Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno. Edizioni Cupido

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno. Edizioni Cupido"

Transcript

1 33 Tratto dal Corso di Telecomunicazioni Vol. I ttore Panella Giuseppe Spalierno dizioni Cupido 3. Antenne Le antenne sono dispositivi in grado di irradiare, antenne trasmittenti, o di captare, antenne riceventi, energia elettromagnetica. sse consentono la trasmissione a distanza delle informazioni utilizzando lo spazio come canale di comunicazione. La possibilità di trasmettere onde elettromagnetiche nello spazio fu prevista teoricamente da Maxwell e confermata sperimentalmente da Hertz e Marconi. Nello studio delle antenne si considera come termine di paragone una antenna ideale detta antenna isotropica in grado di irradiare energia in tutte le direzioni con uguale intensità. Spesso nello studio delle antenne si fa riferimento alle antenne trasmittenti ma la teoria sviluppata vale anche per quelle riceventi. Infatti, si può dimostrare che vale il principio di reciprocità. Tale principio afferma che le caratteristiche funzionali di un'antenna utilizzata in ricezione sono le stesse di quelle che avrebbe l antenna se fosse utilizzata in trasmissione. In fig.17 si mostra uno schema semplificato di un sistema di trasmissione con antenne. Antenna trasm ittente Antenna ricevente TRASMTTITOR TX RICVITOR RX Fig.17 Schema di sistema di trasmissione con antenne. Il trasmettitore invia all antenna energia elettrica, modulata dall'informazione, che l antenna trasforma in onde elettromagnetiche che si propagano nello spazio libero. Le modalità di propagazione dell onda elettromagnetica dipendono della frequenza di lavoro del trasmettitore e dalle caratteristiche dell antenna. L'antenna ricevente svolge le funzioni opposte. Capta le onde elettromagnetiche e le trasforma in energia elettrica che invia all apparato ricevente. Nella pratica sono disponibili numerosi tipi di antenne di forma e dimensioni diverse ognuna delle quali è stata progettata per operare in una determinata banda di frequenze con particolari caratteristiche di guadagno e direttività.

2 34 Il principio di funzionamento di un antenna si basa sul noto fenomeno fisico secondo cui un conduttore attraversato da corrente variabile i(t) genera un campo elettromagnetico che si propaga nello spazio circostante. Le linee di forza del campo elettrico e di quello magnetico H sono tra loro perpendicolari come mostrato in figura 18. i(t) H 1 H H Fig.18 Schematizzazione del campo elettromagnetico prodotto da un filo percorso da corrente Se la corrente i(t) è sinusoidale il campo elettrico e magnetico risultano sinusoidali e perpendicolari tra loro con l andamento tipico riportato in fig.19. Direzione di propagazione dell energia x Fig. 19 Andamento del campo elettromagnetico generato da una corrente sinusoidale. L insieme dei due campi, tra loro concatenati, costituisce l onda elettromagnetica che trasporta energia e si propaga ortogonalmente ai vettori ed H. Il piano di oscillazione del campo elettrico è detto piano di polarizzazione dell onda elettromagnetica. Nella pratica, per ottenere la massima capacità di ricezione è fondamentale che l antenna ricevente e quella trasmittente sia collocate nello spazio in modo che i piani di polarizzazione siano coincidenti. Ad esempio, è per tale motivo che le antenne riceventi TV alcune volte hanno gli elementi paralleli al suolo mentre altre volte sono verticali rispetto al suolo in funzione proprio del piano di polarizzazione dell antenna trasmittente. Nella maggior parte delle applicazioni il piano di polarizzazione dell onda è orizzontale o verticale. Una caso particolare di polarizzazione è la polarizzazione circolare. ssa si realizza mediante la composizione di due campi elettrici perpendicolari tra loro, di uguale ampiezza e sfasati di 90. La somma dei due campi genera un campo rotante in senso orario o antiorario in

3 35 funzione della fase associata ai due campi. La polarizzazione circolare si realizza utilizzando due antenne poste perpendicolari tra loro ed alimentate con correnti sfasate di 90. Le onde polarizzate circolarmente risentono poco dei fenomeni atmosferici (pioggia, neve,ecc) ma soprattutto presentano la caratteristica di non influenzate nell attraversare la ionosfera per cui ben si adattano alle trasmissioni satellitari. La densità di potenza associata all onda elettromagnetica e la direzione di propagazione si valutano mediante il vettore di Poynting S. Indicando con [V/m] l ampiezza relativa al campo elettrico e con H [A/m] quella del campo magnetico, si ha: H S = [W/m ] (47) Il vettore di Poynting, definito come prodotto vettoriale tra le intensità del campo elettrico e magnetico, rappresenta l energia che per unità di tempo passa attraverso l unità di superficie ortogonale alla direzione di propagazione. ssendo i vettori perpendicolari, il modulo del vettore di Poynting vale: S = 1 H (48) Dove: e H sono i valori efficaci delle intensità dei campi. L unità di misura di S è il W/m ad indicare che tale vettore fornisce la densità di potenza cioè la potenza che attraversa la superficie di 1 m perpendicolare alla direzione di propagazione. Pertanto, la potenza che attraversa una superficie di area A [m ] vale P A = S A [W] Dalla fisica è noto che in un punto dello spazio vuoto caratterizzato da un campo elettrico e da un campo magnetico H è presente una densità di energia elettrica W e magnetica W H espresse dalle seguenti relazioni: W = 1 [Joule/m ε 0 3 ] W H = 1 µ 0H [Joule/m 3 ] Inoltre è anche noto che deve essere W = W H. Da tale uguaglianza si ricava, che il rapporto /H è una costante caratteristica del mezzo trasmissivo. A tale parametro si da il nome di impedenza caratteristica dello spazio, e si indica con Z 0. ssa vale: Z 0 = µ 0 H ε 0 = = 10 π = 377 Ω (49)

4 36 Con ε 0 = [F/m] costante dielettrica del vuoto e µ 0 = [H/m] permeabilità assoluta del vuoto. Tenendo conto della precedente relazione, la (48) si può porre nella forma: S = 1 (50) Z La velocità di propagazione delle onde elettromagnetiche nel vuoto è quella della luce: 0 c = 0 1 ε µ 0 8 = 3 10 m/sec (51) In un mezzo omogeneo qualunque la velocità di propagazione dell onda elettromagnetica dipende dalla costante dielettrica ε e magnetica µ del mezzo. Ricordando che: ε = ε 0 ε r e µ = µ 0 µ r si ricava: v = 1 c = ε µ ε µ r r = c n Nel caso della luce il coefficiente n è il noto indice di rifrazione del mezzo. Dalla (51) si ricava, inoltre: 1 µ 0 = ε c 0 Sostituendo nella (49) si ottiene: = cµ 0 H La precedente relazione mostra, ancora una volta, lo stretto legame esistente tra il campo elettrico e quello magnetico. Le relazioni precedenti si possono ritenere, in generale, valide anche nell aria avendo quest ultima gli stessi valori di ε 0 e µ 0. Nota la frequenza di oscillazione f dell onda elettromagnetica, la lunghezza d onda λ della radiazione si ricava dalla nota formula: λ = c (5) f 3.. Coordinate sferiche La propagazione delle onde elettromagnetiche avviene nello spazio tridimensionale per cui è conveniente assumere un sistema di riferimento sferico per calcolare i valori del campo elettromagnetico in un punto P dello spazio. In fig.0 si mostra il sistema di coordinate sferiche.

5 37 z θ r P O y x ϕ P Fig.0 Coordinate sferiche. Il punto P è individuato da tre coordinate: l'angolo θ detto colatitudine, l'angolo ϕ detto azimut e la distanza r dall origine degli assi in cui si suppone sia posta l antenna. Il piano individuato dalle rette x-y è detto piano equatoriale mentre quello relativo alle rette y-z è detto piano meridiano Dipolo elementare Si definisce dipolo elementare un tratto di conduttore filiforme di lunghezza z<<λ percorso da una corrente elettrica a frequenza f = c/λ. Si suppone costante l ampiezza I della corrente lungo tutto il tratto z. Disponendo il dipolo lungo l asse z delle coordinate sferiche, in un punto P, posto ad una distanza r >> λ, le intensità dei campi elettrico e magnetico si possono ricavare dalle seguenti relazioni : (θ, ϕ, r ) = ZI z I z 0 60 π sen θ = senθ = senθ (53a) λ r λ r H (θ, ϕ, r ) = ( θϕ,, r ) I z = senθ = H senθ (53b) Z0 λ r Le precedenti espressioni mostrano che i campi prodotti da un dipolo elementare godono delle seguenti proprietà: b) i valori del campo elettrico e magnetico non dipendono dall'azimut ϕ data la simmetria assiale del dipolo; c) l'intensità di campo è nulla per θ = 0 e cioè in tutti i punti disposti sull'asse z ed è massima per θ = 90 e cioè per tutti i punti del piano equatoriale x-y. c) l'intensità di campo è inversamente proporzionale alla distanza r; Dalla (50), invece, si deduce che la densità di potenza S dipende da e decresce con il quadrato della distanza dal dipolo. Ad esempio, se in un punto dello spazio = 50 µv/m, si ricava:

6 38 H = Z 0 = 0.13 A / m e S = 1 Z 0 = 3.3 pw / m (54) Ad una distanza doppia dall antenna l intensità del campo si dimezza mentre la densità di potenza diviene un quarto. Le linee di forza del campo elettrico giacciono sui piani meridiani contenti il dipolo, mentre le linee di forza del campo magnetico sono delle circonferenze concentriche con l asse z e disposte su piani perpendicolari a tale asse Diagrammi di radiazione Una antenna non irradia energia equamente in tutte le direzioni ma, spesso, presenta delle direzioni privilegiate di massima irradiazione. L intensità del campo elettrico, pertanto, non è lo stesso a parità di distanza dall elemento radiante. Il comportamento di un'antenna, nei riguardi della sua capacità di irradiare energia in misura diversa a seconda della direzione, può essere messa in evidenza da un particolare grafico tridimensionale detto solido di radiazione. Le proiezioni di tale solido su particolari piani, come quello meridiano o equatoriale sono denominati diagrammi di radiazione. Tali diagrammi forniscono utili informazioni sulla direttività di un antenna. La costruzione del solido di rotazione si può effettuare sperimentalmente mediate un particolare strumento detto misuratore di campo. Per la costruzione del solido di radiazione si procede nel seguente modo: Si misurano i valori del campo elettrico dei punti dello spazio giacenti su una superficie sferica, di raggio molto grande rispetto a λ, avente per centro l'antenna. Si riportano, in un sistema di coordinate sferiche, a partire dall origine degli assi, in cui si suppone posta l antenna, dei vettori di lunghezza proporzionale all'intensità di campo dei punti presi in esame e diretti verso i punti suddetti. Il luogo dei punti estremi di tali vettori costituisce la superficie esterna del solido di radiazione. Per il teorema di reciprocità i diagrammi di radiazione delle antenne trasmittenti sono uguali a quelli delle antenne riceventi. Dato lo stretto legame tra campo elettrico e magnetico, i diagrammi di radiazione si possono costruire anche in funzione del campo magnetico. Nella pratica, però, si è scelto di utilizzare il campo elettrico poiché, come vedremo nel seguito, la forza elettro motrice generata da un antenna è funzione di tale campo. Spesso il solido di radiazione e i relativi diagrammi si possono ricavare per via analitica se si conosce la geometria dell antenna e le equazioni del campo elettromagnetico. Consideriamo un antenna isotropica, assimilabile ad una sorgente ideale puntiforme di onde elettromagnetiche. ssa irradia energia in tutte le direzioni con uguale intensità. Si intuisce immediatamente che, data la simmetria della sorgente, il solido di radiazione è una sfera i diagrammi di radiazione nel piano meridiano y-z ed equatoriale x-y sono due circonferenze. Nel caso di un dipolo elementare, disposto lungo l asse z, applicando la relazione (53a) si ricava che il solido di radiazione ha forma toroidale.

