Guide d onda. Cerchiamo soluzioni caratterizzate da una propagazione lungo z

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Guide d onda. Cerchiamo soluzioni caratterizzate da una propagazione lungo z"

Transcript

1 GUIDE D ONDA

2 Guide d onda Cerchiamo soluzioni caratterizzate da una propagazione lungo z

3 Onde progressive e regressive

4 Sostituendo nell equazione d onda ( essendo Valido anche per le onde regressive

5 Equazione d onda ridotta Operatore trasverso (rispetto a z) Laplaciano trasverso (rispetto a z)

6 Dato che: Onde progressive Onde regressive

7 Compattabili in

8 Data la dipendenza da z, è sufficiente risolvere per le componenti lungo z per poter poi derivare tutte le altre (nota γ ovviamente)

9 Analogamente per le altre componenti

10 Risolviamo quindi Separazione delle variabili Dividendo tutto per Necessariamente costanti

11 Costanti di separazione dove e sono costanti da determinare cos Similmente per

12 Nel caso di propagazione lungo z abbiamo una costante immaginaria Il che implica ovvero pertanto Relazione di dispersione

13 Se invece, allora, Si ha attenuazione lungo z La frequenza che delimita le due zone di comportamento è Frequenza di taglio (cut-off)

14 Quantità di interesse derivabili

15

16 Modi TE Modi TM

17 Guida d onda a piatti piani e paralleli Dato che è infinitamente estesa lungo y

18 Poiché le derivate lungo y sono nulle l equazione d onda per le componenti lungo z diventa Da risolvere imponendo l annullamento dei campi Ez sul metallo ovvero in x = 0 e x = a

19 Cerchiamo i modi TM m ( Hz = 0) e Ovunque poichè Dato che cos (0) = 1 e Ez=0, per cui C è una costante da determinare, che dipenderà dall eccitazione (sorgente)

20 Da cui le altre componenti Per m =0, Ez =0, ma Ex e Hy possono essere non nulle. Il TM 0 coincide quindi con il modo TEM

21 Mentre il modo TEM ha frequenza di taglio 0 (m=0), il primo modo TM si può propagare quando la distanza tra i piani è almeno λ\2

22

23 Componenti del vettore di Poynting Lungo x è puramente immaginaria, quindi non abbiamo un flusso di potenza media lungo x. Al contrario,lungo z è puramente reale

24 Per cui il flusso di potenza media è

25 Nel dominio del tempo

26 Impedenza d onda nella guida per il modo TM m

27 Mappa del campo nella guida all istante t = 0, per il modo TM 1 x

28 Modi TE: Ez =0, da cui Ex=Hy=0

29 Per le altre componenti Il più basso modo in questo caso è il TE 1, poiché se m = 0 si E y che H x vanno a 0

30 Flusso di potenza media

31 Nel dominio del tempo

32 Impedenza d onda per i TE Mentre frequenza di cut-off, costante di fase, velocità di fase e lunghezza d onda sono uguali a quelle per i TM, l impedenza d onda vale

33 Dispersione Velocità di fase per i modi TE e TM Velocità di fase > velocità luce??

34 Scomponiamo il campo del TE 10 in due onde piane

35 Confrontando col campo totale di un onda piana che incide su un metallo ideale con angolo θ i in polarizzazione ortogonale Γ = 1

36 Se f = fc, allora la situazione equivale a θ i =0 non si ha propagazione lungo z All aumentare di f, θ i aumenta, e si tende ad un onda piana (infatti l impedenza d onda tende a η)

37 Velocità di gruppo

38 Guide d onda rettangolari

39 Modi TM Abbiamo ora quattro condizioni al contorno da imporre nella cos Per cui

40

41

42 Per le altre componenti Il modo di ordine inferiore è il TM 11, in quanto sia m=0 che n=0 porterebbe ad annullare tutte le componenti di campo

43 Impedenza d onda

44 Nel dominio del tempo

45 Espressione del campo trasverso

46 Esempio: TM 11

47 Modi TE: Ez = 0

48

49 Impedenza d onda β x, β y e β z,mn sono gli stessi visti per i TM, come pure lunghezza d onda in guida, la frequenza di cut-off e la velocità di fase.

