, di cittadini e politici, di avere sempre e solo situazioni a rischio zero (che ovviamente sono del tutto impossibili) o l ingannevole valutazione istintiva delle probabilità, che rende i numeri ritardatari tanto appetibili e i venditori di schemi sicuri (per vincere a Lotto, Roulette e Superenalotto) tanto ricchi. Di tutto questo parleremo. Molto spesso scherzando, ma sempre con qualche sottofondo di verità: è matematica, perbacco!! Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 9

11 Numeri: simboli e realtà Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 10

12 Numeri: simboli e realtà I TRE MOSCHETTIERI DELLA MATEMATICA Guido Trombetti Professore di Analisi matematica Che i numeri non siano tutti uguali è un ovvietà. Il perché però alcuni godano di una fama maggiore di altri è dovuto a circostanze particolari. Talvolta dettate dal caso. Se c è un numero che più di tutti ha destato l attenzione di matematici e non è sicuramente. Ma chi è? Uno studente delle scuole medie risponderebbe che è Tre e quattordici Il che va certamente bene per risolvere i suoi esercizi. Ma cosa si nasconde dietro questo simbolo? Cosa realmente rappresenta? Nella realtà pigreco nasce dalla necessità di misurare la lunghezza di una circonferenza o l area del cerchio. Fin dall antichità è stato approssimato in tanti modi. Prima dai babilonesi con 3,125. Poi dagli egiziani con 3,160. Bisogna aspettare il III secolo a.c. perché tale numero venga all attenzione di Archimede. Lo stratagemma usato da Archimede per ottenere una approssimazione di fu quello di costruire poligoni inscritti e circoscritti ad una circonferenza di diametro 1 e di considerare poligoni con un numero di lati via via più grande. Aumentando il numero dei lati del poligono inscritto e di quello circoscritto i due perimetri si avvicinano (tendono) ad uno stesso valore. Questo valore è proprio. Con 96 lati Archimede trovò che il perimetro interno era 3,14084 e quello esterno 3, Archimede però ignorava il fatto che tale numero godesse di una proprietà che solo 2000 anni dopo qualcuno avrebbe dimostrato: pigreco è un numero irrazionale ovvero non esprimibile come rapporto di due numeri interi. In realtà pigreco è qualcosa di più. E un numero trascendente. Tanto per capirci la radice quadrata di due non è razionale. Ma è soluzione di una semplicissima equazione: x 2 =2. Una cosa del genere non è vera per pigreco. pigreco non è l unico numero trascendente. I numeri trascendenti sono infiniti, molti di più di quelli non trascendenti. Se ad esempio deposito in banca 1 milione di euro e ricevo l interesse del 100% all anno, dopo un anno avrò 2 milioni di euro. Se la banca mi da un interesse del 50% ogni 6 mesi dopo 6 mesi avrò con 1,5 milioni di euro. E dopo un anno 1,5 più il 50% di 1,5 milioni di euro. Quindi 2,25 milioni di euro. E 2,25 altro non è che (1 +1/2) 2.Se l interesse è 1/12 del 100% al mese dopo un anno avrò di (1+1/12) 12 =2.62 milioni di euro. E così passando all interesse giorno per giorno dopo un anno avrò con (1+1/365) 365 = 2,71 milioni di euro. Sempre la stessa formula: (1+1/n) n. Come fare per avvicinarsi sempre di più al caso limite in cui l interesse è calcolato istante per istante? E istintivo rispondere: basta prendere n uguale ad infinito. Cioè fare quello che in matematica si chiama limite per n che tende all infinito. In tal caso dopo un anno avrò 2, milioni di euro. Questo numero è noto come numero di Nepero. Nella Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 11

13 Numeri: simboli e realtà top ten dei numeri più gettonati è secondo solo a pigreco. Come pigreco anche e è un numero trascendente. Ma cosa hanno in comune pigreco ed e, oltre al fatto di essere trascendenti? Apparentemente nulla ma non è così. Tutti sanno che nessun numero reale elevato al quadrato da risultato -1. Un quadrato è sempre positivo. Così i matematici, quasi per gioco, si sono inventati un nuovo numero. Il numero i, l unità immaginaria battezzato così da Cartesio nel Eppure il suo quadrato di immaginario non ha proprio nulla, infatti è -1. Insieme a lui nascono anche i numeri complessi. A lungo considerati artifici e non numeri. Numeri che non dovrebbero esistere. Perché il numero complesso abbia senso, il concetto stesso di numero deve prima essere deconte- stualizzato dalla realtà. Il numero non deve solo rappresentare uno strumento per contare monete, stimare lunghezze, misurare lo scorrere del tempo. Nella mia fantasia, come ho già scritto in altra sede, questi tre numeri sono come i tre moschettieri. pigreco è gaudente e festaiolo come Porthos. Il numero e invece è meno conosciuto di pigreco. Rispetto al quale appare più riservato. Quasi ritroso. Mi ricorda Athos. Saggio. Il numero i mi sembra raffinato, serafico, misterioso come Aramis. Il collante dei tre moschettieri non lo dimentichiamo era D Artagnan. Quello di pigreco, e ed i, la più bella formula del mondo: (e) ixpigreco + 1=0 Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 12

14 Numeri: simboli e realtà I GRANDI NUMERI DELLA CHIMICA Luciano Mayol Professore di Chimica organica Volendo indicare in forma iperbolica una moltitudine di oggetti, di persone, si ricorre solitamente a espressioni del tipo numero astronomico, folla oceanica, ecc. A nessuno (o quasi) verrebbe mai in mente di usare allo scopo immagini prese dalla Chimica, la scienza dell immensamente piccolo. Eppure, in tema di grandi numeri, la Chimica non è seconda ad alcun altra disciplina. Vediamo perché, introducendo, innanzitutto, il numero della Chimica per antonomasia, il Numero di Avogadro. Ogni sostanza chimica è costituita da atomi, ioni o molecole che non possono essere divisi in particelle più piccole senza cambiare la natura della sostanza stessa. Per ragioni facilmente intuibili, i chimici utilizzano per i loro calcoli un unità di misura, la mole, che contiene un numero fisso di queste particelle elementari. La mole è una quantità di materia manipolabile, dell ordine dei grammi. Ad esempio, una mole di acqua ha una massa di 18 grammi e una di saccarosio di 342 grammi, ed entrambe contengono lo stesso numero di molecole. Tale numero, detto Numero di Avogadro, è straordinariamente grande (6 x 10 23, ossia, 6 seguito da 23 zeri!). Al suo cospetto, i numeri del macrocosmo sono quisquilie, pinzillacchere, direbbe Totò! Facciamo qualche confronto. Si stima che il numero di stelle della nostra galassia sia compreso tra 200 e 600 miliardi (2-6 x ). Quindi, da un semplice calcolo, si può dedurre che il numero di molecole contenute in una sola mole di acqua (18 grammi, una tazzina da caffè) è almeno miliardi (10 12 ) di volte più grande del numero di tutte le stelle presenti nell intera galassia! Un altra considerazione può, forse, servire ancora meglio a dare l idea dell entità dei numeri in gioco. Il volume complessivo della massa oceanica è stimato intorno a milioni di Km 3, pari a circa 1.4 x litri. Immaginiamo di versare a Marechiaro la tazzina di acqua di cui sopra e di attendere un tempo sufficientemente lungo da permettere un perfetto mescolamento dell acqua di tutti gli oceani (tale processo è puramente ipotetico, ovviamente). Si può facilmente calcolare che ogni litro d acqua, raccolto in un punto qualsiasi del globo terracqueo, magari alle Isole Fiji, per esempio, conterrebbe un numero significativo di molecole della tazzina iniziale (circa 400). Sulla base di considerazioni analoghe, posso affermare che, se uno fa una doccia e, dopo qualche giorno, si bagna in uno specchio di mare non troppo distante, ha la ragionevole certezza di venire a contatto con un numero cospicuo di molecole già incontrate nella stanza da bagno. Quindi, l asserzione di Eraclito, secondo cui non ci si bagna mai due volte nella stessa acqua, a livello molecolare, non è poi rigorosamente vera! Giocando con i numeri della Chimica, si può giungere a tante conclusioni interessanti, spesso distanti dalla percezione comune. Se chiediamo a un signore in un bar se il caffè che sta tranquillamente gustando contiene cianuro, risponderà certamente di no (altrimenti non lo berrebbe!). Invece il cianuro c è (e come!), ma è presente in concentrazione tale da non essere Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 13