7 39 Sezionando il solido di radiazione si ricava che il diagramma di radiazione nel piano equatoriale x-y è una circonferenza, mentre quello nel piano meridiano y-z è costituito da due circonferenze, come mostrato in fig.1. z θ r y x y M M z M M x M α α M y M M Fig. 1 Solido e diagrammi di radiazione per un dipolo elementare. Si definisce angolo di apertura del fascio α o semplicemente angolo del fascio, l'angolo compreso tra le due direzioni del piano per le quali l'intensità di campo è M /. Con M si indica l intensità del campo nella direzione di massima irradiazione. Per tutte le direzioni comprese nell'angolo del fascio risulta: M /. Per il dipolo elementare l'angolo di apertura è di α = 90. Infatti, per definizione di coseno, si ha: α / cos = M = 1 = M Si ricava: α = 90. Se si indica con S la densità di potenza nella direzione di massima irradiazione di campo, nella direzione estrema dell angolo di apertura il campo si riduce di e la densità potenza si dimezza, come si può facilmente ricavare tenendo conto della (54). Per tale motivo, nella pratica, si dice che l angolo di apertura del fascio individua i punti a metà potenza.

8 40 Un antenna trasmittente è, in genere, costruita per irradiare solo in determinate direzioni in cui è necessario servire una certa utenza. Quindi è opportuno che essa abbia un ben determinato solido di radiazione poiché la potenza irradiata nelle altre direzioni è sicuramente persa. In tal modo si ottiene anche l ulteriore vantaggio di ridurre la potenza necessaria per il pilotaggio del trasmettitore Guadagno di una antenna Si è detto che un radiatore isotropico è caratterizzato da una densità di potenza costante per tutti i punti appartenenti ad una superficie sferica con centro nel radiatore. La potenza irradiata P io su un'area della superficie sferica di raggio r, vale: Dal confronto della (54) con la (55) si ottiene : P io = 4πr S (55) P io = 1 4πr = Z 0 π r Z ssendo Z 0 = 10 π [Ω], si ricava l'intensità di campo elettrico : 0 (56) = 1 60 r P io (57a) Il valore efficace di tale campo vale: 1 eff = = 30 P r io (57b) Un'antenna reale non è isotropica e la densità di potenza varia a seconda della direzione di propagazione. La densità di potenza S è, in generale, funzione della distanza r, della colatitudine θ e dell'azimut ϕ. Le antenne direttive consentono di ottenere, ad una distanza r, nella direzione di massima irradiazione, lo stesso campo prodotto da un antenna isotropica utilizzando però una potenza minore. Si definisce guadagno dell'antenna il rapporto tra la potenza P io che dovrebbe essere irradiata da un antenna isotropica rispetto a quella che effettivamente è irradiata dall antenna in esame per ottenere la stessa intensità del campo elettrico alla stessa distanza e nella direzione di massima irradiazione. In formule: G = P io Pi (58)

9 41 Tenendo conto della (55), la precedente relazione consente di valutare la densità di potenza S in un punto dello spazio a distanza r dall antenna noto il guadagno e la potenza irradiata P i. Si ha: S = G P i (59) 4π r Nella pratica si pone: IRP = G P i Il termine IRP è l acronimo di ffective Isotropic Ratiated Power e rappresenta un parametro caratteristico delle antenne indicato in molte normative di funzionamento. Tale parametro fornisce la potenza equivalente di un radiatore isotropico in grado di produrre la stessa intensità di campo nello spazio interessato dall antenna. Spesso il guadagno di antenna si esprime in db. In tal caso si ha: G db = 10 Log P io Pi Per il dipolo elementare la densità di potenza si valuta tenendo conto della (53a) e della (54). Si ottiene: S = 1 sen θ Z La potenza P i irradiata dal dipolo elementare ad una distanza r si calcola integrando la precedente relazione sulla superficie toroidale (fig.1) relativa al solido di radiazione dell antenna. Si può dimostrare 1 che: 0 Pi = 4 r π 3Z 0 (60) Il guadagno del dipolo elementare si ottiene dividendo la (56) per la (60). Si ottiene: G = P = 3 io P i = 1.5 sprimendo il guadagno in db si ricava: G db = 1.76 db. Ciò indica che l antenna produce, a parità di alimentazione e nella direzione di massima irradiazione, una potenza 1.5 volte più elevata di quella di un antenna isotropa. Il guadagno d antenna è, pertanto, un indice del grado di direttività dell'antenna. 1 Infatti, indicando con da l area della corona circolare del toroide a distante r dal centro delle coordinate sferiche, si può scrivere: da = (πr senθ) r dθ = πr senθ dθ. Per cui: 3 r Pi = S da = d = 4 r π π sen θ π A θ 0 Z 3 Z 0 0

10 4 Sostituendo nella (60) ad il valore fornito dalla (53a) si ricava: z Pi = 40π λ I sprimendo la corrente in termini di valore efficace I eff = I, si ottiene: z Pi = 80π λ I eff (61a) (61b) Infine, si osservi che per calcolare il campo elettrico di un antenna reale di cui è noto il guadagno G, basta sostituire nelle relazioni (57a) e (57b) P io = G P i. Si ha: = 1 60 r GP i (6a) eff = 1 30 r GP i (6b) 3.6. Resistenza di radiazione e rendimento di conversione L antenna è un dispositivo che trasforma potenza elettrica, fornita dal trasmettitore, in potenza elettromagnetica che si propaga nello spazio libero. Come in tutti i sistemi di conversione, della potenza P fornita dal generatore una parte P i è effettivamente irradiata nello spazio ed una parte P p è persa. Come al solito, si definisce rendimento η il rapporto tra la potenza utilizzata per irradiazione e quella totale P: η = P i P = Pi (63) P + P La potenza irradiata da un'antenna può essere considerata come assorbita da una resistenza fittizia, detta resistenza di radiazione, attraversata da una corrente di valore efficace I eff. Pertanto si può scrivere: R i = P i (64) I Tenendo conto della (61b) è facile ricavare che per il dipolo elementare la resistenza di radiazione R i vale: z R i = 80π λ (65) eff i p

11 43 Analogamente si definisce resistenza di perdita R p il rapporto: R p = P p (66) I eff Noti i valori di R i e R p il rendimento η si può porre nella forma: R i η = R + R i p (67) 3.7. Lunghezza efficace ed area efficace Consideriamo un filo conduttore di lunghezza h[m] disposto lungo le linee di forza di un campo elettrico variabile di ampiezza [V/m]. La Fisica ci insegna che in tali condizione nel conduttore nasce una f.e.m. indotta V di ampiezza pari a: V = h [V] Nel caso di una antenna ricevente reale di tipo filiforme l ampiezza V della f.e.m indotta assume una espressione analoga alla precedente con la differenza di sostituire h con h eff : V = h eff (68) La lunghezza efficace h eff non coincide esattamente con quella reale ma dipende dalle caratteristiche dell antenna secondo la seguente relazione: h eff = λ Ri G π Z 0 R (69) Con G R si è indicato il guadagno dell antenna ricevente. La f.e.m. generata dall antenna produce nel circuito di ingresso del ricevitore una corrente variabile che in parte è utilizzata dal ricevitore e in parte reirradiata nello spazio. A tutti gli effetti un antenna ricevente si comporta come un generatore reale di tensione. In fig. si riporta il circuito equivalente del sistema ricevente. Ri V RL

12 44 Fig. Circuito equivalente di un antenna ricevente. La resistenza di radiazione R i tiene conto della reirradiazione di energia nello spazio e rappresenta la resistenza interna del generatore v mentre la resistenza R L è quella di utilizzazione del ricevitore. Il massimo trasferimento di energia tra generatore e utilizzatore si realizza, come è noto, se R i = R L. In tali condizioni la potenza ricevuta vale: V / V heff P R = R LIeff = R i = = R (70) i 8R i 8R i Sostituendo nella precedente relazione la (69) si ricava: G R PR = λ (71) 8πZ o Ricordando che la densità di potenza S = /Z 0, si può scrivere: P R = A eff S = A eff (7) Z0 Dove: λ G R A eff = [m ] (73) 4π L antenna ricevente si può considerare come una finestra di area fittizia A eff, denominata area efficace di ricezione, in grado di intercettare parte della densità di potenza S presente nello spazio. L area efficace indica l attitudine dell antenna a prelevare potenza dallo spazio. Si osservi che essa dipende da λ per cui le antenne che operano in alta frequenza hanno una minore capacità di captare energia dallo spazio. A tale inconveniente si sopperisce aumentando il guadagno dell antenna. Per concludere si vuole ricordare che nella pratica i valori della tensione o della potenza si misurano con riferimenti assoluti a seconda delle applicazioni. Ad esempio, la potenza P spesso si misura in dbm per indicare che è riferita al valore di 1mW, in tal caso si ha: dbm = 0 Log(P/(1mW) altre volte la potenza si misura in dbw se ci si riferisce al valore di 1W. Analogamente la tensione V fornita da un antenna ricevente si misura in dbµv se si assume come riferimento 1µV: in tal caso si ha: dbµv = 0 Log(V/1µV) Potenza ricevuta da una antenna. Consideriamo il caso generale, mostrato in fig.3, del collegamento tra due apparati tramite due antenne poste a distanza r.