50 Impedenza d onda, cont.

51 Modo fondamentale Guida in banda X ( GHz):

52 Modo fondamentale TE 10

53 Modo fondamentale TE 10

54 Campo a t = 0, modo TE 10

55 Potenza La componente lungo x è puramente immaginaria, mentre quella lungo z è reale, quindi

56 Per ogni modo TE o TM si ha η mn = η TE η mn mn = η TM mn o

57 Potenza totale che fluisce attraverso una sezione trasversa della guida

58 Densità di corrente sulla superficie (interna) della guida

59 Perdite nelle guide d onda Perdite nel dielettrico Perdite sulle pareti a causa del metallo reale Soluzione approssimata per piccole perdite Ipotizziamo che i campi abbiano la stessa distribuzione del caso senza perdite

60 Perdite

61 Perdite Per il TE 10 e

62 Perdite

63 Combinando le perdite su tutte e quattro le pareti

64

65 Applicando la definizione

66 Esempio Guida in banda X, TE 10, conducibilità metallo 1.57x 107 S/m, µ µ 0

67 Guida a larghezza fissa in rame: attenuazione di vari modi

68 Eccitazione delle guide

69 Esempio di distribuzioni di campo per vari modi

70 Eccitazione delle guide

71

72 Lanciatore per il TE 10

73 Calcolo impedenza vista dal probe

74 Calcolo impedenza vista dal probe N.B. bisogna adattare l impedenza d onda in guida all impedenza caratteristica del cavo di arrivo. Tipicamente 50 ohm Esempio: guida WR 284 a 2,45 GHz si ha l=18,6 mm per annullare la parte immaginaria Si noti che l impedenza d onda per tale modo vale circa 713 ohm

75 Guide circolari

76 Modi TM

77 Modi TM

78 Modi TE

79

80

81 Modi superiori nel cavo coassiale Per i TM Per i TE

82

1 Le equazioni di Maxwell e le relazioni costitutive 1 1.1 Introduzione... 1 1.2 Richiami sugli operatori differenziali...... 4 1.2.1 Il gradiente di uno scalare... 4 1.2.2 La divergenza di un vettore...

Dettagli

POLARIZZAZIONE ORIZZONTALE O VERTICALE?

POLARIZZAZIONE ORIZZONTALE O VERTICALE? A.R.I. Sezione di Parma Conversazioni del 1 Venerdì del Mese POLARIZZAZIONE ORIZZONTALE O VERTICALE? Venerdi, 7 dicembre, ore 21:15 - Carlo, I4VIL Oscillatore e risuonatore di Hertz ( http://www.sparkmuseum.com

Dettagli

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella Equazione di Ohm nel dominio fasoriale: Legge di Ohm:. Dalla definizione di operatore di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, dove Adesso sostituiamo nella

Dettagli

30 RISONANZE SULLE LINEE DI TRASMISSIONE

30 RISONANZE SULLE LINEE DI TRASMISSIONE 3 RISONANZE SULLE LINEE DI TRASMISSIONE Risuonatori, ovvero circuiti in grado di supportare soluzioni risonanti( soluzioni a regime sinusoidali in assenza di generatori) vengono largamente utilizzati nelle

Dettagli

TEORIA MODALE IN UNA GUIDA CIRCOLARE

TEORIA MODALE IN UNA GUIDA CIRCOLARE 3 TEORIA MODALE IN UNA GUIDA CIRCOLARE Per studiare la propagazione in fibra ottica dal punto di vista della teoria elettromagnetica bisogna partire dalle equazioni di Maxwell, in questo capitolo si discute

Dettagli

TX Figura 1: collegamento tra due antenne nello spazio libero.

TX Figura 1: collegamento tra due antenne nello spazio libero. Collegamenti Supponiamo di avere due antenne, una trasmittente X e una ricevente X e consideriamo il collegamento tra queste due antenne distanti X X Figura : collegamento tra due antenne nello spazio

Dettagli

Indice. Prefazione all edizione italiana Prefazione all edizione americana. Capitolo 1 Introduzione: onde e fasori 1

Indice. Prefazione all edizione italiana Prefazione all edizione americana. Capitolo 1 Introduzione: onde e fasori 1 Indice Prefazione all edizione italiana Prefazione all edizione americana VII IX Capitolo 1 Introduzione: onde e fasori 1 Generalità 1 1.1 Dimensioni, unità di misura e notazione 2 1.2 La natura dell elettromagnetismo

Dettagli

Argomenti delle lezioni del corso di Elettromagnetismo 2010-11

Argomenti delle lezioni del corso di Elettromagnetismo 2010-11 Argomenti delle lezioni del corso di Elettromagnetismo 2010-11 14 marzo (2 ore) Introduzione al corso, modalità del corso, libri di testo, esercitazioni. Il fenomeno dell elettricità. Elettrizzazione per

Dettagli

Como 3 aprile 2004 Gara nazionale qualificati Operatore elettronico per le telecomunicazioni 1. Seconda Prova

Como 3 aprile 2004 Gara nazionale qualificati Operatore elettronico per le telecomunicazioni 1. Seconda Prova Como 3 aprile 2004 Gara nazionale qualificati Operatore elettronico per le telecomunicazioni Si consiglia di leggere attentamente il testo proposto prima di segnare la risposta. Seconda Prova La prova

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

RELAZIONE DI TIROCINIO

RELAZIONE DI TIROCINIO RELAZIONE DI TIROCINIO Modellistica di antenne a microstriscia DI Risso Stefano matr.2719995 Tutor accademico: Chiar.mo Prof. Gian Luigi Gragnani Svolto presso il Laboratorio di Elettromagnetismo Applicato