15 Numeri: simboli e realtà nocivo. Per dare un idea, la concentrazione massima di cianuro legalmente tollerata nell acqua potabile è dell ordine di 10-7 molare, corrispondente a un numero di ioni cianuro per litro 100 mila volte più alto del numero di stelle della galassia! Disponendo di uno strumento sufficientemente sensibile, è possibile evidenziare in un campione la presenza di sostanze insospettate. Se, al contrario, in un campione non è rilevata una particolare sostanza, non si può escludere con assoluta certezza che essa sia presente lo stesso. La soglia di rilevazione dei moderni metodi analitici è, infatti, nel migliore dei casi, intorno a molare (corrispondente a circa 600 milioni di particelle per litro). Così, se, ad esempio, in un litro di una soluzione in esame ci sono 10 milioni di molecole di cocaina, il valore di concentrazione di droga misurato risulterà zero. Appare evidente, dunque, che il significato del numero zero in Chimica è diverso da quello cui siamo comunemente abituati: se una persona possiede 10 milioni di euro, il suo patrimonio non risulterà certo essere zero (tranne, forse, che per il fisco!). Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 14

16 Numeri: simboli e realtà SOGNANDO CON I NUMERI Luciano De Menna Professore di Elettrotecnica La prima immagine che mi è venuta in mente, quando mi hanno chiesto di scrivere su cinema e numeri, è stata quella della sequenza iniziale... cinque, quattro tre, due, uno... che si vedeva un tempo nelle pellicole non ancora definitivamente montate. Dopo quel conto alla rovescia, la magia del cinema incominciava. Poi ho provato a contare con i titoli dei film: Il primo cavaliere, La seconda moglie, Il terzo uomo, Quarto potere, Il quinto elemento, Il sesto senso, Il settimo sigillo, Otto donne e un mistero, "9", Dieci piccoli indiani o I dieci comandamenti. Ci sono anche i numeri frazionari come in Otto e mezzo e Nove settimane e mezzo. Insomma, ci sono tutti. Del resto era inevitabile visto che il cinema rappresenta la nostra vita o, a volte, dà corpo alle nostre fantasie, e queste e quella sono infarcite di numeri: numeri come misura, spesso denaro, come in La ragazza da un milione di dollari, ma anche peso, come in Ventuno grammi - dovrebbe essere il peso dell'anima -, o distanza, Mille miglia lontano o Ventimila leghe sotto i mari. Ma anche numeri come simboli, come in Pi greco - il teorema del delirio. E naturalmente i numeri sono presenti non solo nei titoli: ricordate l'allucinante parete ricoperta di numeri di A beautiful mind, o la lavagna piena di formule di Will Hunting - Genio ribelle e di Sipario strappato? Ma comunque i numeri al cinema non rappresentano mai veramente se stessi, sono dei simboli: non si può chiedere allo spettatore di capire, con un colpo d occhio, formule complesse o operazioni matematiche. Il creatore di B.C., Johnny Hart, un cartoonist le cui strip erano abitate da buffi omini dell'età della pietra rigorosamente vestiti di una pelle d'animale gettata su di una spalla, aveva immaginato così la nascita dell'amicizia tra noi e i numeri. Due trogloditi, ma mica tanto, discutono tra loro mentre sullo sfondo si vedono pascolare delle pecore ed un toro solitario. Quello più alto dice all altro Se tu mi dai il tuo toro, io ti do tante pecore. L altro ci pensa su un po e poi dice Sì, ma tante quante?. Chi sa se è andata proprio così, se cioè l esigenza primaria è stata quella di regolare il mondo delle quantità. Alcuni sostengono che è nata prima l esigenza dei numeri ordinali, primo, secondo ecc., per regolare il mondo delle gerarchie: anche nel branco dei lupi il capo mangia per primo ed è il primo in tutto. Ma poi all'improvviso mi ha fulminato una banale verità: i numeri sono il gioco. Con i numeri noi giochiamo e ci sono numeri in tutti i giochi: nelle carte, nella roulette, nei dadi, nelle schedine, nelle lotterie e quindi, a Napoli, nel lotto. E allora ho ricordato quel bellissimo film di Anna Bucchetti sul gioco del lotto, Dreaming by numbers. Una poetica registrazione di una realtà che a Napoli, nel bene e nel male, è di casa. Ci voleva una milanese trapiantata ad Amsterdam, per fare un quadro così affettuoso di questa nostra disgraziata città. Nel documentario veniva Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 15

17 Numeri: simboli e realtà intervistato il mio amico Giuseppe Imbucci, che da un po ci ha lasciato, storico ed esperto del gioco e della povertà, come lui amava definirsi. Lucià - mi diceva - più c è povertà e più si gioca; è un teorema! Ho trascritto uno dei brani dell intervista: Il gioco del lotto non è innocente Il gioco del lotto in se ha un sistema e un ambizione che è quella di interpretare il mondo, perché rinvia ad una cultura antichissima, precristiana, la cultura pitagorica... e alla Kabala. Ta Kabalà è una parola che rinvia alla interpretazione numerologica della vita. Il pitagorismo nasce sulle rive del mare. Lì, se non avevi come scrivere, potevi usare i kalculos. Kalculos in greco significa pietrina, pietra in realtà significa anche far di calcolo. Poi posando sul tavolo un sassolino, continuava: Questo Kalculos, questa pietrina è il numero uno; è anche il punto e due Kalculos fanno la semiretta e tre necessariamente fanno il triangolo, fino al disegno della Tetraktis, i dieci numeri, che era il simbolo che i pitagorici portavano sul petto. Ed in questi dieci numeri è contenuta in nuce tutta l immagine del mondo. Il pitagorismo è un grande sistema simbolico, che si tramanda poi nella Kabala, fino alla nostra Smorfia napoletana. E questa città, che è tra le città più antiche d Europa, nella sua cultura popolare pratica quest antichissima civiltà. La pratica inconsapevolmente... misteriosamente e quotidianamente con semplicità. Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 16