13 45 Trasmettitore TX Ricevitore RX Fig. 3 Collegamento tra due antenne. Ci proponiamo di valutare la potenza P R ricevuta dall antenna RX. Per la (7) si ha: λ G R P R = A eff S = S (74) 4π La densità di potenza S che investe l antenna ricevente è quella prodotta dall antenna trasmittente che, per la (59) vale: PT S = G T (75) 4π r Si è indicato con G T e P T rispettivamente il guadagno e la potenza dell antenna trasmittente. Sostituendo la (75) nella (74) si ricava: λ P R = GR GT PT 4π r (76) La precedente relazione costituisce l equazione fondamentale della trasmissione con antenne. ssa pone in evidenza, tra l altro, che nei sistemi in alta frequenza (λ piccola) per ottenere valori accettabili di potenza P R è necessario impiegare antenne dotate di elevato guadagno cioè antenne molto direttive. Dalla precedente formula si può ricavare l attenuazione di trasmissione A T definita dalla seguente relazione: P T 4π r 1 A T =10 log =10 log (77a) PR λ G R G T Dalla precedente relazione è possibile definire l attenuazione nello spazio libero A SL : 4π r 4π r ASL = 10 Log = 0 Log (77b) λ λ L attenuazione dello spazio libero è dovuta preincipalmente all assorbimento di energia dai vari gas presenti nell atmosfera. In particolare si hanno due picchi di assorbimento a 1 GHz per il vapore acqueo e a 60 GHz per l ossigeno.

14 46 Bassi assorbimenti si hanno invece nella finestra compresa tra circa 500 MHz e 10 GHz che, pertanto, è ampiamente utilizzate nei sistemi di telecomunicazioni Antenna filiforme Una antenna filiforme è realizzata utilizzando un conduttore rettilineo, di diametro piccolo rispetto alla lunghezza, alimentato in un punto generico che spesso coincide con il centro. Tale antenna si può ritenere derivata da una linea avente i due conduttori aperti e disposti in opposizione tra loro, come mostrato in fig.4. Si suppone di disporre l antenna lungo l asse z delle coordinate sferiche. v i(t) + - H Onda elettromagnetica v(t) h Fig.4 Rappresentazione schematica di una antenna filiforme. Come è noto dalla teoria delle linee, lungo i conduttori si instaura un regime di onde stazionarie con una distribuzione di corrente caratterizzata da ventri e nodi. L'antenna si può pensare suddivisa in tratti infinitesimi z e considerata, pertanto, come costituita da tanti dipoli elementari. Il campo elettromagnetico complessivo irradiato dall'antenna è la sommatoria dei campi dei singoli dipoli elementari. Se la lunghezza h dell'antenna è multipla intera di λ/ si dice che l'antenna è in risonanza. Ponendo h = m (λ/), con m intero positivo, il campo elettrico può essere calcolato utilizzando le seguenti relazioni: 1) per m pari: π π sen mcosθ sen m cos θ Z I v I 0 60 v ( θϕ,, r) = = (78) πr senθ r sen θ ) per m dispari:

15 47 ( θϕ,, r) π π cos mcosθ cos m cos θ Z I v I 0 60 v = = πr senθ r sen θ (79) Si è indicato con I v l intensità della corrente in un ventre dell onda stazionaria. Per un antenna filiforme il diagramma di radiazione è una circonferenza nel piano x-y. Nel piano y-z il diagramma di radiazione è costituito da un numero n di lobi pari al doppio del numero di mezze lunghezze d'onda : n = m Dipolo Hertziano a λ/ Il dipolo Hertziano è un caso particolare di antenna filiforme risonante caratterizzata da una lunghezza h = λ/ (m = 1). ssa è normalmente alimentata al centro e il regime di onde stazionarie presenta un ventre di corrente e un nodo di tensione in corrispondenza dei morsetti di alimentazione. Agli estremi, viceversa, si ha un ventre di tensione e un nodo di corrente. In fig.5 si mostra la distribuzione delle ampiezze dell onda stazionaria della corrente I e della tensione V. V λ/4 λ/4 V(t) h = λ/ I λ/4 λ/4 Fig.5 Distribuzione della corrente e della tensione in un dipolo Hertziano. Posto h = λ/ si ricava immediatamente che la frequenza di lavoro f 0 risulta: f 0 = c h L intensità del campo elettrico si ricava ponendo m = 1 nella (79):

16 48 π cos cosθ 60 I v = r sen θ (80) La precedente relazione assume il massimo valore per θ = 90 : Per cui la (80) si può scrivere: = M = M 60 I r v π cos cosθ senθ (81) (8) Il solido di radiazione è un toroide a sezione ellittica di cui, in fig. 6, si riportano i diagrammi di radiazione nel piano x-y e y-z. y M M z M M x M α α M y M M Fig.6 Diagrammi di radiazione per un dipolo Hertziano. L angolo di apertura del fascio α si ottiene in corrispondenza dei valori di campo elettrico pari a M. Dalla (8) si ottiene: π cos cosθ senθ = 1

17 49 Risolvendo la precedente relazione si ricava che la colatitudine θ vale: θ = 51. L angolo di apertura del fascio risulta: α = θ = 78 Si può dimostrare che il guadagno dell antenna Hertziana è leggermente superiore a quella di un dipolo elementare e vale: G = 1.64 o anche: G db =.17 db (84) Per il calcolo della resistenza di radiazione R i non si può utilizzare la formula (65) poiché la corrente lungo i conduttori dell antenna non si può considerare costante ma, come appare dalla fig.5, è assimilabile ad una mezza sinusoide. Ogni tratto infinitesimo di conduttore si può assimilare ad un dipolo elementare per cui la potenza complessiva irradiata è la sommatoria di tutti i contributi dei dipoli elementari. Complessivamente l antenna si può ritenere equivalente ad un dipolo percorso da una corrente efficace costante pari alla media dei valori efficaci delle correnti nei tratti infinitesimi in cui si suppone suddivisa. Indicando con I eff il valore efficace nel ventre di corrente, il valore efficace medio I effm vale : I effm = I π Ponendo nella (61b) z = λ/ e I eff = (πi effm )/, si ottiene: eff P i = 80 I effm Pertanto, la resistenza di radiazione del dipolo Hertziano vale: R i = 80 Ω Tale valore è teorico poiché non tiene conto degli effetti di bordo ai terminali dell antenna. Sperimentalmente si ricava: R i 73 Ω. In generale, essendo h = mλ/ la resistenza di radiazione di un antenna filiforme assume una espressione complessa che si può approssimare con la seguente formula: Ri log m [Ω] ( 85 ) Si osservi che per m = 1 l antenna è Hertziana a λ/ e si ottiene R i = 73 Ω. Il valore della resistenza di radiazione dipende da diversi fattori come la distanza dal suolo e il rapporto tra diametro e lunghezza dell antenna. L antenna può considerarsi isolata nello spazio libero solo se la distanza dal suolo è di diverse lunghezze d onda. Per quanto concerne l influenza del diametro si può verificare che R i Infatti, il valore medio A m di un segnale sinusoidale di ampiezza A valutato in mezzo periodo è: 1 T/ Am = Asen t dt = A T/ ω 0 π

18 50 si riduce a 64 Ω se il diametro del conduttore di antenna è di 10-4 λ, mentre vale 55 Ω se il diametro è di 10 - λ. L'antenna si comporta nei confronti della linea che l'alimenta come un carico di impedenza Z a : Z a = R a + j X a denominata impedenza di alimentazione. Nel caso di alimentazione al centro l impedenza Z a assume il valore: Z a = 73 + j 4 [Ω ] La resistenza di alimentazione R a coincide con quella di radiazione R i. Anche la reattanza X a dipende dalla lunghezza dall antenna e dal rapporto lunghezza/diametro. Si può dimostrare che X a si annulla se la lunghezza dell antenna è circa il 95% di λ/. In tal caso si dice che l'antenna è risonante. Nella pratica la lunghezza di un antenna assume il valore: h = K λ con K Il parametro K è detto fattore di velocità. Per quanto concerne il calcolo dell altezza efficace dalla (69), posto R i =73Ω e G R =1.64, si ha: h eff = λ π (86) 3.8. Banda passante e rapporto Segnale/Rumore Finora si è sempre considerata la frequenza del segnale di comando dell antenna costante e pari a f 0 = c/h. Nell intorno di tale frequenza l antenna, essendo derivata da una linea con uscita aperta, si può considerare equivalente ad un circuito risonante serie del tipo RLC, per cui: per f = f 0 l antenna è risonante ed ha un comportamento resistivo; per f < f 0 ha un comportamento capacitivo; per f > f 0 ha un comportamento induttivo. La risposta in frequenza è, pertanto, analoga a quella di un filtro passa-banda. La selettività della risposta in frequenza dipende, tra l altro, dal rapporto tra la lunghezza dell antenna e il suo diametro. Si definisce Banda Passante di un antenna la differenza tra le frequenze f s e f i che producono una attenuazione di 3 db rispetto al valore massimo del campo: B = f s f i. La larghezza della banda passante dipende fortemente dalle caratteristiche geometriche dell antenna. Nel caso del dipolo Hertziano la banda passante aumenta al diminuire del rapporto lunghezza/diametro. Ciò significa che, a parità di lunghezza, per ottenere un'antenna a larga banda, occorre aumentare il diametro. Poiché la valutazione analitica della banda passante di un antenna è complessa, i costruttori riportano sui propri cataloghi delle curve che indicano come varia il guadagno d antenna in funzione della frequenza di lavoro. In un impianto d antenna oltre al segnale utile si deve considerare anche un segnale di rumore che si genera per molteplici cause: rumore termico, rumore atmosferico, rumore negli

19 51 amplificatoti, ecc. Per tener conto di questi numerosi fattori è fondamentale definire il rapporto Segnale/Rumore indicato con la SNR (Signal Noise Ratio): Vs SNR (db) = 0Log Vr dove con V s si è indicata la tensione utile e con V n quella di rumore. Ad esempio, in un impianto di ricezione TV il segnale di rumore si attesta intorno ai 4 dbµv e per una buona ricezione si deve avere un SNR di circa dbµv Dipolo ripiegato Un particolare dipolo a λ/ è il dipolo ripiegato. sso è costituito da due dipoli in λ/ molto vicini tra loro e collegati in parallelo, come mostrato in fig.7. h = λ/ v(t) Fig.7 Dipolo ripiegato. Uno dei dipoli è alimentato al centro. Le correnti nei due conduttori paralleli sono uguali per cui l antenna si comporta come un semplice dipolo Hertziano, che a parità di potenza irradiata, necessita di una corrente di intensità metà di quella ordinaria. Poiché, per definizione, la resistenza di radiazione è data dal rapporto tra la potenza irradiata e il quadrato della corrente che percorre il dipolo, si ricava immediatamente che, la resistenza di radiazione R i del dipolo ripiegato è il quadruplo di quella del dipolo Hertziano. R i 4 75 = 300 Ω Tale valore, uguale a quello di una comune linea bifilare, consente un semplice collegamento al generatore di segnale senza necessità di effettuare un adattamento di impedenza. Il dipolo ripiegato è caratterizzato da una larghezza di banda superiore a quella del dipolo Hertziano poiché essendo formato da due conduttori in parallelo si può ritenere equivalente ad un unico conduttore di diametro maggiore. Il guadagno è uguale a quello del dipolo Hertziano: G = ffetto del suolo e principio dell antenna immagine