Dettagli

2 Argomenti introduttivi e generali

2 Argomenti introduttivi e generali 1 Note Oltre agli esercizi di questa lista si consiglia di svolgere quelli segnalati o assegnati sul registro e genericamente quelli presentati dal libro come esercizio o come esempio sugli argomenti svolti

Dettagli

GUIDE D ONDA. Il fabbro - Jefferson David Chalfant. Carlo Vignali - I4VIL 2004

GUIDE D ONDA. Il fabbro - Jefferson David Chalfant. Carlo Vignali - I4VIL 2004 GUIDE D ONDA. Il fabbro - Jefferson David Chalfant Carlo Vignali - I4VIL 2004 Cavi coassiali. Applicando un segnale di tensione V all ingresso del cavo, inizia a scorrere corrente I solo in ragione della

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

INTEGRATORE E DERIVATORE REALI

INTEGRATORE E DERIVATORE REALI INTEGRATORE E DERIVATORE REALI -Schemi elettrici: Integratore reale : C1 R2 vi (t) R1 vu (t) Derivatore reale : R2 vi (t) R1 C1 vu (t) Elenco componenti utilizzati : - 1 resistenza da 3,3kΩ - 1 resistenza

Dettagli

Introduzione alle onde Elettromagnetiche (EM)

Introduzione alle onde Elettromagnetiche (EM) Introduzione alle onde Elettromagnetiche (EM) Proprieta fondamentali L energia EM e il mezzo tramite il quale puo essere trasmessa informazione tra un oggetto ed un sensore (e.g. radar) o tra sensori/stazioni

Dettagli

Antenne per Radioastronomia

Antenne per Radioastronomia Antenne per Radioastronomia Giorgio Sironi Dipartimento di Fisica G.Occhialini Milano 11 Gennaio 2008 1 L Antenna ha la funzione di trasferire con la massima efficienza il segnale elettromagnetico dal

Dettagli

Prova scritta intercorso 2 31/5/2002

Prova scritta intercorso 2 31/5/2002 Prova scritta intercorso 3/5/ Diploma in Scienza e Ingegneria dei Materiali anno accademico - Istituzioni di Fisica della Materia - Prof. Lorenzo Marrucci Tempo a disposizione ora e 45 minuti ) Un elettrone

Dettagli

Descrizione generale delle principali strutture guidanti

Descrizione generale delle principali strutture guidanti Descrizione generale delle principali strutture guidanti (estratto da P. Bernardi, M. Cavagnaro, Appunti di microonde: Strutture guidanti e giunzioni, ed Ingegneria 2000, 2008) Una delle caratteristiche

Dettagli

Simulazioni di diagrammi di antenna con il software SRSR-D

Simulazioni di diagrammi di antenna con il software SRSR-D Laboratorio di Strumentazione Spaziale II Simulazioni di diagrammi di antenna con il software SRSR-D Cristian Franceschet Cosa trattiamo oggi Cos è Interfaccia grafica per l'implementazione del disegno

Dettagli

Verifica sperimentale della schermatura dei campi magnetici a 50Hz

Verifica sperimentale della schermatura dei campi magnetici a 50Hz Verifica sperimentale della schermatura dei campi magnetici a 50Hz A cura di: Cappellazzo Luca Con la collaborazione di: Dott. Ing. Roberto Piccin EUROCEMIS - Ponzano Veneto (TV) piccin@eurocemis.it Pagina

Dettagli

Caratterizzazione di finestre da vuoto e radome. Modello circuitale delle finestre da vuoto e dei radome

Caratterizzazione di finestre da vuoto e radome. Modello circuitale delle finestre da vuoto e dei radome ISTITUTO NAZIONALE DI ASTROFISICA OSSERVATORIO ASTROFISICO DI ARCETRI L.GO E. FERMI, 5, 50125 FIRENZE TEL. 39-055-27521; FAX: 39-055-220039 C.F./P.IVA: 97220210583 Caratterizzazione di finestre da vuoto

Dettagli

1.1.1 Panoramica su vari tipi di antenne

1.1.1 Panoramica su vari tipi di antenne 6 CAPITOLO 1. Introduzione Figura 1.1: Schematizzazione del comportamento di un antenna in trasmissione (a) e in ricezione (b). Nel caso in cui l onda guidata sia relativa ad un modo TEM in una linea di

Dettagli

Sorgenti e ricevitori. Impiego delle fibre ottiche in telefonia

Sorgenti e ricevitori. Impiego delle fibre ottiche in telefonia Argomenti relativi alle fibre ottiche. Fibre ottiche: Costituzione delle fibre Propagazione di energia ottica Sorgenti e ricevitori Impiego delle fibre ottiche in telefonia Frequenza normalizata Apertura