18 Numeri: simboli e realtà ANCHE I FISICI DANNO I NUMERI Fedele Lizzi Professore di Teoria quantistica dei campi In fisica usiamo tanti numeri, in qualche modo il lavoro del fisico consiste nel dare i numeri. Un teorico calcola numeri, un fisico sperimentale misura quantità fisiche, che sono poi altri numeri. Fra i tanti numeri che si calcolano e misurano alcuni hanno uno status speciale, le costanti fondamentali. Tralascio qui le costanti fondamentali matematiche come, o la e di Napier trattane altrove. Queste sono costanti assolute, nel senso che non è possibile concepire un mondo in cui il loro valore sia diverso (almeno io non ci riesco)! Invece parliamo delle costanti fondamentali della fisica. Fra queste tre hanno un ruolo basilare, e su di esse si basano teorie fondamentali. La velocità della luce c, alla base della relatività speciale, la costante di Planck e la costante di gravitazione universale G, rispettivamente alla base della meccanica quantistica e della teoria della gravitazione, soprattutto nella sua moderna versione della relatività generale. Ci sono differenze fondamentali con le costanti matematiche. La prima è che mentre queste si calcolano, le costanti fisiche vanno misurate. Ovvero dobbiamo fare un esperimento per valutarle, ed avremo un numero con una precisione che non sarà mai assoluta, se vogliamo avere altre cifre decimali dovremo fare un altro esperimento migliorato (e più costoso!) Inoltre in generale sono quantità dimensionali, ovvero hanno delle unità di misura, per esempio c= m/sec. Ma avremmo anche potuto scrive c=112,664 miliardi di miglia alla settimana, oppure c=13724,2 calorie per minuto alla libbra al pollice. Il fatto è che c è una quantità dimensionale, con le dimensioni di una lunghezza diviso un tempo, e possiamo scegliere le unità di misura che vogliamo. È possibile immaginare mondi in cui queste costanti sono differenti. Un divertente libro di Gamow, intitolato Mr. Tompkins, immagina un universo dove la velocità della luce è molto più bassa... Quindi il valore numerico di queste costanti universale è accidentale ed ha a che fare con come noi abbiamo scelto le nostre unità di misura. E con una convenzione diversa possiamo cambiarne il valore a piacimento. Ma c è una eccezione, la costante di struttura fine dell elettromagnetismo, che regola l intensità della forza elettromagnetica: = 1/137. Questa è un numero puro, ovvero non necessita di unità di misura, al pari di, ma è anche una quantità fisica misurabile come c, e possiamo immaginarla con un valore diverso (e in effetti ad alte energie il suo valore cambia). E dato che è un numero puro, il suo valore non cambia con le unità di misura scelte. Volendo lo potremmo facilmente comunicare (magari in forma binaria) ad un alieno, che si potrebbe fare un idea del nostro stato di avanzamento tecnologico dal numero di cifre decimali che Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 17

19 Numeri: simboli e realtà siamo stati capaci di calcolare e misurare. E se gli alieni sanno molte più cifre decimali di noi? Allora facciamoci subito dire come hanno fatto a convincere i loro politici a dare più soldi alla ricerca! Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 18

20 Numeri: simboli e realtà I NUMERI DELLA FILOSOFIA Claudia Megale Dottoranda in Scienze Filosofiche Siamo anche numeri, la nostra vita ne è scandita da una serie infinita, codici personali di conto corrente e di carte di credito; numeri degli anni che passano per quel tempo che irreversibilmente dà forma al nostro esistere come teorizzava, agli inizi del Novecento il francese Bergson, scrivendo di Materia e memoria. Oggi, non stupisce che è il numero scelto da Mattia Balossino e che il sia quello cui si associa Alice Della Rocca, i due protagonisti del fortunato romanzo di Paolo Giordano da cui è stata tratta di recente l omonima pellicola diretta da Saverio Costanzo. I due ragazzi sono infatti paragonati a coppie di numeri primi che se ne stanno vicini, anzi quasi vicini perché tra di loro c è sempre un numero pari che gli impedisce di toccarsi per davvero ; sono attratti l'uno dall altro, ma divisi da un invalicabile ostacolo. Si avvertono emarginati da una società che non li comprende o forse che loro non comprendono. E sono Numeri, simboli e realtà in questa età del post moderno che riscopre a suo modo e vive anche nella letteratura l intimo significato filosofico del numero. Esso ha una storia antichissima che attraversa tutto il pensiero occidentale con un versante ontologico (la natura dei numeri) e uno epistemologico corrispondente alla svolta cartesiana (la giustificazione delle matematiche). Per gli antichi Greci i numeri erano figure cui si riducono tutte le cose tutte le cose che si conoscono come si legge in un frammento di Filolao; è un appartenenza non molto diversa da quella sostenuta da Galileo Galilei a proposito del gran libro della natura ( ) scritto in caratteri matematici, in triangoli, linee e punti ma questa volta espressione di una misura e non più di una qualità-copia dell idea come nel Timeo platonico. Dalla fase realistica di matrice pitagorica secondo la quale il numero è elemento costitutivo della realtà, accessibile non ai sensi ma alla ragione al moderno con Cartesio, Newton, Leibniz e Kant tanto per ricordare i matematici e filosofi più noti che hanno aperto la fase soggettivistica: il numero è un idea, una manifestazione del pensiero. Per Kant è uno schema, la cui novità sta nel suo non rappresentare un operazione empirica, cioè effettuata sul materiale sensibile, ma di essere un attività intellettuale che opera sul molteplice dato dall intuizione sensibile pura (nelle forme dello spazio e del tempo). Con lo scritto di Frege sui Fondamenti dell aritmetica del 1884 si può indicare l inizio di un altra fase delle relazioni tra matematica e filosofia a noi più vicina: il numero è oggettivo ma non reale, nel senso che gli viene riconosciuta l estensione del concetto e la capacità di rappresentazione. Il che è in sintonia con il vissuto dell uomo contemporaneo al centro del messaggio numerico del fortunato testo letterario che, non a caso, ricorda lo studio di Riemann per aver mescolato i numeri immaginari con la funzione zeta descritta da un paesaggio in quattro dimensioni, le prime due Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 19

21 Numeri: simboli e realtà utili a tracciare le coordinate di detti numeri nella funzione; le altre per descrivere il numero immaginario prodotto dalla funzione, quell im- maginario e quella funzione di cui hanno ancora bisogno i nostri pensieri e le nostre solitudini nel mondo moderno delle globali comunicazioni. Centro di Ateneo per la Comunicazione e l Innovazione Organizzativa 20

22

23

24

25

1. LA MOTIVAZIONE. Imparare è una necessità umana

1. LA MOTIVAZIONE. Imparare è una necessità umana 1. LA MOTIVAZIONE Imparare è una necessità umana La parola studiare spesso ha un retrogusto amaro e richiama alla memoria lunghe ore passate a ripassare i vocaboli di latino o a fare dei calcoli dei quali

Dettagli

N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi

N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi Tra i molteplici interessi scientifici di Leonardo non dobbiamo dimenticare la matematica.

Dettagli

Mario Albertini. Tutti gli scritti III. 1958-1961. a cura di Nicoletta Mosconi. Società editrice il Mulino

Mario Albertini. Tutti gli scritti III. 1958-1961. a cura di Nicoletta Mosconi. Società editrice il Mulino Mario Albertini Tutti gli scritti III. 1958-1961 a cura di Nicoletta Mosconi Società editrice il Mulino 914 Anno 1961 A Luigi Pellizzer Pavia, 22 settembre 1961 Caro Avvocato, io credo che la discussione

Dettagli

La cooperazione per lo sviluppo sociale e economico sostenibile delle comunità locali nei Paesi poveri

La cooperazione per lo sviluppo sociale e economico sostenibile delle comunità locali nei Paesi poveri Alberto Majocchi La cooperazione per lo sviluppo sociale e economico sostenibile delle comunità locali nei Paesi poveri Dato che sono del tutto incompetente sul tema oggetto dell incontro odierno, sono

Dettagli

SCUOLA DELLA FEDE [4] La risposta dell uomo a Dio [5.03. 2013]

SCUOLA DELLA FEDE [4] La risposta dell uomo a Dio [5.03. 2013] SCUOLA DELLA FEDE [4] La risposta dell uomo a Dio [5.03. 2013] 1. La risposta a Dio che ci parla; a Dio che intende vivere con noi; a Dio che ci fa una proposta di vita, è la fede. Questa sera cercheremo

Dettagli

La sezione di Matematica della prova nazionale

La sezione di Matematica della prova nazionale La sezione di Matematica della prova nazionale Giorgio Bolondi Roma, 18 aprile 2008 Presentazione Prova Nazionale 1 Cosa può valutare? I diversi processi valutativi messi in atto dall insegnante accompagnano

Dettagli

LA PSICOLOGA VA A SCUOLA!

LA PSICOLOGA VA A SCUOLA! LA PSICOLOGA VA A SCUOLA! I piccoli reporter della Guglielmo Marconi intervistano la dott.ssa Laura Bottini, psicologa che collabora con il nostro istituto. A cura del gruppo 4 dei Piccoli Reporter Quando

Dettagli

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete Funzioni in due variabili Raccolta di FAQ by Andrea Prevete 1) Cosa intendiamo, esattamente, quando parliamo di funzione reale di due variabili reali? Quando esiste una relazione fra tre variabili reali

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

Il mistero dei muoni: perché arrivano sulla terra e cosa c entra la relatività del tempo e dello spazio?

Il mistero dei muoni: perché arrivano sulla terra e cosa c entra la relatività del tempo e dello spazio? Il mistero dei muoni: perché arrivano sulla terra e cosa c entra la relatività del tempo e dello spazio? Carlo Cosmelli, Dipartimento di Fisica, Sapienza Università di Roma Abbiamo un problema, un grosso

Dettagli

Coimbra, Portogallo DIARIO DI VIAGGIO

Coimbra, Portogallo DIARIO DI VIAGGIO Coimbra, Portogallo DIARIO DI VIAGGIO SETTEMBRE: Quando sono arrivata a Coimbra la prima sistemazione che ho trovato è stato un Ostello molto simpatico in pieno centro, vicino a Piazza della Repubblica.(http://www.grandehostelcoimbra.com/).

Dettagli

Vincenzo Cerami* * Scrittore. Intervento non rivisto dall autore.

Vincenzo Cerami* * Scrittore. Intervento non rivisto dall autore. Vincenzo Cerami* Sono venuto a questo confronto senza preparare nulla. Sentendo gli interventi di chi mi ha preceduto sono tornato con la mente agli anni dell università. Stavo ripensando a Roma. Gli operai

Dettagli

Ponzio a Bologna Maggio 2009

Ponzio a Bologna Maggio 2009 Ponzio a Bologna Maggio 2009 Intervento di Gregorio Scalise Il filosofo Hans Blumenberg parla di esistenza di un inadeguatezza del linguaggio rispetto alla sensazione, topos che ricorre nella poesia, e

Dettagli

LABORATORIO GIOCHI MATEMATICI ANNO SCOLASTICO 2010/2011 PRIMO QUADRIMESTRE

LABORATORIO GIOCHI MATEMATICI ANNO SCOLASTICO 2010/2011 PRIMO QUADRIMESTRE LABORATORIO GIOCHI MATEMATICI ANNO SCOLASTICO 2010/2011 PRIMO QUADRIMESTRE Le immagini contenute in questa presentazione sono estratte da pagine web, se qualcuno dovesse trovare immagini coperte da copyright,

Dettagli

Dispense di Filosofia del Linguaggio

Dispense di Filosofia del Linguaggio Dispense di Filosofia del Linguaggio Vittorio Morato II settimana Gottlob Frege (1848 1925), un matematico e filosofo tedesco, è unanimemente considerato come il padre della filosofia del linguaggio contemporanea.

Dettagli

Come Lavorare in Rugbystories.it

Come Lavorare in Rugbystories.it Come Lavorare in Rugbystories.it Una guida per i nuovi arrivati IL PUNTO DI PARTENZA PER I NUOVI ARRIVATI E UN PUNTO DI RITORNO PER CHI NON RICORDA DA DOVE E ARRIVATO. 1 Come Lavorare in Rugbystories.it

Dettagli

Se analizziamo quel segnale luminoso possiamo capire parecchie cose sulla sorgente che lo ha emesso (che si chiama sorgente luminosa).

Se analizziamo quel segnale luminoso possiamo capire parecchie cose sulla sorgente che lo ha emesso (che si chiama sorgente luminosa). Ciao a tutti! Il segnale che arriva, sotto forma di luce visibile, è quello che permette di studiare quei puntini luminosi che vediamo in cielo la notte. Se analizziamo quel segnale luminoso possiamo capire

Dettagli

Scelta fra lavoro e tempo libero con un po di matematica e qualche esercizio Appendice al capitolo 3 Mario

Scelta fra lavoro e tempo libero con un po di matematica e qualche esercizio Appendice al capitolo 3 Mario Scelta fra lavoro e tempo libero con un po di matematica e qualche esercizio Appendice al capitolo 3 Mario Mario frequenta la facoltà di Biologia dell Università di Vattelapesca. Vuole avere un buon voto

Dettagli

I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA

I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA Indice Introduzione Il sistema decimale Il sistema binario Conversione di un numero da base 10 a base 2 e viceversa Conversione in altri sistemi di numerazione

Dettagli

TEST I (Unità 1, 2 e 3)

TEST I (Unità 1, 2 e 3) TEST I (Unità 1, 2 e 3) 1) Indica la frase che non ha lo stesso significato delle altre. (1) a) Compro una macchina per l espresso, perché voglio il caffè come quello del bar. b) Compro una macchina per

Dettagli

RICOMINCIARE UNA NUOVA VITA IN AUSTRALIA? - UN SIMPATICO TEST -

RICOMINCIARE UNA NUOVA VITA IN AUSTRALIA? - UN SIMPATICO TEST - RICOMINCIARE UNA NUOVA VITA IN AUSTRALIA? - UN SIMPATICO TEST - INIZIO Ricominciare una nuova vita da zero mi spaventa peró so che tante persone ce la fanno, posso farcela anch io! preferirei continuare