20 5 Le caratteristiche di irradiazione di un antenna sono fortemente influenzate dalla presenza del suolo terrestre che si comporta, nei confronti delle onde elettromagnetiche, come uno specchio. Un onda elettromagnetica che colpisce il suolo subisce una riflessione e genera un onda riflessa, come mostrato schematicamente in fig.8 a). Raggio diretto Antenna reale Raggio riflesso Suolo Antenna immagine Fig.8 a) ffetto del suolo. A tutti gli effetti l onda riflessa si può considerare generata da un antenna immagine posta al di sotto del suolo in posizione simmetrica rispetto all antenna reale. Il principio dell antenna immagine si può applicare anche alle antenne filiformi disposte in vario modo rispetto al suolo. In particolare, se l antenna reale è verticale le correnti nell antenna e nella sua immagine sono in fase, mentre se l antenna è orizzontale le correnti sono in opposizione, come mostrato in fig.8 b). Antenna verticale reale Antenna orizzontale reale Suolo Antenna verticale immagine Antenna orizzontale immagine Fig.8 b) Andamento delle correnti in antenne filiformi vicine al suolo Antenna Marconiana in λ/4 Un applicazione del principio dell immagine si ha nell antenna Marconiana detta anche dipolo in quarto d onda. ssa è derivata da quella Hertziana in cui si è sostituito un ramo dell antenna con un collegamento a terra che si comporta come un conduttore perfetto e,

21 53 pertanto, simula il ramo mancante. Spesso per aumentare l effetto riflettente del suolo si crea, al di sotto dell antenna, una maglia di conduttori di rame o alluminio disposti a raggiera. In fig.9 si riporta una schematizzazione di un antenna Marconiana insieme al diagramma di radiazione nel piano meridiano y-z. Con un tratteggio si indicano gli effetti dell antenna immagine. z h M / v(t) α M y Fig.9 Antenna Marconi a λ/4. Il dipolo Marconiano si comporta come la metà di un dipolo Hertziano. Ovviamente, sotto la superficie terrestre non vi è alcune irradiazione per cui la potenza irradiata dal dipolo Marconiano è, a parità di campo elettrico, la metà di quella che irradierebbe un dipolo Hertziano. Si deduce che : il guadagno dell antenna Marconiana è il doppio di quello dell antenna Hertziana: G = 1.65 = 3.3 o anche: G db = 5.18 db la resistenza di radiazione è la metà di quella di un dipolo Hertziano: Dalla (69) si ricava che l altezza efficace vale: R i = 73/ = 36.5 Ω h eff = λ π Nel campo della radiodiffusione l antenna Marconi si realizza mediante un grosso traliccio in ferro isolato dal suolo con isolatori in porcellana. L intensità del campo elettrico si valuta mediante la relazione:

22 54 60 I = r v h h cos π cosθ cos π λ λ senθ (87) Dalla precedente relazione si può verificare che: 1) per h < λ/ il diagramma di radiazione presenta due lobi aderenti al suolo sempre più schiacciati al tendere di h a λ/; I v ) per h = λ/ e θ = 90 il campo elettrico è massimo e vale: M = 60 e l apertura r del fascio α 4 3) per h > λ/ il diagramma di radiazione presenta due lobi aggiuntivi inclinati con conseguente diminuzione dell irradiazione sul piano equatoriale. In particolare per h=λ sono presenti solo i lobi inclinati e si annulla l irradiazione sul piano orizzontale; 4) per h < λ/8 il diagramma di radiazione diventa uguale a quello dell antenna Hertziana. Anche per il dipolo Marconiano è possibile stabilire una equivalenza con un circuito risonante serie. Alla frequenza di risonanza del dipolo f 0 = c/4h, l antenna si comporta come una impedenza puramente resistiva di valore R i = 36.5 Ω. Per frequenze f < f 0 il comportamento è capacitivo, mentre per f> f 0 è induttivo. La larghezza di banda dell antenna dipende dal rapporto tra lunghezza e diametro. In particolare la banda passante aumenta al crescere del diametro. L equivalenza tra dipolo e circuito risonante serie ci suggerisce che è possibile modificare la frequenza di risonanza f 0 inserendo opportune induttanze e capacità. La modifica della f 0 equivale ad una variazione dell altezza efficace dell antenna senza, però, variare la sua lunghezza reale. Indicando con L e C l induttanza e la capacità proprie del dipolo si ha: 1 f 0 = π LC In fig.30 si riportano alcune configurazioni atte a modificare l altezza efficace del dipolo Marconiano. C h h h C L v(t) a) v(t) b) v(t) c) Fig. 30 Antenne Marconiane caricate con capacità e induttanze.

23 55 Nel caso della fig.30a) la capacità C è una capacità concentrata che si trova in serie con quella propria dell antenna, ovviamente distribuita per tutta la lunghezza del dipolo. La frequenza di risonanza diventa: f' = 1 0 C C' π C+ C' L L antenna risuona su una frequenza f 0 > f 0. La capacità C ha, quindi, prodotto un accorciamento dell antenna. Nel caso della fig.30b) la capacità C è realizzata con un disco metallico, a volte a raggiera, posto sulla sommità dell antenna. La capacità C risulta in parallelo a quella propria e, pertanto, f 0 < f 0. Analogamente nel caso della fig.30c) l induttanza L è in serie con quella propria dell antenna per cui f 0 < f 0. In questi ultimi due casi si è avuto un allungamento dell antenna. Una tipica applicazione di un antenna marconiana in λ/4 che sfrutta il principio dell antenna immagine si ha nell antenna groud-plane. In tali antenne l effetto del suolo è creato artificialmente utilizzando aste o fili in lega di alluminio poste radialmente sulla base dell antenna e sorrette, eventualmente, da opportuni tiranti, come mostrato in fig. 31. Fig. 31 Antenna groud-plane Le aste, generalmente in numero di 4, sono connesse al filo di ritorno di massa o alla calza del cavo di alimentazione dell antenna. Lo stilo verticale, che costituisce l antenna marconiana, è collegato a filo centrale del cavo. Le antenne groud-plane sono tipicamente utilizzate negli impianti CB (Cyty Band) a 7 MHz ma possono essere impiegate anche nel campo delle onde corte e in quello VHF televisivo. L angolo che le aste formano con l antenna può essere modificato per realizzare piccole variazioni nel valore della resistenza di radiazione dell antenna e del diagramma di radiazione. Valori tipici di una groud-plane per CB sono: Guadagno = 7 db; Resistenza di radiazione = Ω: ROS < 1.5 sempio n Un antenna ricevente in λ/4 lavora alla frequenza f 0 = 100 MHz ed è investita dal campo elettromagnetico prodotto da un uguale antenna posta alla distanza di 10 Km. Sapendo che l antenna trasmittente invia nello spazio una potenza P T = 00 W, determinare, nella direzione di massima irradiazione:

24 56 1) la potenza ricevuta; ) l intensità del campo elettrico in ricezione; 3) la f.e.m. captata dall antenna ricevente. Risoluzione La lunghezza d onda della radiazione elettromagnetica vale: λ = c f 0 = = 3 m Per un antenna Marconiana G = 3.3. La potenza ricevuta, alla distanza r = 10 Km si determina applicando la (77): λ P R = GR GT PT= µw 4π r Applicando la (61) si determina l intensità del campo elettrico prodotto dall antenna trasmittente alla distanza r = 10 Km: = 60 G T PT = = 0 mv / m r L ampiezza della f.e.m. captata dall antenna ricevente è: V = h eff = λ π = 19.1 mv spressa in dbµv vale: Allineamento di dipoli V dbµv = 0 Log( /10-6 ) = dbµv Le antenne a dipolo, descritte nei precedenti paragrafi, sono alla base della costruzione della maggior parte delle antenne. Utilizzando più dipoli opportunamente connessi e alimentati, è possibile realizzare sistemi radianti ad elevata direttività. Le strutture maggiormente utilizzate sono: 1) allineamento di dipoli paralleli; ) allineamento di dipoli collineari; 3) allineamento di dipoli a cortina.

25 Allineamento di dipoli paralleli L allineamento di dipoli paralleli è realizzato impiegando N dipoli in λ/ eccitati da correnti di uguale ampiezza e opportunamente sfasate tra loro. In fig.3 si mostra l allineamento di 7 dipoli in λ/ distanziati di d e disposti paralleli all asse z. Fig. 3 Allineamento di dipoli paralleli. Il diagramma di radiazione nel piano equatoriale x-y è ottenuto come sovrapposizione dei campi dei singoli dipoli e dipende: dal numero N dei dipoli; dalla distanza d tra i dipoli; dallo sfasamento ψ tra le correnti di alimentazione. L intensità del campo elettrico in un punto dello spazio si valuta mediante la seguente relazione: π N d N cos cosθ sen sen sen 60 I v λ π ϕ θ ψ = (88) r senθ d sen π sen ϕ senθ ψ λ Agendo opportunamente sui parametri N, d e ψ è possibile modificare la forma del diagramma di radiazione. I casi più interessanti sono l allineamento Broadside e l allineamento nd-fire. 1) Allineamento Broadside

26 58 costituito da N dipoli in λ/ posti, tipicamente, ad una distanza d = λ/ ed eccitati da correnti di uguale intensità ed in fase tra loro (ψ = 0). Dalla (88) si ricava che il campo elettrico vale: π π cos cos θ sen N senϕ senθ 60 I v = (89) r senθ π sen sen ϕ senθ Posto θ = 90, si ha: π sen N sen ϕ 60 I v = r π sen sen ϕ (90) Il campo elettrico è massimo se si pone ϕ = 0 I v = 60 N (91) r La precedente relazione mostra che il campo elettrico è massimo nella direzione dell asse x e in un punto P di tale asse è N volte quello del singolo dipolo. Inoltre si ricava che per ϕ = 90 la (90) diventa: MAX 60 I v π = sen N r (9) L intensità del campo assume i seguenti valori caratteristici: 1) per N è dispari: I v = 60, come per il singolo dipolo; r ) per N è pari: = 0 In fig.33 si mostra il diagramma di radiazione nel piano x-y di un sistema radiante Broadside costituito da 7 dipoli posti a distanza d = λ/. Il diagramma è stato ricavato utilizzando il software riportato in appendice. La circonferenza interna ha raggio ridotto di un fattore rispetto a quella esterna al fine di poter valutare l angolo di apertura del fascio.