Dettagli

ISTITUTO TECNICO INDUSTRIALE " VILLAGGIO DEI RAGAZZI " (MADDALONI) PIANO DI LAVORO. Anno scolastico 2005/2006

ISTITUTO TECNICO INDUSTRIALE  VILLAGGIO DEI RAGAZZI  (MADDALONI) PIANO DI LAVORO. Anno scolastico 2005/2006 ISTITUTO TECNICO INDUSTRIALE " VILLAGGIO DEI RAGAZZI " (MADDALONI) PIANO DI LAVORO Anno scolastico 2005/2006 Materia di insegnamento: TELECOMUNICAZIONI Ore settimanali: 3 Classe: 4^ Sezione: A Docente

Dettagli

E 0 = E 1 2 + E 0. 2 = E h. = 3.2kV / m. 2 1 x. κ 1. κ 2 κ 1 E 1 = κ 2 E 2. = κ 1 E 1 x ε 0 = 8

E 0 = E 1 2 + E 0. 2 = E h. = 3.2kV / m. 2 1 x. κ 1. κ 2 κ 1 E 1 = κ 2 E 2. = κ 1 E 1 x ε 0 = 8 Solo Ingegneria dell Informazione e Ingegneria dell Energia (Canale 2 e DM 59) Problema Due condensatori piani C e C, uguali ad armature quadrate separate dalla distanza, sono connessi in parallelo. Lo

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

MEZZI DI RTASMISSIONE 1 DOPPINO TELEFONICO 2 CAVO COASSIALE 1 MULTI 2 MONO 1 ONDE RADIO 2 MICROONDE 3 INFRAROSSI 4 LASER

MEZZI DI RTASMISSIONE 1 DOPPINO TELEFONICO 2 CAVO COASSIALE 1 MULTI 2 MONO 1 ONDE RADIO 2 MICROONDE 3 INFRAROSSI 4 LASER 1 ELETTRICI 2 OTTICI 3 WIRELESS MEZZI DI RTASMISSIONE 1 DOPPINO TELEFONICO 2 CAVO COASSIALE 1 MULTI 2 MONO 1 ONDE RADIO 2 MICROONDE 3 INFRAROSSI 4 LASER MODALI ELETTRICI PARAMETRI 1 IMPEDENZA 2 VELOCITA'

Dettagli

8 Linee di trasmissione nel dominio del tempo

8 Linee di trasmissione nel dominio del tempo 8 Linee di trasmissione nel dominio del tempo Introduzione La trasmissione d informazioni a distanza radiocollegamento) che utilizza la propagazione libera del campo elettromagnetico e.m.) è molto diffusa

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013 Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito

Dettagli

[ dbm] = 0 dbm " 0,2 #100 db = " 20 dbm

[ dbm] = 0 dbm  0,2 #100 db =  20 dbm Esercizi di comunicazioni ottiche (SNR, Q, BER) Consideriamo il caso di una linea in fibra ottica lunga 00 km con attenuazione di 0, db/km e dispersione cromatica compensata. Supponiamo poi di avere una

Dettagli

PROVE ECOMETRICHE E DI AMMETTENZA MECCANICA SU PALI

PROVE ECOMETRICHE E DI AMMETTENZA MECCANICA SU PALI PROVE ECOMETRICHE E DI AMMETTENZA MECCANICA SU PALI I metodi di indagine utilizzati per lo studio delle proprietà dei pali e del sistema palo terreno rientrano nei metodi a bassa deformazione, definiti

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

INDICE CARICA ELETTRICA E LEGGE DI COULOMB 591 ENERGIA POTENZIALE E POTENZIALI ELETTRICI 663 CAMPO ELETTRICO 613 PROPRIETÀ ELETTRICHE DELLA MATERIA 93

INDICE CARICA ELETTRICA E LEGGE DI COULOMB 591 ENERGIA POTENZIALE E POTENZIALI ELETTRICI 663 CAMPO ELETTRICO 613 PROPRIETÀ ELETTRICHE DELLA MATERIA 93 INDICE CAPITOLO 25 CARICA ELETTRICA E LEGGE DI COULOMB 591 25.1 Elettromagnetismo: presentazione 591 25.2 Carica elettrica 592 25.3 Conduttori e isolanti 595 25.4 Legge di Coulomb 597 25.5 Distribuzioni

Dettagli

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI.

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. 1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. Tutti i fenomeni elettrici e magnetici hanno origine da cariche elettriche. Per comprendere a fondo la definizione di carica elettrica occorre risalire alla

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

SCARICATORI DI TENSIONE PER IMPIEGO NEI SISTEMI IN CAVO ELETTRICO AD ALTA TENSIONE.