Dettagli

LA CLASSE II B AL MUSEO GIARDINO DI ARCHIMEDE

LA CLASSE II B AL MUSEO GIARDINO DI ARCHIMEDE stituto Comprensivo Galileo Galilei di Pieve a Nievole LA CLASSE B AL MUSEO GARDNO D ARCHMEDE Firenze - 8 Marzo 2013 by Paolo Sturlini Fonti utilizzate: wikipedia, fotografie Alla scoperta del Giardino

Dettagli

PER LA PSICANALISI LAICA INTERVENTO M. PLON

PER LA PSICANALISI LAICA INTERVENTO M. PLON PER LA PSICANALISI LAICA INTERVENTO M. PLON C è un libro sui ragazzini agitati, dal titolo On agite un enfant: è un gioco di parole, perché c era una pubblicità di una bevanda gassata che se non ricordo

Dettagli

E Penelope si arrabbiò

E Penelope si arrabbiò Carla Signoris E Penelope si arrabbiò Rizzoli Proprietà letteraria riservata 2014 RCS Libri S.p.A., Milano ISBN 978-88-17-07262-5 Prima edizione: maggio 2014 Seconda edizione: maggio 2014 E Penelope si

Dettagli

CURRICOLO MATEMATICA ABILITA COMPETENZE

CURRICOLO MATEMATICA ABILITA COMPETENZE CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando

Dettagli

IL PERCORSO DEL MAESTRO ENRICO GALLO E DEI BAMBINI DELLA V^A DI BANCHETTE (IVREA) E DEL LABORATORIO DI INFORMATICA a.s. 2011-2012

IL PERCORSO DEL MAESTRO ENRICO GALLO E DEI BAMBINI DELLA V^A DI BANCHETTE (IVREA) E DEL LABORATORIO DI INFORMATICA a.s. 2011-2012 IL PERCORSO DEL MAESTRO ENRICO GALLO E DEI BAMBINI DELLA V^A DI BANCHETTE (IVREA) E DEL LABORATORIO DI INFORMATICA a.s. 2011-2012 Ho seguito, insieme ai miei alunni, due percorsi differenti che poi si

Dettagli

Livello CILS A2 Modulo bambini

Livello CILS A2 Modulo bambini Livello CILS A2 Modulo bambini MAGGIO 2012 Test di ascolto numero delle prove 3 Ascolto Prova n. 1 Ascolta il testo. Completa il testo e scrivi le parole che mancano. Alla fine del test di ascolto, DEVI

Dettagli

Giocando con le parole: auto-referenza e logica matematica

Giocando con le parole: auto-referenza e logica matematica Giocando con le parole: auto-referenza e logica matematica Claudio Bernardi (Sapienza, Università di Roma) autoreferente qualcosa che parla di se stesso o che si riferisce a se stesso un'autoreferenza

Dettagli

COME AGGIORNARE IL PROPRIO SISTEMA DI CREDENZE

COME AGGIORNARE IL PROPRIO SISTEMA DI CREDENZE 11 November 2014 COME AGGIORNARE IL PROPRIO SISTEMA DI CREDENZE Articolo a cura di Nicola Doro - Responsabile Commerciale Ad Hoc Ti sei mai chiesto perché alcune persone falliscono in tutto quello che

Dettagli

SETTIMA LEZIONE LUCIA NON LO SA

SETTIMA LEZIONE LUCIA NON LO SA SETTIMA LEZIONE LUCIA NON LO SA SETTIMA LEZIONE 72 Lucia non lo sa Claudia Claudia Come? Avete fatto conoscenza in ascensore? Non ti credo. Eppure devi credermi, perché è la verità. E quando? Un ora fa.

Dettagli

La Democrazia spiegata dal Difensore Civico del Comune di Segrate, avv. Fabrizia Vaccarella, al Consiglio Comunale dei Ragazzi

La Democrazia spiegata dal Difensore Civico del Comune di Segrate, avv. Fabrizia Vaccarella, al Consiglio Comunale dei Ragazzi La Democrazia spiegata dal Difensore Civico del Comune di Segrate, avv. Fabrizia Vaccarella, al Consiglio Comunale dei Ragazzi Vi avevo anticipato l anno scorso che il Difensore Civico s interessa dei

Dettagli

C è chi la usa soprattutto come una rivista:

C è chi la usa soprattutto come una rivista: 1 C è chi la usa soprattutto come una rivista: uno sfoglio veloce al ricevimento alla ricerca delle novità le anteprime dei film e delle serie, soprattutto; per qualcuno (chi non segue lo sport in modo

Dettagli

Che cos è, dove si trova, e a cosa serve Internet? Possono sembrare domande banali, ma a pensarci bene la risposta non è tanto facile.

Che cos è, dove si trova, e a cosa serve Internet? Possono sembrare domande banali, ma a pensarci bene la risposta non è tanto facile. di Pier Francesco Piccolomini 1 Che cos è, dove si trova, e a cosa serve Internet? Possono sembrare domande banali, ma a pensarci bene la risposta non è tanto facile. Oggi attraverso questa gigantesca

Dettagli

Aritmetica: operazioni ed espressioni

Aritmetica: operazioni ed espressioni / A SCUOLA DI MATEMATICA Lezioni di matematica a cura di Eugenio Amitrano Argomento n. : operazioni ed espressioni Ricostruzione di un abaco dell epoca romana - Museo RGZ di Magonza (Germania) Libero da

Dettagli

Le metafore della scienza. di Tommaso Castellani. S. Ho saputo che hai fatto un seminario intitolato Le metafore della scienza.

Le metafore della scienza. di Tommaso Castellani. S. Ho saputo che hai fatto un seminario intitolato Le metafore della scienza. Le metafore della scienza di Tommaso Castellani Un dialogo tra: F. Un fisico che fa ricerca all università. I. Un fisico che si occupa di insegnamento a scuola. S. Uno studente sulla strada della fisica.

Dettagli

Indovinelli Algebrici

Indovinelli Algebrici OPENLAB - Università degli Studi di Firenze - Alcuni semplici problemi 1. L EURO MANCANTE Tre amici vanno a cena in un ristorante. Mangiano le stesse portate e il conto è, in tutto, 25 Euro. Ciascuno di

Dettagli

Luca Zeffiro 4C Liceo Scientifico Galileo Galilei

Luca Zeffiro 4C Liceo Scientifico Galileo Galilei Luca Zeffiro 4C Il problema sulla conservazione del moto nacque con Cartesio: nei suoi «Principia philosophiae» egli affermò la conservazione della quantità di moto a partire da Dio: gli errori presenti

Dettagli

..conoscere il Servizio Volontario Europeo

..conoscere il Servizio Volontario Europeo ..conoscere il Servizio Volontario Europeo 1. LʼEDITORIALE 1. LʼEDITORIALE Cari amici, il tempo dell estate è un tempo che chiede necessariamente voglia di leggerezza. Proprio di questa abbiamo bisogno

Dettagli

Tasso di interesse e capitalizzazione

Tasso di interesse e capitalizzazione Tasso di interesse e capitalizzazione Tasso di interesse = i = somma che devo restituire dopo un anno per aver preso a prestito un euro, in aggiunta alla restituzione dell euro iniziale Quindi: prendo

Dettagli

Lezione 10. Tema: La comunicazione interculturale. Parte II.

Lezione 10. Tema: La comunicazione interculturale. Parte II. Lezione 10 Intervista con la professoressa Elisabetta Pavan, docente di lingua inglese, traduzione e comunicazione interculturale dell Università Ca Foscari Venezia e dell Università di Padova. Tema: La

Dettagli

LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO

LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO Pagina 1 di 8 LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO Ing. Pier Franz Roggero, Dott. Michele Nardelli, P.A. Francesco Di Noto Abstract: This paper explains that all physical constants and consequently

Dettagli

Testi a cura di Paola Platania, ricercatrice CNR. In collaborazione con Euresis

Testi a cura di Paola Platania, ricercatrice CNR. In collaborazione con Euresis Indice La matematica è irresistibile 2 Meglio in compagnia! 6 Se osservi bene... 14 Qui abbiamo qualche problema 24 Se non ci credi te lo dimostro 30 Verso l infinito 36 Problemi di primo livello 46 Problemi

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

Indovinelli Algebrici

Indovinelli Algebrici OpenLab - Università degli Studi di Firenze - Alcuni semplici problemi 1. L EURO MANCANTE Tre amici vanno a cena in un ristorante. Mangiano le stesse portate e il conto è, in tutto, 25 Euro. Ciascuno di

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

Filopoesia per l educazione. Gemellaggi tra bambini e studenti alla LUMSA.

Filopoesia per l educazione. Gemellaggi tra bambini e studenti alla LUMSA. Filopoesia per l educazione. Gemellaggi tra bambini e studenti alla LUMSA. Di tutto quello che anche quest anno abbiamo cercato di fare, dei bambini della scuola dell Infanzia che continuano a giocare

Dettagli

COME NON PERDERE TEMPO NEL NETWORK MARKETING!

COME NON PERDERE TEMPO NEL NETWORK MARKETING! COME NON PERDERE TEMPO NEL NETWORK MARKETING Grazie per aver scaricato questo EBOOK Mi chiamo Fabio Marchione e faccio network marketing dal 2012, sono innamorato e affascinato da questo sistema di business

Dettagli

PREMESSA. L idea è che a studiare si impara. E nessuno lo insegna. Non si insegna a scuola e non si può imparare da soli, nemmeno con grande fatica.

PREMESSA. L idea è che a studiare si impara. E nessuno lo insegna. Non si insegna a scuola e non si può imparare da soli, nemmeno con grande fatica. PREMESSA I libri e i corsi di 123imparoastudiare nascono da un esperienza e un idea. L esperienza è quella di decenni di insegnamento, al liceo e all università, miei e dei miei collaboratori. Esperienza

Dettagli

IL FILM DELLA VOSTRA VITA

IL FILM DELLA VOSTRA VITA IL FILM DELLA VOSTRA VITA Possibili sviluppi Istruzioni Obiettivo L esercizio fornisce una visione d insieme della vita del partecipante. La foto diventa viva Versione 1 (Esercizio di gruppo) Immaginate

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

cantare in un concorso fare il gemellaggio con un altra scuola

cantare in un concorso fare il gemellaggio con un altra scuola Unità Per cominciare... Osservate le seguenti attività e iniziative. Di solito, quali di queste è possibile svolgere a scuola? fare lezioni di guida cantare in un concorso organizzare una mostra proteggere

Dettagli

SISTEMA INTERNAZIONALE DI UNITÀ

SISTEMA INTERNAZIONALE DI UNITÀ LE MISURE DEFINIZIONI: Grandezza fisica: è una proprietà che può essere misurata (l altezza di una persona, la temperatura in una stanza, la massa di un oggetto ) Misurare: effettuare un confronto tra

Dettagli

Tullio De Mauro e Dario Ianes (a cura di) Giorni di scuola. Pagine di diario di chi ci crede ancora. Erickson

Tullio De Mauro e Dario Ianes (a cura di) Giorni di scuola. Pagine di diario di chi ci crede ancora. Erickson Tullio De Mauro e Dario Ianes (a cura di) Giorni di scuola Pagine di diario di chi ci crede ancora Erickson Lo sguardo dei bambini 39 Capitolo quinto Lo sguardo dei bambini di Camillo Bortolato Quando

Dettagli

Franco Taggi Reparto Ambiente e Traumi Dipartimento Ambiente e connessa Prevenzione Primaria Istituto Superiore di Sanità

Franco Taggi Reparto Ambiente e Traumi Dipartimento Ambiente e connessa Prevenzione Primaria Istituto Superiore di Sanità Il metodo del Rispondente Cancellato (ERM) per i controlli su strada della guida sotto l influenza di alcol o sostanze (e non solo): un paradigma illustrativo. Franco Taggi Reparto Ambiente e Traumi Dipartimento

Dettagli

Mete e coerenze formative. Dalla scuola dell infanzia al biennio della scuola secondaria di II grado

Mete e coerenze formative. Dalla scuola dell infanzia al biennio della scuola secondaria di II grado Mete e coerenze formative Dalla scuola dell infanzia al biennio della scuola secondaria di II grado Area disciplinare: Area Matematica Finalità Educativa Acquisire gli alfabeti di base della cultura Disciplina

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE Istituto di Istruzione Superiore G. Curcio Ispica I SISTEMI DI NUMERAZIONE Prof. Angelo Carpenzano Dispensa di Informatica per il Liceo Scientifico opzione Scienze Applicate Sommario Sommario... I numeri...

Dettagli

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il Lezione 5:10 Marzo 2003 SPAZIO E GEOMETRIA VERBALE (a cura di Elisabetta Contardo e Elisabetta Pronsati) Esercitazione su F5.1 P: sarebbe ottimale a livello di scuola dell obbligo, fornire dei concetti

Dettagli

NONA LEZIONE L AUTOSTOP

NONA LEZIONE L AUTOSTOP NONA LEZIONE L AUTOSTOP NONA LEZIONE 96 L autostop Scendi pure tu dalla macchina? Devo spingere anch io? Sì, se vuoi. Ma scusa, quanto è distante il distributore di benzina? Non lo so qualche chilometro.

Dettagli

Grandezze fisiche e loro misura. Grandezze fisiche e loro misura

Grandezze fisiche e loro misura. Grandezze fisiche e loro misura Grandezze fisiche e loro misura Essendo la Fisica basata sul metodo scientifico-sperimentale, c è la necessità di effettuare delle misure. Le caratteristiche misurabili di un corpo prendono il nome di

Dettagli

l insieme delle misure effettuate costituisce il campione statistico

l insieme delle misure effettuate costituisce il campione statistico Statistica negli esperimenti reali si effettuano sempre un numero finito di misure, ( spesso molto limitato ) l insieme delle misure effettuate costituisce il campione statistico Statistica descrittiva

Dettagli

Energia oggi e domani: Sfida ed opportunità. Vincenzo Balzani Dipartimento di Chimica G. Ciamician Università di Bologna vincenzo.balzani@unibo.

Energia oggi e domani: Sfida ed opportunità. Vincenzo Balzani Dipartimento di Chimica G. Ciamician Università di Bologna vincenzo.balzani@unibo. Energia oggi e domani: Sfida ed opportunità Vincenzo Balzani Dipartimento di Chimica G. Ciamician Università di Bologna vincenzo.balzani@unibo.it Scuola di Dottorato in Scienze e Alta Tecnologia Università

Dettagli

Mario Basile. I Veri valori della vita

Mario Basile. I Veri valori della vita I Veri valori della vita Caro lettore, l intento di questo breve articolo non è quello di portare un insegnamento, ma semplicemente di far riflettere su qualcosa che noi tutti ben sappiamo ma che spesso

Dettagli

Misurare una grandezza fisica significa confrontarla con un altra grandezza di riferimento, detta unità di misura.

Misurare una grandezza fisica significa confrontarla con un altra grandezza di riferimento, detta unità di misura. LE GRANDEZZE FISICHE Se vogliamo studiare la natura dobbiamo in primo luogo trasformare ciò che percepiamo soggettivamente, attraverso i nostri sensi, in qualcosa di quantitativo e oggettivo, ovvero dobbiamo

Dettagli

Il mondo dell affettività e della sessualità. Per genitori e ragazzi

Il mondo dell affettività e della sessualità. Per genitori e ragazzi Il mondo dell affettività e della sessualità Per genitori e ragazzi Monica Crivelli IL MONDO DELL AFFETTIVITÀ E DELLA SESSUALITÀ Per genitori e ragazzi Manuale www.booksprintedizioni.it Copyright 2015

Dettagli

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso di Matematica - NUCT 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor, matematico

Dettagli

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ;

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; Primo anno Secondo anno Terzo anno Primo anno MATEMATICA Scuola dell Infanzia Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; legge

Dettagli

Il Denaro è in cancrena e quando c'è cancrena va imputato

Il Denaro è in cancrena e quando c'è cancrena va imputato Il Denaro è in cancrena e quando c'è cancrena va imputato Qui voglio fare un esempio per capire dove siamo arrivati col denaro: Ammettiamo che io non abbia a disposizione quasi nulla come denaro, ma voglio

Dettagli

Obiettivo Principale: Spiegare come la stessa cosa possa essere realizzata in molti modi diversi e come, a volte, ci siano modi migliori di altri.

Obiettivo Principale: Spiegare come la stessa cosa possa essere realizzata in molti modi diversi e come, a volte, ci siano modi migliori di altri. 6 LEZIONE: Algoritmi Tempo della lezione: 45-60 Minuti. Tempo di preparazione: 10-25 Minuti (a seconda che tu abbia dei Tangram disponibili o debba tagliarli a mano) Obiettivo Principale: Spiegare come

Dettagli

ESERCIZI DI PREPARAZIONE E

ESERCIZI DI PREPARAZIONE E ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI si campa anche senza sapere che cos è un equazione, senza sapere suonare uno strumento musicale, senza conoscere il nome del

Dettagli

QUESTIONARIO SULLE DIPENDENZE da MEZZI TECNOLOGICI. elaborato dagli alunni della 3E a.s. 2012-2013

QUESTIONARIO SULLE DIPENDENZE da MEZZI TECNOLOGICI. elaborato dagli alunni della 3E a.s. 2012-2013 QUESTIONARIO SULLE DIPENDENZE da MEZZI TECNOLOGICI elaborato dagli alunni della 3E a.s. 2012-2013 F= risposta degli alunni/figli G = risposta dei genitori F: 1- Cosa pensi della dipendenza elettronica?

Dettagli

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte Competenza chiave europea: MATEMATICA Scuola Primaria DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte TAB. A TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE al termine della Scuola Primaria

Dettagli

La Domanda Perfetta Scopri Subito Chi ti Mente

La Domanda Perfetta Scopri Subito Chi ti Mente La Domanda Perfetta Scopri Subito Chi ti Mente Una tecnica di Persuasore Segreta svelata dal sito www.persuasionesvelata.com di Marcello Marchese Copyright 2010-2011 1 / 8 www.persuasionesvelata.com Sommario

Dettagli

Angeli - Voglio Di Piu' Scritto da Joel Lunedì 11 Agosto 2008 01:19

Angeli - Voglio Di Piu' Scritto da Joel Lunedì 11 Agosto 2008 01:19 01 - Voglio Di Piu' Era li', era li', era li' e piangeva ma che cazzo hai non c'e' piu',non c'e' piu',non c'e' piu' e' andato se ne e' andato via da qui Non c'e' niente che io possa fare puoi pensarmi,

Dettagli

L economia: i mercati e lo Stato

L economia: i mercati e lo Stato Economia: una lezione per le scuole elementari * L economia: i mercati e lo Stato * L autore ringrazia le cavie, gli alunni della classe V B delle scuole Don Milanidi Bologna e le insegnati 1 Un breve

Dettagli

Che cosa è la fisica? Per arrivare ad una legge fisica si fa un insieme di cose pratiche (procedura) che si chiama metodo scientifico.

Che cosa è la fisica? Per arrivare ad una legge fisica si fa un insieme di cose pratiche (procedura) che si chiama metodo scientifico. 01 Che cosa è la fisica? In questa lezione iniziamo a studiare questa materia chiamata fisica. Spesso ti sarai fatto delle domande su come funziona il mondo e le cose che stanno attorno a te. Il compito

Dettagli

Come Creare un Guadagno Extra nel 2013

Come Creare un Guadagno Extra nel 2013 Come Creare un Guadagno Extra nel 2013 Tempo di lettura: 5 minuti Marco Zamboni 1 Chi sono e cos è questo Report Mi presento, mi chiamo Marco Zamboni e sono un imprenditore di Verona, nel mio lavoro principale

Dettagli

Salvatore Salamone. Manuale d istruzione per. Coppie che. Scoppiano QUALCOSA SI PUÒ FARE! ... tutto sommato un libro d amore

Salvatore Salamone. Manuale d istruzione per. Coppie che. Scoppiano QUALCOSA SI PUÒ FARE! ... tutto sommato un libro d amore Salvatore Salamone Manuale d istruzione per Coppie che Scoppiano QUALCOSA SI PUÒ FARE!... tutto sommato un libro d amore CAPITOLO 18 Voler avere ragione Spesso le coppie incontrano delle barriere insormontabili

Dettagli

Nicolò UGANDA Gapyear

Nicolò UGANDA Gapyear Nicolò, Diario dall Uganda Se c è il desiderio, allora il grande passo è compiuto, e non resta che fare la valigia. Se invece ci si riflette troppo, il desiderio finisce per essere soffocato dalla fredda

Dettagli

Successioni ricorsive

Successioni ricorsive Capitolo 1 Successioni ricorsive Un modo spesso usato per assegnare una successione è quello ricorsivo che consiste nell assegnare alcuni termini iniziali (il primo, oppure i primi due, oppure i primi...

Dettagli

Esercizi pronomi accoppiati

Esercizi pronomi accoppiati Esercizi pronomi accoppiati 1. Rispondete secondo il modello: È vero che regali una casa a Marina?! (il suo compleanno) Sì, gliela regalo per il suo compleanno. 1. È vero che regali un orologio a Ruggero?

Dettagli

Società Italiana di Psiconcologia Sezione Toscana Giornata Studio Medicina Narrativa In Oncologia Rappresentazione di sé e evento malattia

Società Italiana di Psiconcologia Sezione Toscana Giornata Studio Medicina Narrativa In Oncologia Rappresentazione di sé e evento malattia Società Italiana di Psiconcologia Sezione Toscana Giornata Studio Medicina Narrativa In Oncologia Rappresentazione di sé e evento malattia Dr.ssa Valentina Panella Psicologa - Psicoterapeuta Firenze, 6

Dettagli

1. Completa le frasi con l imperfetto e il passato prossimo dei verbi tra parentesi.

1. Completa le frasi con l imperfetto e il passato prossimo dei verbi tra parentesi. Nome studente Data TEST DI AMMISSIONE AL LIVELLO B1.1 (Medio 1) 1. Completa le frasi con l imperfetto e il passato prossimo dei verbi tra parentesi. Es. Ieri sera non ti (noi-chiamare) abbiamo chiamato

Dettagli

Linguaggio del corpo per la seduzione (per donne che vogliono sedurre uomini)

Linguaggio del corpo per la seduzione (per donne che vogliono sedurre uomini) Linguaggio del corpo per la seduzione (per donne che vogliono sedurre uomini) Come scoprire i significati della comunicazione non verbale per sedurre gli uomini. IlTuoCorso - Ermes srl Via E.De Amicis

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 8 marzo 2012 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2012.html DECISORI RAZIONALI INTERAGENTI di Fioravante Patrone,

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

A.S. 2007/08 INS. Martinis Margherita Mazza Giuseppina SCUOLA DELL INFANZIA COLLODI

A.S. 2007/08 INS. Martinis Margherita Mazza Giuseppina SCUOLA DELL INFANZIA COLLODI A.S. 2007/08 INS. Martinis Margherita Mazza Giuseppina SCUOLA DELL INFANZIA COLLODI Proseguire il lavoro svolto lo scorso anno scolastico sulle funzioni dei numeri proponendo ai bambini storie-problema

Dettagli

ROMANZO «DI» O «CON» IMMAGINI?

ROMANZO «DI» O «CON» IMMAGINI? ROMANZO «DI» O «CON» IMMAGINI? Lui. Tempo fa ho scritto un libro tutto parole niente immagini. Lei. Bravo. Ma non mi sembra una grande impresa. Lui. Adesso vedrai: ho appena finito un libro tutto immagini

Dettagli

Intervista a Andrew Wiles

Intervista a Andrew Wiles Intervista a Andrew Wiles di Claudio Bartocci Immagine da http://www.cs.princeton.edu/~dpd/deanoffaculty/depts.html 15 ottobre 2004 La grande passione di Pierre de Fermat - nato nel 1601 in una cittadina

Dettagli

CORSO BIELLA CONCETTI FONDAMENTALI DI ARITMETICA, ALGEBRA E GEOMETRIA PER LA SCUOLA DELL OBBLIGO MARTEDI 19/02/2013 TEMA

CORSO BIELLA CONCETTI FONDAMENTALI DI ARITMETICA, ALGEBRA E GEOMETRIA PER LA SCUOLA DELL OBBLIGO MARTEDI 19/02/2013 TEMA CORSO BIELLA CONCETTI FONDAMENTALI DI ARITMETICA, ALGEBRA E GEOMETRIA PER LA SCUOLA DELL OBBLIGO MARTEDI 19/02/201 TEMA OPERAZIONI CON I NUMERI E LORO PROPRIETA. NASCONO LE STRUTTURE ALGEBRICHE. 1 TESTO

Dettagli

La trigonometria prima della trigonometria. Maurizio Berni

La trigonometria prima della trigonometria. Maurizio Berni La trigonometria prima della trigonometria Maurizio Berni 9 maggio 2010 Negli istituti tecnici agrari la trigonometria viene affrontata: nella seconda classe in Disegno e Topografia (risoluzione di triangoli

Dettagli

MANDALA PER BAMBINI COLORARE INCOLLARE DISEGNARE SCIENZA E NATURA

MANDALA PER BAMBINI COLORARE INCOLLARE DISEGNARE SCIENZA E NATURA MANDALA PER BAMBINI COLORARE INCOLLARE DISEGNARE SCIENZA E NATURA PROGETTO MANDALA PER BAMBINI CONOSCERSI, GIOCANDO CON IL MANDALA E possibile imparare la geometria, le scienze, un metodo di studio e rappresentare

Dettagli

Progetto costo I. O. I.A. A 5 9 4 B 8 15 9 C 4 3 3 D 9 7 1

Progetto costo I. O. I.A. A 5 9 4 B 8 15 9 C 4 3 3 D 9 7 1 Tecniche di Valutazione Economica Processo di aiuto alla decisione lezione 13.04.2005 Modello di valutazione Dobbiamo riuscire a mettere insieme valutazioni che sono espresse con dimensioni diverse. Abbiamo

Dettagli

ANNA E ALEX ALLE PRESE CON I FALSARI

ANNA E ALEX ALLE PRESE CON I FALSARI EURO RUN: IL GIOCO www.nuove-banconote-euro.eu ANNA E ALEX ALLE PRESE CON I FALSARI Anna e Alex sono compagni di classe e amici per la pelle. Si trovano spesso coinvolti in avventure mozzafiato e anche

Dettagli

ANNA E ALEX ALLE PRESE CON I FALSARI

ANNA E ALEX ALLE PRESE CON I FALSARI EURO RUN: IL GIOCO www.nuove-banconote-euro.eu ANNA E ALEX ALLE PRESE CON I FALSARI - 2 - Anna e Alex sono compagni di classe e amici per la pelle. Si trovano spesso coinvolti in avventure mozzafiato e

Dettagli

INTERVISTA LICIA TROISI ASTROFISICA CON UNA MARCIA IN PIÙ

INTERVISTA LICIA TROISI ASTROFISICA CON UNA MARCIA IN PIÙ INTERVISTA LICIA TROISI ASTROFISICA CON UNA MARCIA IN PIÙ Licia Troisi ASTROFISICA CON UNA MARCIA IN PIÙ Licia Troisi, di professione astrofisica, è senza dubbio l autrice fantasy italiana più amata. All

Dettagli

SCUOLA SECONDARIA DI I GRADO

SCUOLA SECONDARIA DI I GRADO Operare in situazioni reali e/o disciplinari con tecniche e procedure di calcolo L alunno si muove con sicurezza nel calcolo anche con i numeri razionali, ne padroneggia le diverse e stima la grandezza

Dettagli

IMSV 0.8. (In Media Stat Virtus) Manuale Utente

IMSV 0.8. (In Media Stat Virtus) Manuale Utente Introduzione IMSV 0.8 (In Media Stat Virtus) Manuale Utente IMSV è una applicazione che calcola che voti può'prendere uno studente negli esami che gli mancano per ottenere la media che desidera. Importante:

Dettagli

CAP I. Note. Parte prima KATE

CAP I. Note. Parte prima KATE 7 Parte prima KATE CAP I - Mi chiamo Kate Maxwell. Nell ufficio dell investigatore Antonio Esposito sono le nove e mezza di una fredda mattina d ottobre. La donna è venuta senza appuntamento. Ha circa

Dettagli

LE SFIDE SULLE SPALLE!

LE SFIDE SULLE SPALLE! LE SFIDE Questo quarto incontro vuole aiutare a riflettere sulle sfide che l animatore si trova a vivere, sia in rapporto all educazione dei ragazzi, sia in riferimento alla propria crescita. Le attività

Dettagli