27 59 Fig.33 Diagramma di radiazione di un allineamento Broadside a 7 elementi posti a distanza d= λ/. ) Allineamento end-fire L allineamento end-fire è una struttura di dipoli paralleli che consente la massima irradiazione nella direzione dell asse y. Tale condizione si può ottenere in vari modi ma il caso pratico più interessante è quello di utilizzare N dipoli in λ/ posti ad una distanza d = λ/4 ed eccitati con correnti della stessa ampiezza ma sfasate tra loro di 90 (ψ = π/). In tali ipotesi la (88) diventa: π π Nπ cos cos θ sen N I v senϕ senθ = r sen θ π sen senϕ sen θ π (93) 4 4 L espressione del campo nel piano equatoriale si ottiene ponendo θ = 90 : π sen N 60I v 4 = r π sen 4 ( senϕ 1) ( senϕ 1) (94) L intensità del campo elettrico lungo l asse x si ottiene ponendo ϕ = 0:

28 60 I v = 60 π sen N r 4 Dalla precedente relazione si evince che l intensità del campo elettrico vale: (95) = 0; per N multiplo intero di 4; 60 I v = ; per N pari ad eccezione dei multipli di 4; r I v = 60 ; per N dispari. r Il campo elettrico è massimo nella direzione positiva dell asse y come si ricava ponendo ϕ = 90 nella (94). Si ha: MAX 60 I = N r v (96) Se nella (94) si pone ϕ = -90, si ricava l intensità del campo elettrico nella direzione negativa dell asse y: 60 I v π = sen N (97) r In tale direzione l intensità del campo elettrico è, pertanto: = 0; per N è pari 60 I v = ; per N è dispari r In definitiva se il numero N di dipoli è un multiplo intero di 4 la massima irradiazione è nella direzione positiva dell asse y. Tale direzione è denominata lato caldo (end-fire) dell antenna. In fig. 34 si mostra il diagramma di radiazione nel piano y-z per un sistema radiante end-fire a 8 dipoli con distanza d = λ/4 e sfasamento tra le correnti di alimentazione di 90.

29 61 Fig. 34 Diagramma di radiazione nel piano meridiano di un sistema radiante end-fire a 8 elementi con distanza d = λ/4 e sfasamento tra le correnti di alimentazione di 90. Rapporto Avanti/Indietro Nelle antenne direttive esiste una direzione privilegiata per l irradiazione o la ricezione del campo elettrico. Nella direzione opposta il campo è estremamente ridotto. Si definisce rapporto Avanti/Indietro di un antenna direttiva e si indica con FBR (Front to Back Ratio) la differenza, espressa in db, tra il campo elettrico nella direzione di massima irradiazione e quello nella direzione opposta. Nelle antenne televisive VHF o UHF il rapporto avanti/indietro FBR è tipicamente compreso tra 1 db e 35 db in funzione del tipo di antenna. Antenna Yagi-Uda L allineamento end-fire presenta la difficoltà dell alimentazione dei dipoli con correnti sfasate tra loro di 90. Per ovviare a tale inconveniente si utilizza una struttura che presenta un solo dipolo alimentato, detto dipolo attivo e gli altri liberi, detti dipoli passivi o parassiti. I dipoli parassiti sono, in realtà, alimentati per induzione dal campo elettromagnetico prodotto dal dipolo attivo. Per ottenere il desiderato sfasamento tra le correnti di dipolo si deve agire sulla lunghezza e sulla distanza dei dipoli parassiti rispetto al dipolo attivo.

30 6 I risultati più interessati si ottengo impiegando come dipolo attivo un dipolo ripiegato e disponendo i dipoli parassiti ad una distanza di circa 0.λ. In tali condizioni si verificano due casi: se il dipolo parassita ha una lunghezza maggiore di circa il 5% di λ/ riflette l onda elettromagnetica verso il dipolo attivo, per cui è detto riflettore; se il dipolo parassita ha una lunghezza minore di circa il 5% di λ/ l onda elettromagnetica si propaga dal dipolo attivo verso quello parassita, per cui è detto direttore. In fig.35 si mostra la struttura di un antenna direttiva del tipo Yagi-Uda che sfrutta le proprietà dei dipoli parassiti. La direzione di propagazione giace sul piano contenente i dipoli e il suo verso è quello che va dal riflettore ai direttori. Il diagramma di radiazione è sostanzialmente analogo a quello di fig.34. Struttura generale Antenna VHF Antenna UHF Fig.35 Antenna TV tipo Yagi-Uda. L antenna è costituita da un dipolo ripiegato attivo, da un riflettore e da uno o più direttori. Il guadagno di una antenna Yagi-Uda a tre elementi (dipolo attivo, riflettore e un direttore) ha il valore di circa 7 db ed aumenta di poco meno 1 db per ogni direttore aggiunto.

31 63 Il rapporto avanti/indietro può superare i 0 db in funzione del numero dei direttori. L antenna Yagi-Uda è molto usata nel campo delle frequenza VHF e UHF come antenna ricevente per sistemi televisivi L antenna Yagi-Uda è anche utilizzata come antenna trasmittente e ricevente nelle stazioni radio base della telefonia cellulare. In questo caso il sistema radiante è costituito da tre antenne distinte ognuna delle quali copre un area di 10, per un totale di Allineamento collineare In fig.36 si mostra la rappresentazione schematica di un allineamento collineare di 3 dipoli in λ/ disposti lungo l asse z. Fig.36 Allineamento collineare di 3 dipoli. In tale collegamento i dipoli sono normalmente alimentati con correnti di uguale intensità e fase. Il diagramma di radiazione sul piano equatoriale x-y è una circonferenza, mentre quello sul piano meridiano y-z dipende dal numero n di dipoli e dalla distanza s tra i centri dei dipoli. Il campo elettrico si valuta mediante la seguente relazione: = π cos cos 60 I v r sen θ n s θ sen π cos θ λ s sen π cosθ λ (98)

32 64 La precedente relazione assume il valore massimo per θ = 90 : MAX = 60 I r v n (99) La (99) mostra che il campo elettrico nel piano meridiano è n volte quello del singolo dipolo. L angolo di apertura del fascio nel piano meridiano dipende da n ed s. Nella seguente tabella si riportano alcuni valori caratteristici. Valori dell angolo di apertura del fascio n s = λ/ s = λ In fig.37 si mostra il diagramma di radiazione nel piano y-z di un sistema radiante collineare a 5 dipoli con distanza s = λ. Fig.37 Diagramma di radiazione nel piano y-z di un sistema radiante collineare a 5 dipoli con distanza s = λ Cortina di dipoli costituita da N n dipoli in λ/ alimentati in fase con N dipoli paralleli e n collineari, come mostrato in fig.38. Nella pratica spesso si pone: s = d = λ/.

33 65 Fig.38 Cortina di dipoli. In generale il campo elettrico in un punto dello spazio si valuta mediante la seguente relazione: π Nπd nπs cos cosθ sen senϕ senθ sen cosθ 60I v λ λ = r senθ πd πs sen senϕ senθ sen cosθ λ λ (100) Il campo elettrico è massimo per: θ =90 e ϕ = 0. Si ha: MAX = 60 I v r N n (101) La precedente relazione mostra che il campo elettrico prodotto da una cortina di dipoli è massimo nella direzione perpendicolare al piano della cortina ed ha una intensità N n volte quella del singolo dipolo. Si può dimostrare che anche il guadagno della cortina di dipoli è N n volte quello del singolo dipolo: G = 1.65 N n (10) Si può raddoppiare il guadagno facendo in modo che l energia venga irradiata solo in una direzione perpendicolare alla cortina. Ciò si ottiene ponendo una griglia metallica, che funge da schermo riflettente, in un piano parallelo alla cortina a distanza λ/4. Sul retro dello schermo si forma una cortina immagine con i dipoli alimentati in opposizione di fase rispetto alla cortina reale. ssendo λ/ la distanza tra cortina immagine e quella reale, l energia riflessa risulta in fase con quella diretta. In fig.39 si mostra il sistema di alimentazione per una cortina di N n = 6 elementi.

34 66 Fig. 39 a) Alimentazione di una cortina di dipoli. L alimentazione in fase dei singoli dipoli della cortina è ottenuta sfruttando la proprietà che in una linea bifilare due punti a distanza λ/ oscillano in opposizione di fase. Il collegamento con conduttori intrecciati consente di ottenere la richiesta alimentazione in fase. In fig.39 b) si riporta il diagramma di radiazione nel piano equatoriale x-y per una cortina di dipoli formata da 7 dipoli paralleli e 5 collineari posti a distanza s = d = λ/. Fig.39 b) Diagramma di radiazione nel piano x-y per una cortina di dipoli formata da 7 dipoli paralleli e 5 collineari posti a distanza s = d = λ/. I sistemi a cortina di dipoli sono ampiamente utilizzati come antenne trasmittenti e riceventi nei sistemi radio base della telefonia cellulare. In questi casi più cortine di dipoli sono disposte sui lati di un alto traliccio, normalmente, a sezione quadrata i modo da coprire l area interessata alla trasmissione dei segnali. Le antenne sono rivestite di materiale plastico per proteggerle dagli agenti atmosferici. Antenne Televisive

35 67 Le antenne usate in campo TV sono derivate da quelle Yagi-Uda e si classificano in antenne a larga banda e antenne monocanale. Quelle a larga banda possono ricevere più canali TV nelle stessa banda di lavoro o in bande diverse. Sarà compito del selettore dell apparecchio televisivo di selezionare il canale desiderato. La antenne monocanale sono in grado di ricevere un solo canale TV. Per aumentare la larghezza di banda si utilizzano varie soluzioni che consistono essenzialmente nel sagomare opportunamente i direttori. Tipiche strutture sono quelle con direttori a forma di V e quelle denominate antenne log-periodiche. Una tipica antenna direttiva log-periodica presenta le seguenti caratteristiche: banda passante pari all intera gamma UHF guadagno d antenna compreso tra 9 e 11 db rapporto Avanti/Indietro compreso tra 0 e 30 db Rapporto d Onda Stazionaria ROS <1.9 Angolo di apertura del fascio compreso tra i 0 e i 30 Per ottenere tali caratteristiche si utilizza una struttura costituita da numerosi dipoli con lunghezza dei bracci e distanza tra essi decrescente secondo un rapporto costante. Indicando con L 1, L, L 3.. le lunghezze dei bracci e con D 1, D, D 3,.le distanze relative, deve essere: L /L 1 = L 3 /L =.= D /D 1 = D 3 /D In fig. 40 si mostra la struttura di una tipica antenna a larga banda log-periodica della FRACARRO RADIOINDUSTRI s.p.a ed i relativi diagrammi di funzionamento forniti dal costruttore.