SCARICATORI DI TENSIONE PER IMPIEGO NEI SISTEMI IN CAVO ELETTRICO AD ALTA TENSIONE. SCARICATORI DI TENSIONE PER IMPIEGO NEI SISTEMI IN CAVO ELETTRICO AD ALTA TENSIONE. Descrizione del problema Nei cavi elettrici con isolamento solido, il conduttore isolato è rivestito con una guaina o

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

LICEO STATALE A.VOLTA COLLE DI VAL D ELSA PROGRAMMA DI FISICA SVOLTO NELLA CLASSE VA ANNO SCOLASTICO 2014/2015

LICEO STATALE A.VOLTA COLLE DI VAL D ELSA PROGRAMMA DI FISICA SVOLTO NELLA CLASSE VA ANNO SCOLASTICO 2014/2015 LICEO STATALE A.VOLTA COLLE DI VAL D ELSA PROGRAMMA DI FISICA SVOLTO NELLA CLASSE VA ANNO SCOLASTICO 2014/2015 Insegnante: LUCIA CERVELLI Testo in uso: Claudio Romeni FISICA E REALTA Zanichelli Su alcuni

Dettagli

L. Frosini. In condizioni di alimentazione sinusoidale trifase, la somma istantanea dei TENSIONI E CORRENTI D ALBERO (parte B) L.

L. Frosini. In condizioni di alimentazione sinusoidale trifase, la somma istantanea dei TENSIONI E CORRENTI D ALBERO (parte B) L. Tensione di modo comune In condizioni di alimentazione sinusoidale trifase, la somma istantanea dei TENSIONI E CORRENTI D ALBERO (parte B) vettori delle tre tensioni di fase è sempre nulla. Lo stesso risultato

Dettagli

RISONANZA. Introduzione. Risonanza Serie.

RISONANZA. Introduzione. Risonanza Serie. RISONANZA Introduzione. Sia data una rete elettrica passiva, con elementi resistivi e reattivi, alimentata con un generatore di tensione sinusoidale a frequenza variabile. La tensione di alimentazione

Dettagli

Propagazione in fibra ottica

Propagazione in fibra ottica Propagazione in fibra ottica Struttura delle fibre ottiche In questa sezione si affronteranno: Modi in fibra ottica Dispersione multimodale Confronto multimodo-singolo modo. I modi in fibra ottica Il campo

Dettagli

Analisi in regime sinusoidale (parte V)

Analisi in regime sinusoidale (parte V) Appunti di Elettrotecnica Analisi in regime sinusoidale (parte ) Teorema sul massimo trasferimento di potenza attiva... alore della massima potenza attiva assorbita: rendimento del circuito3 Esempio...3

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

T13 FIBRE OTTICHE. T13.1 Elencare i principali vantaggi delle fibre ottiche come mezzo trasmissivo, in confronto con le linee di trasmissione in rame.

T13 FIBRE OTTICHE. T13.1 Elencare i principali vantaggi delle fibre ottiche come mezzo trasmissivo, in confronto con le linee di trasmissione in rame. T13 FIBRE OTTICHE T13.1 Elencare i principali vantaggi delle fibre ottiche come mezzo trasmissivo, in confronto con le linee di trasmissione in rame. T13. Perché le fibre ottiche possono essere considerate

Dettagli

Banco a microonde Introduzione

Banco a microonde Introduzione Banco a microonde Introduzione Il sistema e costituito (vedi figura 1) da una sorgente direzionale di onde elettromagnetiche polarizzate di frequenza di 9.5 GHz ( = 3.16 cm) e da un rivelatore direzionale

Dettagli

Didattica delle Telecomunicazioni: i Mezzi Trasmissivi ESERCIZI DI VERIFICA

Didattica delle Telecomunicazioni: i Mezzi Trasmissivi ESERCIZI DI VERIFICA Didattica delle Telecomunicazioni: i Mezzi Trasmissivi ESERCIZI DI VERIFICA 1. Materiali dielettrici e conduttori 1.1. Sulla base del diverso comportamento rispetto ai fenomeni elettrici, i corpi vengono

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

RIASSUNTO DI FISICA 3 a LICEO

RIASSUNTO DI FISICA 3 a LICEO RIASSUNTO DI FISICA 3 a LICEO ELETTROLOGIA 1) CONCETTI FONDAMENTALI Cariche elettriche: cariche elettriche dello stesso segno si respingono e cariche elettriche di segno opposto si attraggono. Conduttore:

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati In problemi di massimo e minimo vincolato viene richiesto di ricercare massimi e minimi di una funzione non definita su tutto R n, ma su un suo sottoinsieme proprio. Esempio:

Dettagli

APPUNTI DI CAMPI ELETTROMAGNETICI Mod.I Per il corso di Ingegneria dell Informazione. Realizzato da Davide Spinola Ing.

APPUNTI DI CAMPI ELETTROMAGNETICI Mod.I Per il corso di Ingegneria dell Informazione. Realizzato da Davide Spinola Ing. APPUNTI DI CAMPI ELETTROMAGNETICI Mod.I Per il corso di Ingegneria dell Informazione Realizzato da Davide Spinola Ing. Dell Informazione 1 INDICE - PARTE 1: ANALISI VETTORIALE 1.1: Leggi fondamentali dell

Dettagli

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Teoria corpuscolare (Newton) Teoria ondulatoria: proposta già al tempo di Newton, ma scartata perchè

Dettagli

Einstein ci dice che la luce è costituita da unità elementari chiamate fotoni. Cosa sono questi fotoni?

Einstein ci dice che la luce è costituita da unità elementari chiamate fotoni. Cosa sono questi fotoni? La natura della luce Einstein ci dice che la luce è costituita da unità elementari chiamate fotoni. Cosa sono questi fotoni? Se si potesse fotografare un fotone in un certo istante vedremmo una deformazione

Dettagli

Tecniche di Misura e Strumentazione per l adeguamento alle nuove

Tecniche di Misura e Strumentazione per l adeguamento alle nuove Tecniche di Misura e Strumentazione per l adeguamento alle nuove Normative Alessandro ROGOVICH Dept. of Information Engineering, Pisa University, Pisa, Italy Microwave & Radiation Laboratory alessandro.rogovich@iet.unipi.it

Dettagli

Propagazione nelle fibre ottiche

Propagazione nelle fibre ottiche Propagazione nelle fibre ottiche Appunti dal Corso di Complementi di Campi Elettromagnetici Fac. di Ingegneria, Università di Pavia, a.a. 2003-2004 La teoria delle guide dielettriche può essere usata per

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

L esperienza di Hertz sulle onde elettromagnetiche

L esperienza di Hertz sulle onde elettromagnetiche L esperienza di Hertz sulle onde elettromagnetiche INTRODUZIONE Heinrich Hertz (1857-1894) nel 1886 riuscì per la prima volta a produrre e a rivelare le onde elettromagnetiche di cui Maxwell aveva previsto

Dettagli

ELEMENTI DI ACUSTICA 08

ELEMENTI DI ACUSTICA 08 I.U.A.V. Scienze dell architettura a.a. 2012/2013 Fisica Tecnica e Controllo Ambientale Prof. Piercarlo Romagnoni ELEMENTI DI ACUSTICA 08 ACUSTICA ARCHITETTONICA 02 FONOISOLAMENTO ASSORBIMENTO, RIFLESSIONE,

Dettagli

Applicazioni dell amplificatore operazionale

Applicazioni dell amplificatore operazionale Capitolo 10 Applicazioni dell amplificatore operazionale Molte applicazioni dell amplificatore operazionale si basano su circuiti che sono derivati da quello dell amplificatore non invertente di fig. 9.5

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

Modellistica delle linee di trasmissione

Modellistica delle linee di trasmissione Modellistica delle linee di trasmissione PARTE I Modelli equivalenti nel dominio del tempo e della frequenza prof. Antonio Maffucci A. Maffucci, Modellistica delle linee di trasmissione parte 1 [pag. 1/81]

Dettagli

FACSIMILE prova scritta intercorso 1 (per allenamento)

FACSIMILE prova scritta intercorso 1 (per allenamento) FACSIMILE prova scritta intercorso 1 (per allenamento) Laurea in Scienza e Ingegneria dei Materiali anno accademico -3 Istituzioni di Fisica della Materia - Prof. Lorenzo Marrucci Tempo a disposizione:

Dettagli

2.1 CAPITOLO 2 I RAGGI E LE LORO PROPRIETÀ

2.1 CAPITOLO 2 I RAGGI E LE LORO PROPRIETÀ 2.1 CAPITOLO 2 I RAGGI E LE LORO PROPRIETÀ 2.2 Riflettendo sulla sensazione di calore che proviamo quando siamo esposti ad un intensa sorgente luminosa, ad esempio il Sole, è naturale pensare alla luce

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Sulle funzioni di W 1,p (Ω) a traccia nulla

Sulle funzioni di W 1,p (Ω) a traccia nulla Sulle funzioni di W 1,p () a traccia nulla Sia u W 1,p (R n ) e supponiamo che il supp u, essendo un aperto di R n. Possiamo approssimare u con una successione di funzioni C il cui supporto è contenuto

Dettagli

CAMPI E LORO PROPRIETÀ

CAMPI E LORO PROPRIETÀ CMPI E LORO PROPRIETÀ 1.1 Introduzione ia una regione nello spazio in cui, in ogni suo punto, sia definita una grandezza g. La regione si dice allora soggetta ad un campo. Un campo può essere scalare,

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e Tecnologie della Comunicazione Lezione 9: strato fisico: mezzi trasmissivi 1 Mezzi trasmissivi Vedremo una panoramica sui diversi mezzi trasmissivi utilizzati tipicamente nelle reti di computer,

Dettagli

Radiazione elettromagnetica

Radiazione elettromagnetica Radiazione elettromagnetica Un onda e.m. e un onda trasversa cioe si propaga in direzione ortogonale alle perturbazioni ( campo elettrico e magnetico) che l hanno generata. Nel vuoto la velocita di propagazione

Dettagli

Michele D'Amico (premiere) 6 May 2012

Michele D'Amico (premiere) 6 May 2012 Michele D'Amico (premiere) CORRENTE ELETTRICA 6 May 2012 Introduzione La corrente elettrica può essere definita come il movimento ordinato di cariche elettriche, dove per convenzione si stabilisce la direzione

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015 SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 015 1. Indicando con i minuti di conversazione effettuati nel mese considerato, la spesa totale mensile in euro è espressa dalla funzione f()

Dettagli

Fisica Generale II Facoltà di Ingegneria. a.a. 2013/2014 Prof. Luigi Renna Programma dettagliato

Fisica Generale II Facoltà di Ingegneria. a.a. 2013/2014 Prof. Luigi Renna Programma dettagliato 1 Fisica Generale II Facoltà di Ingegneria. a.a. 2013/2014 Prof. Luigi Renna Programma dettagliato Libro di testo: P. Mazzoldi M. Nigro C. Voci: Elementi di FISICA Elettromagnetismo Onde II edizione (EdiSES,

Dettagli

d 2 dx ψ + 2 m E V x ψ = 0 V x = V x + a. ψ(x+a) = Q ψ(x). ψ x = e " i k x u k ψ x + a = e " i k x + a u k x + a = e " i k a e " i k x u k

d 2 dx ψ + 2 m E V x ψ = 0 V x = V x + a. ψ(x+a) = Q ψ(x). ψ x = e  i k x u k ψ x + a = e  i k x + a u k x + a = e  i k a e  i k x u k Teorema di Bloch Introduzione (vedi anche Ascroft, dove c è un approccio alternativo) Cominciamo col considerare un solido unidimensionale. Il modello è quello di una particella (l elettrone) in un potenziale

Dettagli

DIFFRAZIONE, INTERFERENZA E POLARIZZAZIONE DELLA LUCE

DIFFRAZIONE, INTERFERENZA E POLARIZZAZIONE DELLA LUCE DIFFRAZIONE, INTERFERENZA E POLARIZZAZIONE DELLA LUCE Introduzione Il modello geometrico della luce, vale a dire il modello di raggio che si propaga in linea retta, permette di descrivere un ampia gamma

Dettagli

Ottica fisica e ottica ondulatoria Lezione 12

Ottica fisica e ottica ondulatoria Lezione 12 Ottica fisica e ottica ondulatoria Lezione La luce è un onda elettromagnetica; ne studiamo le proprietà principali, tra cui quelle non dipendenti direttamente dalla natura ondulatoria (ottica geometrica

Dettagli

Laurea Magistrale in Ingegneria Energetica. Corso di Elettronica di Potenza (12 CFU) a.a. 20I2/2013. Stefano Bifaretti

Laurea Magistrale in Ingegneria Energetica. Corso di Elettronica di Potenza (12 CFU) a.a. 20I2/2013. Stefano Bifaretti Laurea Magistrale in Ingegneria Energetica Corso di Elettronica di Potenza (12 CFU) a.a. 20I2/2013 Stefano Bifaretti Ad ogni commutazione degli interruttori statici di un convertitore è associata una dissipazione

Dettagli

PROGRAMMA OPERATIVO NAZIONALE

PROGRAMMA OPERATIVO NAZIONALE PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio Ottica geometrica Sommario 1) Cos è la luce

Dettagli

Matematica e teoria musicale 1

Matematica e teoria musicale 1 Matematica e teoria musicale 1 Stefano Isola Università di Camerino stefano.isola@unicam.it Il suono Il fine della musica è dilettare e muovere in noi diversi sentimenti, il mezzo per raggiungere tale

Dettagli

DISPOSITIVI PER VHF e SUPERIORI

DISPOSITIVI PER VHF e SUPERIORI ARI Sezione di Parma Conversazioni del 1 Venerdì del Mese DISPOSITIVI PER VHF e SUPERIORI Venerdì, 1 marzo 2013, ore 21:15 Carlo, I4VIL FILTRO low pass per uso a 144 MHz Risposta del filtro (in rosso).

Dettagli

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette: FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente

Dettagli

PROGRAMMA SVOLTO A. SC. 2014 2015 classe III W. Conoscenze, abilità e competenze. Conoscere:

PROGRAMMA SVOLTO A. SC. 2014 2015 classe III W. Conoscenze, abilità e competenze. Conoscere: Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna ISTITUTO DI ISTRUZIONE SUPERIORE BUCCARI MARCONI Indirizzi: Trasporti Marittimi / Apparati ed Impianti

Dettagli

LINEE AEREE PARALLELE

LINEE AEREE PARALLELE LINEE AEREE PARALLELE Coefficiente di autoinduzione di una linea bifilare Sia data la linea riportata in fig. 1 Fig. 1 Linea bifilare a conduttori paralleli essa è costituita da due conduttori aerei paralleli

Dettagli

DOCUMENTO TRATTO DA WWW.AEREIMILITARI.ORG

DOCUMENTO TRATTO DA WWW.AEREIMILITARI.ORG DOCUMENTO TRATTO DA WWW.AEREIMILITARI.ORG I Radar ad Onda Continua (CW) Principi di funzionamento dei radar CW. Al contrario dei radar ad impulsi, quelli ad onda continua (CW) emettono radiazioni elettromagnetiche

Dettagli

Lezione del 28-11-2006. Teoria dei vettori ordinari

Lezione del 28-11-2006. Teoria dei vettori ordinari Lezione del 8--006 Teoria dei vettori ordinari. Esercizio Sia B = {i, j, k} una base ortonormale fissata. ) Determinare le coordinate dei vettori v V 3 complanari a v =,, 0) e v =, 0, ), aventi lunghezza

Dettagli

Soluzioni. Matematica. Dividere le figure. Nome:

Soluzioni. Matematica. Dividere le figure. Nome: 1) Dividi la figura in 6 parti uguali e indica a 2) Dividi la figura in 3 parti uguali e indica a 3) Dividi la figura in 4 parti uguali e indica a 4) Dividi la figura in 8 parti uguali e indica a 5) Dividi

Dettagli

Studio sperimentale della propagazione di un onda meccanica in una corda

Studio sperimentale della propagazione di un onda meccanica in una corda Studio sperimentale della propagazione di un onda meccanica in una corda Figura 1: Foto dell apparato sperimentale. 1 Premessa 1.1 Velocità delle onde trasversali in una corda E esperienza comune che quando

Dettagli

ESPERIENZA 5 OTTICA FISICA INTERFERENZA E DIFFRAZIONE

ESPERIENZA 5 OTTICA FISICA INTERFERENZA E DIFFRAZIONE ESPERIENZA 5 OTTICA FISICA INTERFERENZA E DIFFRAZIONE Lo scopo di quest esperimento è osservare la natura ondulatoria della luce, nei fenomeni della diffrazione e dell interferenza propri delle onde. In

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione

Dettagli

Capitolo 5 RESTAURO E RICOSTRUZIONE DI IMMAGINI

Capitolo 5 RESTAURO E RICOSTRUZIONE DI IMMAGINI Capitolo 5 RESTAURO E RICOSTRUZIONE DI IMMAGINI La differenza tra il restauro e il miglioramento (enhancement) delle immagini è che il miglioramento è un processo soggettivo, mentre il restauro è un processo

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Relazione di Fisica. IV E a.s. 2011/2012. Badioli Federico, Ciprianetti Sofia, Pasqualini Roberto.

Relazione di Fisica. IV E a.s. 2011/2012. Badioli Federico, Ciprianetti Sofia, Pasqualini Roberto. Relazione di Fisica IV E a.s. 2011/2012 Badioli Federico, Ciprianetti Sofia, Pasqualini Roberto. Scopo: Misurare la lunghezza d onda (λ) di un laser HeNe attraverso un reticolo di diffrazione. Materiale

Dettagli

APPUNTI DI RISONANZA MAGNETICA NUCLEARE Dr. Claudio Santi. CAPITOLO 1 NMR Risonanza Magnetica Nucleare

APPUNTI DI RISONANZA MAGNETICA NUCLEARE Dr. Claudio Santi. CAPITOLO 1 NMR Risonanza Magnetica Nucleare APPUNTI DI RISONANZA MAGNETICA NUCLEARE Dr. Claudio Santi CAPITOLO 1 NMR Risonanza Magnetica Nucleare INTRODUZIONE Nel 1946 due ricercatori, F. Block ed E.M.Purcell, hanno indipendentemente osservato per

Dettagli

Modellazione e Analisi di Reti Elettriche

Modellazione e Analisi di Reti Elettriche Modellazione e Analisi di eti Elettriche Modellazione e Analisi di eti Elettriche Davide Giglio Introduzione alle eti Elettriche e reti elettriche costituite da resistori, condensatori e induttori (bipoli),

Dettagli

LE FIBRE OTTICHE. Indice generale

LE FIBRE OTTICHE. Indice generale Indice generale LE FIBRE OTTICHE... Sistema di trasmissione con fibre ottiche... Apparato Trasmissivo... Apparato Ricevitore... Trasduttori Ottici in Trasmissione (LED o LD)... Trasduttori Ottici in Ricezione

Dettagli

Vedi file aggiuntivo IIa

Vedi file aggiuntivo IIa 1 TEOREMA DI RECIPROCITÀ Vedi file aggiuntivo IIa 2 EITENZA E UNICITA Le leggi che regolano il campo elettromagnetico sono state espresse nella forma di equazioni differenziali. Le suddette equazioni sono

Dettagli