Le Antenne Verticali

Le Antenne Verticali Le Antenne Verticali principi e funzionamento illustrati da Gioacchino IW9DQW Generalità. S intende per antenna un organo atto ad irradiare nello spazio energia elettromagnetica, quando venga percorso

Dettagli

EFETTO DEL SUOLO di Giovanni G. Turco, ik0ziz

EFETTO DEL SUOLO di Giovanni G. Turco, ik0ziz EFETTO DEL SUOLO di Giovanni G. Turco, ik0ziz Le caratteristiche d irradiazione di un antenna possono essere modificate, oltre che da eventi estranei, anche dal suolo sottostante. Infatti, quando l antenna

Dettagli

TX Figura 1: collegamento tra due antenne nello spazio libero.

TX Figura 1: collegamento tra due antenne nello spazio libero. Collegamenti Supponiamo di avere due antenne, una trasmittente X e una ricevente X e consideriamo il collegamento tra queste due antenne distanti X X Figura : collegamento tra due antenne nello spazio

Dettagli

Como 3 aprile 2004 Gara nazionale qualificati Operatore elettronico per le telecomunicazioni 1. Seconda Prova

Como 3 aprile 2004 Gara nazionale qualificati Operatore elettronico per le telecomunicazioni 1. Seconda Prova Como 3 aprile 2004 Gara nazionale qualificati Operatore elettronico per le telecomunicazioni Si consiglia di leggere attentamente il testo proposto prima di segnare la risposta. Seconda Prova La prova

Dettagli

Principi costruttivi e progettazione di Gioacchino Minafò IW9 DQW. Tratto dal sito web WWW.IT9UMH.ALTERVISTA.ORG

Principi costruttivi e progettazione di Gioacchino Minafò IW9 DQW. Tratto dal sito web WWW.IT9UMH.ALTERVISTA.ORG Principi costruttivi e progettazione di Gioacchino Minafò IW9 DQW Le antenne a quadro (o telaio) Il principio di funzionamento di un'antenna a quadro è differente da quello delle comuni antenne filari

Dettagli

L esperienza di Hertz sulle onde elettromagnetiche

L esperienza di Hertz sulle onde elettromagnetiche L esperienza di Hertz sulle onde elettromagnetiche INTRODUZIONE Heinrich Hertz (1857-1894) nel 1886 riuscì per la prima volta a produrre e a rivelare le onde elettromagnetiche di cui Maxwell aveva previsto

Dettagli

POLARIZZAZIONE ORIZZONTALE O VERTICALE?

POLARIZZAZIONE ORIZZONTALE O VERTICALE? A.R.I. Sezione di Parma Conversazioni del 1 Venerdì del Mese POLARIZZAZIONE ORIZZONTALE O VERTICALE? Venerdi, 7 dicembre, ore 21:15 - Carlo, I4VIL Oscillatore e risuonatore di Hertz ( http://www.sparkmuseum.com

Dettagli

Istituto Tecnico Industriale Statale Ettore Majorana CASSINO. Le Antenne. (Dispensa per il corso di Telecomunicazioni)

Istituto Tecnico Industriale Statale Ettore Majorana CASSINO. Le Antenne. (Dispensa per il corso di Telecomunicazioni) Le Antenne (Dispensa per il corso di Telecomunicazioni) Anno IV della specializzazione Elettronica e Telecomunicazioni Pagina 1 1. Campi elettromagnetici ed onde elettromagnetiche Dovrebbe essere noto

Dettagli

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Induzione magnetica INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Che cos è l induzione magnetica? Si parla di induzione magnetica quando si misura una intensità di corrente diversa da zero che attraversa

Dettagli

LE ANTENNE INTRODUZIONE

LE ANTENNE INTRODUZIONE LE ANTENNE INTRODUZIONE Le antenne sono dispositivi impiegati nella trasmissione e nella ricezione di onde elettromagnetiche. La forma di un antenna è molto variabile e dipende dal tipo di impiego: radiotelegrafia,

Dettagli

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI.

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. 1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. Tutti i fenomeni elettrici e magnetici hanno origine da cariche elettriche. Per comprendere a fondo la definizione di carica elettrica occorre risalire alla

Dettagli

RISONANZA. Introduzione. Risonanza Serie.

RISONANZA. Introduzione. Risonanza Serie. RISONANZA Introduzione. Sia data una rete elettrica passiva, con elementi resistivi e reattivi, alimentata con un generatore di tensione sinusoidale a frequenza variabile. La tensione di alimentazione

Dettagli

Didattica delle Telecomunicazioni: i Mezzi Trasmissivi ESERCIZI DI VERIFICA

Didattica delle Telecomunicazioni: i Mezzi Trasmissivi ESERCIZI DI VERIFICA Didattica delle Telecomunicazioni: i Mezzi Trasmissivi ESERCIZI DI VERIFICA 1. Materiali dielettrici e conduttori 1.1. Sulla base del diverso comportamento rispetto ai fenomeni elettrici, i corpi vengono

Dettagli

Macchina sincrona (alternatore)

Macchina sincrona (alternatore) Macchina sincrona (alternatore) Principio di funzionamento Le macchine sincrone si dividono in: macchina sincrona isotropa, se è realizzata la simmetria del flusso; macchina sincrona anisotropa, quanto

Dettagli

Indice. Prefazione all edizione italiana Prefazione all edizione americana. Capitolo 1 Introduzione: onde e fasori 1

Indice. Prefazione all edizione italiana Prefazione all edizione americana. Capitolo 1 Introduzione: onde e fasori 1 Indice Prefazione all edizione italiana Prefazione all edizione americana VII IX Capitolo 1 Introduzione: onde e fasori 1 Generalità 1 1.1 Dimensioni, unità di misura e notazione 2 1.2 La natura dell elettromagnetismo

Dettagli

Antenne. Generatore HF

Antenne. Generatore HF Antenne I V I Generatore HF 1 V I I Generatore HF Dipolo λ/2 Massima impedenza minima impedenza TX 2 trasmettitore linea a n t e n n a d i p o l o λ Lunghezza dipolo = 0,98 ------------- 2 Si dimostra

Dettagli

LE TRASMISSIONI VIA ETERE

LE TRASMISSIONI VIA ETERE LE TRASMISSIONI VIA ETERE B.Bortelli Indice 0.1 Trasmissione via etere......................... 2 0.1.1 Le onde elettromagnetiche................... 2 0.1.2 Le onde radio.......................... 5 0.1.3

Dettagli

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella Equazione di Ohm nel dominio fasoriale: Legge di Ohm:. Dalla definizione di operatore di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, dove Adesso sostituiamo nella

Dettagli

Introduzione alle onde Elettromagnetiche (EM)

Introduzione alle onde Elettromagnetiche (EM) Introduzione alle onde Elettromagnetiche (EM) Proprieta fondamentali L energia EM e il mezzo tramite il quale puo essere trasmessa informazione tra un oggetto ed un sensore (e.g. radar) o tra sensori/stazioni

Dettagli

Introduzione. Consideriamo la classica caratteristica corrente-tensione di un diodo pn reale: I D. V γ

Introduzione. Consideriamo la classica caratteristica corrente-tensione di un diodo pn reale: I D. V γ Appunti di Elettronica Capitolo 3 Parte II Circuiti limitatori di tensione a diodi Introduzione... 1 Caratteristica di trasferimento di un circuito limitatore di tensione... 2 Osservazione... 5 Impiego

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

GRANDEZZE ELETTRICHE E COMPONENTI

GRANDEZZE ELETTRICHE E COMPONENTI Capitolo3:Layout 1 17-10-2012 15:33 Pagina 73 CAPITOLO 3 GRANDEZZE ELETTRICHE E COMPONENTI OBIETTIVI Conoscere le grandezze fisiche necessarie alla trattazione dei circuiti elettrici Comprendere la necessità

Dettagli

LINEE AEREE PARALLELE

LINEE AEREE PARALLELE LINEE AEREE PARALLELE Coefficiente di autoinduzione di una linea bifilare Sia data la linea riportata in fig. 1 Fig. 1 Linea bifilare a conduttori paralleli essa è costituita da due conduttori aerei paralleli

Dettagli

Radio Waves Surfing (surfando sulle Onde Radio)

Radio Waves Surfing (surfando sulle Onde Radio) Progetto ARISS ITIS ˆE.fermi Lucca Andrea Ghilardi 2011 The fascinating world of Radio Waves Surfing (surfando sulle Onde Radio) Onde Elettromagnetiche Un elettrone immobile genera, a causa della sua carica,

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

Antenne per i telefoni cellulari

Antenne per i telefoni cellulari Antenne per i telefoni cellulari annamaria.cucinotta@unipr.it http://www.tlc.unipr.it/cucinotta 1 Requisiti terminali mobili I principali vincoli da tenere in conto nella progettazione di un antenna per

Dettagli

IL TRASFORMATORE REALE

IL TRASFORMATORE REALE Il trasformatore ideale è tale poiché: IL TRASFORMATORE REALE si ritengono nulle le resistenze R 1 e R 2 degli avvolgimenti; il flusso magnetico è interamente concatenato con i due avvolgimenti (non vi

Dettagli

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente.

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente. CORRENTE ELETTRICA Si definisce CORRENTE ELETTRICA un moto ordinato di cariche elettriche. Il moto ordinato è distinto dal moto termico, che è invece disordinato, ed è sovrapposto a questo. Il moto ordinato

Dettagli

11. Macchine a corrente continua. unità. 11.1 Principio di funzionamento

11. Macchine a corrente continua. unità. 11.1 Principio di funzionamento 11. Macchine a corrente continua unità 11.1 Principio di funzionamento Si consideri una spira rotante con velocità angolare costante e immersa in un campo magnetico costante come in figura 11.1. I lati

Dettagli

1.1.1 Panoramica su vari tipi di antenne

1.1.1 Panoramica su vari tipi di antenne 6 CAPITOLO 1. Introduzione Figura 1.1: Schematizzazione del comportamento di un antenna in trasmissione (a) e in ricezione (b). Nel caso in cui l onda guidata sia relativa ad un modo TEM in una linea di

Dettagli

Disturbi e schermature

Disturbi e schermature Disturbi e schermature Introduzione Cause di degrado di un segnale: il rumore,, un contributo legato alla fisica del moto dei portatori di carica nei dispositivi, descritto da leggi statistiche; Filtraggio

Dettagli

1 Giochi d ombra [Punti 10] 2 Riscaldatore elettrico [Punti 10] AIF Olimpiadi di Fisica 2015 Gara di 2 Livello 13 Febbraio 2015

1 Giochi d ombra [Punti 10] 2 Riscaldatore elettrico [Punti 10] AIF Olimpiadi di Fisica 2015 Gara di 2 Livello 13 Febbraio 2015 1 Giochi d ombra [Punti 10] Una sorgente di luce rettangolare, di lati b e c con b > c, è fissata al soffitto di una stanza di altezza L = 3.00 m. Uno schermo opaco quadrato di lato a = 10cm, disposto

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

MAGNETISMO ed ELETTROMAGNETISMO

MAGNETISMO ed ELETTROMAGNETISMO MAGNETIMO ed ELETTROMAGNETIMO INTRODUZIONE: CAMPO MAGNETICO NEL VUOTO appiamo dalla fisica che un pezzo di minerale di ferro come la magnetite presenta la proprietà di attrarre spontaneamente a se altri

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA. Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing.

APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA. Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing. APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing. Marcello Surace 1 Si richiamano le definizioni delle leggi fondamentali, invitando

Dettagli

( a ) ( ) ( Circuiti elettrici in corrente alternata. I numeri complessi. I numeri complessi in rappresentazione cartesiana

( a ) ( ) ( Circuiti elettrici in corrente alternata. I numeri complessi. I numeri complessi in rappresentazione cartesiana I numeri complessi I numeri complessi in rappresentazione cartesiana Un numero complesso a è una coppia ordinata di numeri reali che possono essere pensati come coordinate di un punto nel piano P(a,a,

Dettagli

DISPOSITIVI PER VHF e SUPERIORI

DISPOSITIVI PER VHF e SUPERIORI ARI Sezione di Parma Conversazioni del 1 Venerdì del Mese DISPOSITIVI PER VHF e SUPERIORI Venerdì, 1 marzo 2013, ore 21:15 Carlo, I4VIL FILTRO low pass per uso a 144 MHz Risposta del filtro (in rosso).

Dettagli

LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO. Esercizio.

LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO. Esercizio. LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO Esercizio Esercizio Esercizio Dati esercizio: I 1 =5,0 Kg m 2 I 2 =10 Kg m 2 ω i =10giri/sec

Dettagli

Banco a microonde Introduzione

Banco a microonde Introduzione Banco a microonde Introduzione Il sistema e costituito (vedi figura 1) da una sorgente direzionale di onde elettromagnetiche polarizzate di frequenza di 9.5 GHz ( = 3.16 cm) e da un rivelatore direzionale

Dettagli

Le reti elettriche possono contenere i componenti R, C, L collegati fra di loro in modo qualsiasi ed in quantità qualsiasi.

Le reti elettriche possono contenere i componenti R, C, L collegati fra di loro in modo qualsiasi ed in quantità qualsiasi. e reti elettriche in alternata (- ; - ; --) e reti elettriche possono contenere i componenti,, collegati fra di loro in modo qualsiasi ed in quantità qualsiasi. l loro studio in alternata parte dall analisi

Dettagli

Antenne per Radioastronomia

Antenne per Radioastronomia Antenne per Radioastronomia Giorgio Sironi Dipartimento di Fisica G.Occhialini Milano 11 Gennaio 2008 1 L Antenna ha la funzione di trasferire con la massima efficienza il segnale elettromagnetico dal

Dettagli

4 La Polarizzazione della Luce

4 La Polarizzazione della Luce 4 La Polarizzazione della Luce Per comprendere il fenomeno della polarizzazione è necessario tenere conto del fatto che il campo elettromagnetico, la cui variazione nel tempo e nello spazio provoca le

Dettagli

Sistemi di Telecomunicazione

Sistemi di Telecomunicazione Sistemi di Telecomunicazione Parte 7: Propagazione Radio Universita Politecnica delle Marche A.A. 2013-2014 A.A. 2013-2014 Sistemi di Telecomunicazione 1/36 Trasmissione radio dell informazione Ci occuperemo

Dettagli

Fr = 1 / [ ( 2 * π ) * ( L * C ) ]

Fr = 1 / [ ( 2 * π ) * ( L * C ) ] 1.6 I circuiti risonanti I circuiti risonanti, detti anche circuiti accordati o selettivi, sono strutture fondamentali per la progettazione dell elettronica analogica; con essi si realizzano oscillatori,

Dettagli

INTEGRATORE E DERIVATORE REALI

INTEGRATORE E DERIVATORE REALI INTEGRATORE E DERIVATORE REALI -Schemi elettrici: Integratore reale : C1 R2 vi (t) R1 vu (t) Derivatore reale : R2 vi (t) R1 C1 vu (t) Elenco componenti utilizzati : - 1 resistenza da 3,3kΩ - 1 resistenza

Dettagli

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Attilio Piana, Andrea Ziggioto 1 egime variabile in un circuito elettrico. Circuito C. 1.1 Carica del condensatore

Dettagli

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Il campo magnetico 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz 1 Lezione 1 - Fenomeni magnetici I campi magnetici possono essere

Dettagli

Retroazione In lavorazione

Retroazione In lavorazione Retroazione 1 In lavorazione. Retroazione - introduzione La reazione negativa (o retroazione), consiste sostanzialmente nel confrontare il segnale di uscita e quello di ingresso di un dispositivo / circuito,

Dettagli

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTRODINAMICA + Correnti + Campi Magnetici + Induzione e Induttanza + Equazioni di Maxwell

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15 Esercizio 1 (9 punti): Una distribuzione di carica è costituita da un guscio sferico

Dettagli

1 Le equazioni di Maxwell e le relazioni costitutive 1 1.1 Introduzione... 1 1.2 Richiami sugli operatori differenziali...... 4 1.2.1 Il gradiente di uno scalare... 4 1.2.2 La divergenza di un vettore...

Dettagli

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.)

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.) Macchine elettriche parte Macchine elettriche Generalità Definizioni Molto spesso le forme di energia in natura non sono direttamente utilizzabili, ma occorre fare delle conversioni. Un qualunque sistema

Dettagli

30 RISONANZE SULLE LINEE DI TRASMISSIONE

30 RISONANZE SULLE LINEE DI TRASMISSIONE 3 RISONANZE SULLE LINEE DI TRASMISSIONE Risuonatori, ovvero circuiti in grado di supportare soluzioni risonanti( soluzioni a regime sinusoidali in assenza di generatori) vengono largamente utilizzati nelle

Dettagli

Modulo del software GHERAP per la valutazione radio protezionistica del campo EM generato da segnali impulsivi (radar)

Modulo del software GHERAP per la valutazione radio protezionistica del campo EM generato da segnali impulsivi (radar) Modulo del software GHERAP per la valutazione radio protezionistica del campo EM generato da segnali impulsivi (radar) www.studioingsapone.it Pagina 1 di 10 Premessa Questo modulo rappresenta una opzione

Dettagli

PROBLEMA SU COLLEGAMENTO WIRELESS CON ACCESS POINT

PROBLEMA SU COLLEGAMENTO WIRELESS CON ACCESS POINT PROBLEMA SU COLLEGAMENTO WIRELESS CON ACCESS POINT Il gestore di un ipermercato richiede l' installazione di un access point da utilizzare per il collegamento wireless delle casse automatiche alla rete

Dettagli

DOCUMENTO TRATTO DA WWW.AEREIMILITARI.ORG

DOCUMENTO TRATTO DA WWW.AEREIMILITARI.ORG DOCUMENTO TRATTO DA WWW.AEREIMILITARI.ORG I Radar ad Onda Continua (CW) Principi di funzionamento dei radar CW. Al contrario dei radar ad impulsi, quelli ad onda continua (CW) emettono radiazioni elettromagnetiche

Dettagli

MEZZI DI RTASMISSIONE 1 DOPPINO TELEFONICO 2 CAVO COASSIALE 1 MULTI 2 MONO 1 ONDE RADIO 2 MICROONDE 3 INFRAROSSI 4 LASER

MEZZI DI RTASMISSIONE 1 DOPPINO TELEFONICO 2 CAVO COASSIALE 1 MULTI 2 MONO 1 ONDE RADIO 2 MICROONDE 3 INFRAROSSI 4 LASER 1 ELETTRICI 2 OTTICI 3 WIRELESS MEZZI DI RTASMISSIONE 1 DOPPINO TELEFONICO 2 CAVO COASSIALE 1 MULTI 2 MONO 1 ONDE RADIO 2 MICROONDE 3 INFRAROSSI 4 LASER MODALI ELETTRICI PARAMETRI 1 IMPEDENZA 2 VELOCITA'

Dettagli

Macchine elettriche. La macchina sincrona. Corso SSIS 2006-07. 07 prof. Riolo Salvatore

Macchine elettriche. La macchina sincrona. Corso SSIS 2006-07. 07 prof. Riolo Salvatore Macchine elettriche La macchina sincrona 07 prof. Struttura Essa comprende : a) albero meccanico collegato al motore primo b) circuito magnetico rotorico fissato all albero (poli induttori) i) c) avvolgimento

Dettagli

T3 CIRCUITI RISONANTI E AMPLIFICATORI SELETTIVI

T3 CIRCUITI RISONANTI E AMPLIFICATORI SELETTIVI T3 CICUITI ISONANTI E AMPLIFICATOI SELETTIVI T3. Il fattore di merito di una bobina è misurato in: [a] henry. [b] ohm... [c] è adimensionale.. T3. Il fattore di perdita di un condensatore è misurato in:

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

Corso di Elettronica di Potenza (12 CFU) ed Elettronica Industriale (6 CFU) Convertitori c.c.-c.c. 2/83

Corso di Elettronica di Potenza (12 CFU) ed Elettronica Industriale (6 CFU) Convertitori c.c.-c.c. 2/83 I convertitori c.c.-c.c. monodirezionali sono impiegati per produrre in uscita un livello di tensione diverso da quello previsto per la sorgente. Verranno presi in considerazione due tipi di convertitori

Dettagli

Definizione di mutua induzione

Definizione di mutua induzione Mutua induzione Definizione di mutua induzione Una induttanza produce un campo magnetico proporzionale alla corrente che vi scorre. Se le linee di forza di questo campo magnetico intersecano una seconda

Dettagli

isolanti e conduttori

isolanti e conduttori 1. ELETTROMAGNETISMO 1.1. Carica elettrica 1.1.1. Storia: Franklin Thomson Rutherford Millikan 1.1.2. L atomo: struttura elettroni di valenza (legame metallico) isolanti e conduttori ATOMO legge di conservazione

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Argomenti delle lezioni del corso di Elettromagnetismo 2010-11

Argomenti delle lezioni del corso di Elettromagnetismo 2010-11 Argomenti delle lezioni del corso di Elettromagnetismo 2010-11 14 marzo (2 ore) Introduzione al corso, modalità del corso, libri di testo, esercitazioni. Il fenomeno dell elettricità. Elettrizzazione per

Dettagli

Guide d onda. Cerchiamo soluzioni caratterizzate da una propagazione lungo z

Guide d onda. Cerchiamo soluzioni caratterizzate da una propagazione lungo z GUIDE D ONDA Guide d onda Cerchiamo soluzioni caratterizzate da una propagazione lungo z Onde progressive e regressive Sostituendo nell equazione d onda ( essendo Valido anche per le onde regressive Equazione

Dettagli

Franco Francini - IW5EIK LE CARATTERISTICHE ELETTRICHE DEGLI ACCORDATORI D'ANTENNA

Franco Francini - IW5EIK LE CARATTERISTICHE ELETTRICHE DEGLI ACCORDATORI D'ANTENNA Franco Francini - IW5EIK LE CARATTERISTICHE ELETTRICHE DEGLI ACCORDATORI D'ANTENNA Introduzione Questo lavoro deriva dalla necessità di confrontare le caratteristiche di diversi tipi di reti LC quando

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

L effetto prodotto da un carico attivo verrà, pertanto, analizzato solo nel caso di convertitore monofase.

L effetto prodotto da un carico attivo verrà, pertanto, analizzato solo nel caso di convertitore monofase. Come nel caso dei convertitori c.c.-c.c., la presenza di un carico attivo non modifica il comportamento del convertitore se questo continua a funzionare con conduzione continua. Nei convertitori trifase

Dettagli

Per dare una risposta al quesito che abbiamo posto, consideriamo il sistema schematizzato in figura.

Per dare una risposta al quesito che abbiamo posto, consideriamo il sistema schematizzato in figura. Verifica dei postulati di Einstein sulla velocità della luce, osservazioni sull esperimento di Michelson e Morley Abbiamo visto che la necessità di introdurre un mezzo come l etere nasceva dalle evidenze

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n. 51-56025 PONTEDERA (PI)

ISTITUTO TECNICO INDUSTRIALE STATALE G. MARCONI Via Milano n. 51-56025 PONTEDERA (PI) ANNO SCOLASTICO 2014/2015 PROGRAMMAZIONE COORDINATA TEMPORALMENTE CLASSE: DISCIPLINA: Telecomunicazioni- pag. 1 PROGRAMMAZIONE COORDINATA TEMPORALMENTE A.S. 2014/2015 - CLASSE: DISCIPLINA: Monte ore annuo

Dettagli

Propagazione Troposferica

Propagazione Troposferica Propagazione Troposferica 1 Valeria Petrini, Ph.D. Student DEIS/ARCES - Fondazione Ugo Bordoni valeria.petrini@unibo.it Introduzione (1) 2 Una corretta caratterizzazione dei collegamenti radio non può

Dettagli

Principi di ingegneria elettrica. Lezione 15 a. Sistemi trifase

Principi di ingegneria elettrica. Lezione 15 a. Sistemi trifase rincipi di ingegneria elettrica Lezione 15 a Sistemi trifase Teorema di Boucherot La potenza attiva assorbita da un bipolo è uguale alla somma aritmetica delle potenze attive assorbite dagli elementi che

Dettagli

MODELLIZZAZIONE DI UNA LINEA ELETTRICA

MODELLIZZAZIONE DI UNA LINEA ELETTRICA MODEIZZAZIONE DI UNA INEA EETTRICA Appunti a cura dell Ing. Emanuela Pazzola Tutore del corso di Elettrotecnica per meccanici, chimici e biomedici A.A. 005/006 Facoltà d Ingegneria dell Università degli

Dettagli

Analisi in regime sinusoidale (parte V)

Analisi in regime sinusoidale (parte V) Appunti di Elettrotecnica Analisi in regime sinusoidale (parte ) Teorema sul massimo trasferimento di potenza attiva... alore della massima potenza attiva assorbita: rendimento del circuito3 Esempio...3

Dettagli

Proprietà elastiche dei corpi

Proprietà elastiche dei corpi Proprietà elastiche dei corpi I corpi solidi di norma hanno una forma ed un volume non facilmente modificabili, da qui deriva la nozioni di corpo rigido come corpo ideale non deformabile. In realtà tutti

Dettagli

I.P.S.I.A. Di BOCCHIGLIERO. ----Impianti trasmittenti radiotelevisivi ---- Materia: Telecomunicazioni. prof. Ing. Zumpano Luigi

I.P.S.I.A. Di BOCCHIGLIERO. ----Impianti trasmittenti radiotelevisivi ---- Materia: Telecomunicazioni. prof. Ing. Zumpano Luigi I.P.S.I.A. Di BOCCHIGLIERO a.s. 2010/2011 -classe III- Materia: Telecomunicazioni ----Impianti trasmittenti radiotelevisivi ---- Aunni: Filippelli Maria Fortunata Lautieri Mariacaterina prof. Ing. Zumpano

Dettagli

28/05/2009. La luce e le sue illusioni ottiche

28/05/2009. La luce e le sue illusioni ottiche La luce e le sue illusioni ottiche Cosa si intende per raggio luminoso? Immagina di osservare ad una distanza abbastanza elevata una sorgente di luce... il fronte d onda potrà esser approssimato ad un

Dettagli

ANTENNA HALF-SLOPER. PER 160m

ANTENNA HALF-SLOPER. PER 160m ANTENNA HALF-SLOPER BY IK4CIE Vittorio PER 160m Anzitutto preciso che si chiama "sloper" e non "slooper" dal vocabolo inglese "slope" che vuole dire "inclinato". Il termine "sloper" indica un dipolo completo

Dettagli

Appendice Circuiti con amplificatori operazionali

Appendice Circuiti con amplificatori operazionali Appendice Circuiti con amplificatori operazionali - Appendice Circuiti con amplificatori operazionali - L amplificatore operazionale Il componente ideale L amplificatore operazionale è un dispositivo che

Dettagli

LICEO STATALE A.VOLTA COLLE DI VAL D ELSA PROGRAMMA DI FISICA SVOLTO NELLA CLASSE VA ANNO SCOLASTICO 2014/2015

LICEO STATALE A.VOLTA COLLE DI VAL D ELSA PROGRAMMA DI FISICA SVOLTO NELLA CLASSE VA ANNO SCOLASTICO 2014/2015 LICEO STATALE A.VOLTA COLLE DI VAL D ELSA PROGRAMMA DI FISICA SVOLTO NELLA CLASSE VA ANNO SCOLASTICO 2014/2015 Insegnante: LUCIA CERVELLI Testo in uso: Claudio Romeni FISICA E REALTA Zanichelli Su alcuni

Dettagli

MISURE SU CAVI COASSIALI

MISURE SU CAVI COASSIALI MISURE SU CAVI COASSIALI Carlo Vignali I4VIL 05 RIDUZIONE DEL VSWR Il valore del VSWR del carico viene osservato di valore ridotto quando è misurato all'ingresso di una linea con attenuazione Allo stesso

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

RELAZIONE DI TIROCINIO

RELAZIONE DI TIROCINIO RELAZIONE DI TIROCINIO Modellistica di antenne a microstriscia DI Risso Stefano matr.2719995 Tutor accademico: Chiar.mo Prof. Gian Luigi Gragnani Svolto presso il Laboratorio di Elettromagnetismo Applicato

Dettagli

Corso di elettrotecnica Materiale didattico. Cenni sui sistemi trifase

Corso di elettrotecnica Materiale didattico. Cenni sui sistemi trifase Corso di elettrotecnica Materiale didattico. Cenni sui sistemi trifase A. Laudani 19 gennaio 2007 Le reti trifase sono reti elettriche in regime sinusoidale (tutte le variabili di rete hanno andamento

Dettagli

2 R = mgr + 1 2 mv2 0 = E f

2 R = mgr + 1 2 mv2 0 = E f Esercizio 1 Un corpo puntiforme di massa m scivola lungo la pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. Calcolare: a) Il valore

Dettagli

Energia e potenza nei circuiti monofase in regime sinusoidale. 1. Analisi degli scambi di energia nel circuito

Energia e potenza nei circuiti monofase in regime sinusoidale. 1. Analisi degli scambi di energia nel circuito Energia e potenza nei circuiti monofase in regime sinusoidale 1. Analisi degli scambi di energia nel circuito I fenomeni energetici connessi al passaggio della corrente in un circuito, possono essere distinti

Dettagli

6 Cenni sulla dinamica dei motori in corrente continua

6 Cenni sulla dinamica dei motori in corrente continua 6 Cenni sulla dinamica dei motori in corrente continua L insieme di equazioni riportato di seguito, costituisce un modello matematico per il motore in corrente continua (CC) che può essere rappresentato

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

Modulazioni. Vittorio Maniezzo Università di Bologna. Comunicazione a lunga distanza

Modulazioni. Vittorio Maniezzo Università di Bologna. Comunicazione a lunga distanza Modulazioni Vittorio Maniezzo Università di Bologna Vittorio Maniezzo Università di Bologna 06 Modulazioni 1/29 Comunicazione a lunga distanza I segnali elettrici si indeboliscono quando viaggiano su un

Dettagli

Queste note non vogliono essere esaustive, ma solo servire come linee guida per le lezioni

Queste note non vogliono essere esaustive, ma solo servire come linee guida per le lezioni Alessandro Farini: note per le lezioni di ottica del sistema visivo Queste note non vogliono essere esaustive, ma solo servire come linee guida per le lezioni 1 Lo spettro elettromagnetico La radiazione

Dettagli

Analogico: rappresentano grandezze fisiche che variano

Analogico: rappresentano grandezze fisiche che variano condizionamento e conversione dei segnali Introduzione I segnali forniti dagli elementi sensibili di misura richiedono specifici trattamenti (condizionamento) prima del campionamento e della conversione

Dettagli

Matematica e teoria musicale 1

Matematica e teoria musicale 1 Matematica e teoria musicale 1 Stefano Isola Università di Camerino stefano.isola@unicam.it Il suono Il fine della musica è dilettare e muovere in noi diversi sentimenti, il mezzo per raggiungere tale

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013 Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito

Dettagli

Lezione n. 3. Tipi di antenne. Impatto ambientale dei campi elettromagnetici

Lezione n. 3. Tipi di antenne. Impatto ambientale dei campi elettromagnetici Lezione n. 3 Tipi di antenne Impatto ambientale dei campi elettromagnetici Ripasso - 1 A(r) e J i (r') d τ 4 π r r' ' τ j k r r' zona di campo vicino reattivo zona di campo vicino radiativo (Fresnel) zona

Dettagli

14.4 Pompe centrifughe

14.4 Pompe centrifughe 14.4 Pompe centrifughe Le pompe centrifughe sono molto diffuse in quanto offrono una notevole resistenza all usura, elevato numero di giri e quindi facile accoppiamento diretto con i motori elettrici,

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli