Ettore Vitali. Dinamica Molecolare. Nozioni di base e tecniche avanzate

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Ettore Vitali. Dinamica Molecolare. Nozioni di base e tecniche avanzate"

Transcript

1 Ettore Vitali Dinamica Molecolare Nozioni di base e tecniche avanzate

2 Sommario NVE-ensemble : dinamica di un sistema isolato. Tecniche di base, campo di applicabilità, affidabilità dei risultati NVT-ensemble : dinamica di un sistema in contatto con un bagno termico. Dissipative particle dynamics : trattazione approssimata della dinamica di sistemi complessi, riduzione del numero di gradi di libertà

3 Dinamica molecolare = simulazione di un esperimento reale Per esempio Sistema fisico: N particelle in una scatola di volume V Soluzione delle Equazioni di Newton m i d 2 r i (t dt 2 = F i

4

5 NVE ensemble SISTEMA ISOLATO: note le interazioni tra le particelle, è possibile calcolare la forza che agisce su ogni particella Nel caso di interazioni additive a coppie, si scrive % N ( F i = "# i ' $ v(r j,r k * & j<k=1 Si può risolvere numericamente le equazioni di Newton e studiare la dinamica del sistema.

6 Deduciamo un algoritmo Consideriamo l azione hamiltoniana del sistema relativa a un intervallo di tempo [ t 0,t 1 ] [ ] = dt S R(" # (r 1 (",...,r N (" t 1 $ ( t 0 N % i=1 1 2 m dr i(t dt 2 &V (r 1 (t,...,r N (t R(t 0 = R 1 R(t 1 = R 2 Sia data una partizione dell intervallo di tempo data di n+1 punti a 0 = t 0 < a 1 < a 2 <...< a n = t 1 a i+1 " a i = t 1 " t 0 n # $t

7 Consideriamo l azione discretizzata: n#1 % S d (R 0,...,R n = $ "t 1 2 m % R j +1 # R j ( ' ' * "t j= 0 & & 2 ( #V(R j * Come nel caso continuo, cerchiamo il cammino discretizzato che rende questa azione stazionaria: Otteniamo: In modo più preciso: ( R j +1 = 2R j " R j"1 " #t 2 m ( r i (t + "t = 2r i (t # r i (t # "t + "t 2 i =1,...,N t 0 + "t $ t $ t 1 # "t m % $V (R j ( ' & $R *, j =1,n "1 j F i (t ALGORITMO DI VERLET

8 In concreto Preparazione del sistema: posizioni e velocità iniziali Per ogni configurazione calcolo delle forze, noto il potenziale di interazione Integrazione delle equazioni del moto: un passo avanti Nel frattempo Accumulazione dei valori di osservabili per il calcolo Di valori medi osservazione del sistema

9 Come confrontarsi con gli esperimenti? Dinamica del sistema = curva nello spazio delle fasi "(t # { r (t,...,r (t; p (t,..., p (t} 1 N 1 N Misurazione del valor medio di un osservabile T 1 A = lim $ dta(%(t T "+# T Dinamica molecolare: approssimazione della curva Posso simulare la misura 0

10 Nella costruzione della traiettoria (discretizzata numerica attraverso l algoritmo di Verlet, "(t 0,"(t 0 + #t,"(t 0 + 2#t,...,"(t 0 + n#t = t 1 { } Si valuta: A " 1 n +1 n % j= 0 A (#(t 0 + j$t In questo modo sto osservando il sistema nella sua dinamica, come uno sperimentatore che prepara un campione di materiale ed effettua delle misure su di esso ma Ci possiamo fidare??

11 Difficoltà Le soluzioni delle equazioni di Newton hanno una instabilità di Lyapunov : due soluzioni con condizioni iniziali molto vicine si allontanano indefinitamente Ha senso allora cercare di risolverle numericamente? DIPENDE dall algoritmo che si utilizza e da quali proprietà del sistema si vogliono studiare

12 Un buon algoritmo,, cioè Time reversible Che conserva il volume nello spazio delle fasi Che conserva l energia (piccolo drift È molto efficiente per il calcolo di proprietà termodinamiche di un sistema, perché TEOREMA SHADOW : esiste un orbita reale del sistema che rimane molto vicino alla traiettoria numerica per tempi lunghi rispetto alla scala di tempi su cui si sviluppa l instabilità di Lyapunov. Dunque numericamente è possibile esplorare in modo corretto lo spazio delle fasi di un sistema Le misure numeriche saranno affidabili

13 Un altro esempio: ALGORITMO VELOCITY-VERLET % v i (t = 0 "# v i (t = 0 + $t ' 2m i & ' ( r i (t = 0 "# r i (t = 0 + $tv i (t = 0 + $t 2 F i (t = 0 (' 2m i ( F i (t = 0 + F i (t = $t Si dimostra essere equivalente all algoritmo che abbiamo dedotto in precedenza

14 Sistema in contatto con un bagno termico Come è possibile costruire una simulazione MD di un Sistema in contatto con un bagno termico, che fissa la Temperatura T? In natura, la temperatura rimane fissata attraverso scambi Di energia tra il sistema fisico che studiamo e un sistema Molto più grande in cui il nostro sistema è immerso Non è possibile simulare anche la dinamica dei gradi di Libertà del termostato TROPPE PARTICELLE!

15 Termostato di Andersen L accoppiamento del sistema con il bagno termico è Rappresentato da forze stocastiche che agiscono Occasionalmente su particelle scelte in modo random. Tra una collisione con il bagno termico e l altra il Sistema evolve secondo la legge di Newton sotto L azione delle sole forze interne. Si assume che collisioni successive siano statisticamente Indipendenti, di modo che la densità di probabilità per L intervallo di tempo tra due collisioni successive sia: P(t;" = "e #"t " È un parametro che fissa la frequenza delle collisioni

16 ALGORITMO 1. Si parte da una condizione iniziale per posizioni e velocità { r i (0, p i (0} i=1,...,n 2. Si integrano le equazioni di Newton fino a "t 3. Si sceglie a caso una particella che interagisca con Il termostato: la probabilità che una particella sia scelta In un time step è: "#t 4. Se una particella è stata selezionata, la sua nuova velocità È generata secondo una Maxwelliana corrispondente alla Temperatura desiderata

17 Risultati L algoritmo di Andersen genera, asintoticamente, una distribuzione di probabilità canonica sullo spazio delle fasi I risultati sulle proprietà statiche del sistema sono Identici a quelli ottenuti attraverso simulazioni Monte Carlo Difficoltà sulle proprietà dinamiche: coefficiente di Diffusione, funzione di autocorrelazione della Velocità, coefficienti di trasporto. Dipendenza Non fisica dalla frequenza di collisione tra il Sistema e il termostato.

18 Termostato di Nosè-Hoover E possibile costruire una dinamica molecolare Deterministica a temperatura fissata, introducendo, Nella lagrangiana del sistema, una coordinata Aggiuntiva che descrive l accoppiamento del Sistema con un termostato. L Nose = N m i " 2 s2 r #U(r 1,...,r N + Q s 2 2 # L $ log s i=1 i 2 L,Q " = 1 k B T Parametri che aggiusteremo Temperatura del termostato

19 Introducendo i momenti coniugati p i = "L = m i s 2 " r i p s = "L "s = Q s r i Scriviamo l hamiltoniana H Nose = p i 2 N " + U(r 2m i s 2 1,...,r N + p 2 s 2Q + L logs # i=1 Ora, supponiamo di simulare la dinamica generata da Questa hamiltoniana: misureremo in questo modo Osservabili in un ensemble microcanonico di 6N+2 Gradi di libertà.

20 La funzione di partizione è: Q = A 1 N! Definendo Possiamo scrivere Usiamo la proprietà: $ dp s dsdp N dr N "(E # H Nose p' i " p i s Q = A 1 " dp s dsdp' N dr N s 3N N! ' N 2 p' # $ i + U(r N + p 2 s 2m i 2Q + L ( % log s & E *, + i=1 & N 2 p' " # i + U(r N + p 2 s ( 2m i 2Q + L ' $ log s % E + = * i=1,. "- s % e /. = % $ L $e % $ & N 2 p' # i +U(r N + p s 2 L i=1 2m i 2Q %E ( + ' * & ( ' L N 2 p' # i +U (r N + p s 2 i=1 2m i 2Q %E + *

21 Otteniamo Q Nose = A 1 N! $ #" dp' N dr N e Ponendo L=3N+1, abbiamo: 3N +1 E L "e L $ dp s e #" 3N +1 L 3N +1 & N 2 p' % i +U (r 1,...,r N L ( ' 2m + i * i=1 p s 2 2Q Q Nose = C 1 N! + dp' N dr N e % N 2 p' ( "# $ i +U(r 1,...,r N ' & 2m * i i=1 Si vede che r i, p' i { } i=1,...,n Giocano il ruolo di Posizioni e momenti delle Particelle del sistema fisico

22 Se facciamo una simulazione nell ensemble microcanonico Del sistema esteso, la media di un osservabile che dipende Da posizioni e momenti delle particelle del sistema fisico, si Calcola come 1 A = lim " #+$ " = 1 Q Nose 1 N! = 1 N! % " % 0 % dta( p 1(t s(t,..., p N (t s(t,r 1(t,...,r N (t = & dp s dsdp N dr N A( pn ' s,rn +,(H Nose - E = * dp' N dr N A( p' N,r N e Q(N,V,T & -. ( ' N / i=1 p' i 2 2m i +U (r N Calcoliamo in questo modo una media sull ensemble Canonico N,V,T, che descrive il sistema fisico a una Data temperatura T + *

23 Dissipative particle dynamics Supponiamo di studiare una sospensione colloidale in un solvente trattazione approssimata Si studiano solo alcuni gradi di libertà del sistema, nel Caso specifico i colloidi, nelle cui leggi di moto entrano In modo efficaci i gradi di libertà del solvente, attraverso Temperatura, densità e viscosità In questo modo è possibile arrivare a descrivere in Modo accurato il regime idrodinamico del sistema Su lunghe scale di lunghezze e tempi

24 Le forze tra i gradi di libertà sono espresse nella forma: Dove: f C (r ij # { } F i = f C (r ij + f D (r ij,v ij + f R (r ij j"i & f D (r ij,v ij = "#$ D ( r ij ( v ij % r ij ( ' r ij f R (r ij = "# R ( r ij $ ij $ ij % N(0,1 è l interazione diretta tra i colloidi, che per esempio può nascere da un potenziale additivo a coppie r ij r ij + + * r ij r ij è una forza di frizione, che nasce dallo accoppiamento con il solvente è una forza stocastica, che nasce dagli urti con le molecole del solvente

25 Affinchè questa dinamica generi, per tempi lunghi, la corretta distribuzione di equilibrio, è necessario che: " D ( r ij = [" R ( r ij ] 2 # 2 = 2k B T$ In questo modo si ottiene il corretto comportamento idrodinamico del sistema su scale di tempi e di lunghezza sufficientemente lunghi

Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali

Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali Argomenti trattati Introduzione ai modelli Equazioni differenziali del primo ordine Metodi risolutivi:integrazione diretta

Dettagli

Integrazione delle equazioni del moto

Integrazione delle equazioni del moto Giorgio Pastore - note per il corso di Laboratorio di Calcolo Integrazione delle equazioni del moto In generale, le equazioni del moto della meccanica newtoniana si presentano nella forma di sistemi di

Dettagli

Macromolecole Biologiche. Metodi di simulazione

Macromolecole Biologiche. Metodi di simulazione Metodi di simulazione Dinamica molecolare Tecnica di simulazione che permette lo studio del moto e delle proprietà di un sistema di particelle. Moti localizzati (da 0.01 a 5 Å, da 10-15 a 10-1 s) - fluttuazioni

Dettagli

Termostato di Nosé-Hoover

Termostato di Nosé-Hoover Termostato di osé-hoover L. P. 8 agosto 05 Se un sistema di particelle viene simulato mediante la dinamica molecolare, viene campionato l ensemble microcanonico corrispondente all energia dello stato iniziale.

Dettagli

Teoria cinetica di un sistema di particelle

Teoria cinetica di un sistema di particelle Teoria cinetica di un sistema di particelle La meccanica dei fluidi modellati come sistemi continui, sviluppata dal XII e XIII secolo e in grado di descrivere fenomeni dinamici macroscopici con buona approssimazione

Dettagli

Simulazioni e Metodi Montecarlo Cercano gli stati fondamentali di sistemi complessi non risolubili analiticamente e le loro proprietà analoghi per

Simulazioni e Metodi Montecarlo Cercano gli stati fondamentali di sistemi complessi non risolubili analiticamente e le loro proprietà analoghi per Simulazioni e Metodi Montecarlo Cercano gli stati fondamentali di sistemi complessi non risolubili analiticamente e le loro proprietà analoghi per molti versi al problema del commesso viaggiatore lasciano

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Gas ideale: velocità delle particelle e pressione (1)

Gas ideale: velocità delle particelle e pressione (1) Gas ideale: velocità delle particelle e pressione (1) In un gas ideale le particelle sono considerate puntiformi e risentono di forze solo durante gli urti (perfettamente elastici) con le pareti del recipiente.

Dettagli

1 Processi stocastici e campi random

1 Processi stocastici e campi random Corso di Termodinamica e Meccanica Statistica Anno Accademico 211/212 1 Processi stocastici e campi random Vogliamo estendere le metodologie del calcolo delle probabilità e della statistica, in modo da

Dettagli

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006 QUANTITA DI MOTO DEFINIZIONE(1) m v Si chiama quantità di moto di un punto materiale il prodotto della sua massa per la sua velocità p = m v La quantità di moto è una grandezza vettoriale La dimensione

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 19 Temperatura e principio zero della termodinamica I nostri sensi non sono affidabili per definire lo stato termico dei corpi. Ocorre un metodo

Dettagli

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III) Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo

Dettagli

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini Istituzioni di Matematiche, Integrali fratti corso di laurea in Scienze geologiche. Mauro Costantini tipo: Il nostro obiettivo è studiare gli integrali (indefiniti e definiti delle funzioni razionali,

Dettagli

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti.

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8 Esempio arciere su una superficie ghiacciata che scocca la freccia: l arciere (60 kg) esercita una forza sulla freccia 0.5 kg (che parte in avanti con

Dettagli

RISOLUZIONE DI PROBLEMI DI FISICA

RISOLUZIONE DI PROBLEMI DI FISICA RISOUZIONE DI PROBEMI DI FISICA Problema 1 Una massa puntiforme m = 2 kg è soggetta ad una forza centrale con associata energia potenziale radiale U( r) 6 A =, dove A = 2 J m 6. Il momento angolare della

Dettagli

I POSTULATI DELLA MECCANICA QUANTISTICA

I POSTULATI DELLA MECCANICA QUANTISTICA 68 I POSTULATI DELLA MECCANICA QUANTISTICA Si intende per postulato una assunzione da accettarsi a priori e non contraddetta dall esperienza. I postulati trovano la loro unica giustificazione nella loro

Dettagli

Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3

Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3 Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3 Sui PC a disposizione sono istallati diversi sistemi operativi. All accensione scegliere Windows. Immettere Nome utente b## (##

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni Algebriche Le equazioni

Dettagli

8.1 Problema della diffusione in meccanica quantistica

8.1 Problema della diffusione in meccanica quantistica 8.1 Problema della diffusione in meccanica quantistica Prima di procedere oltre nello studio dell interazione puntuale, in questo paragrafo vogliamo dare un breve cenno alle nozioni di base della teoria

Dettagli

Markov Chains and Markov Chain Monte Carlo (MCMC)

Markov Chains and Markov Chain Monte Carlo (MCMC) Markov Chains and Markov Chain Monte Carlo (MCMC) Alberto Garfagnini Università degli studi di Padova December 11, 2013 Catene di Markov Discrete dato un valore x t del sistema ad un istante di tempo fissato,

Dettagli

2. discutere il comportamento dell accelerazione e della tensione nel caso m 1 m 2 ;

2. discutere il comportamento dell accelerazione e della tensione nel caso m 1 m 2 ; 1 Esercizio (tratto dal Problema 3.26 del Mazzoldi 2) Due masse m 1 e m 2 sono disposte come in figura. Il coefficiente di attrito dinamico tra il piano e m 2 vale µ D 0.2 e quello di attrito statico µ

Dettagli

Derivazione. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Derivazione. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Derivazione Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

ANALISI PICCO-PICCO. Diagramma picco-picco. Dinamica picco-picco. Diagramma dei tempi di ritorno. Calcolo del primo esponente di Liapunov

ANALISI PICCO-PICCO. Diagramma picco-picco. Dinamica picco-picco. Diagramma dei tempi di ritorno. Calcolo del primo esponente di Liapunov ANALISI PICCO-PICCO Diagramma picco-picco Dinamica picco-picco Diagramma dei tempi di ritorno Calcolo del primo esponente di Liapunov C. Piccardi e F. Dercole Politecnico di Milano - 28/2/2009 /2 DIAGRAMMA

Dettagli

Metodi di Iterazione Funzionale

Metodi di Iterazione Funzionale Appunti di Matematica Computazionale Lezione Metodi di Iterazione Funzionale Il problema di calcolare il valore per cui F() = si può sempre trasformare in quello di trovare il punto fisso di una funzione

Dettagli

La Bussola Magnetica di V. Croquette Dipartimento di Fisica, Università di Bologna Ghirardini Stefano Strumento reale:

La Bussola Magnetica di V. Croquette Dipartimento di Fisica, Università di Bologna Ghirardini Stefano Strumento reale: La Bussola Magnetica di V. Croquette Dipartimento di Fisica, Università di Bologna Ghirardini Stefano 01/06/2009 stefano.ghirardini@live.it Strumento reale: La bussola magnetica di Croquette consta di

Dettagli

Sistemi di equazioni differenziali

Sistemi di equazioni differenziali Capitolo 5 Sistemi di equazioni differenziali Molti problemi sono governati non da una singola equazione differenziale, ma da un sistema di più equazioni. Ad esempio questo succede se si vuole descrivere

Dettagli

Chimica Fisica Biologica

Chimica Fisica Biologica Chimica Fisica Biologica Università degli Studi di Padova Variazione della concentrazione [1] La variazione nel tempo della composizione di un sistema oggetto della cinetica chimica Le concentrazione delle

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

Statistica Applicata all edilizia: il modello di regressione

Statistica Applicata all edilizia: il modello di regressione Statistica Applicata all edilizia: il modello di regressione E-mail: orietta.nicolis@unibg.it 27 aprile 2009 Indice Il modello di Regressione Lineare 1 Il modello di Regressione Lineare Analisi di regressione

Dettagli

Lezione n. 11. Reazioni enzimatiche Michaelis-Menten Dipendenza di k da T. Antonino Polimeno 1

Lezione n. 11. Reazioni enzimatiche Michaelis-Menten Dipendenza di k da T. Antonino Polimeno 1 Chimica Fisica Biotecnologie sanitarie Lezione n. 11 Reazioni enzimatiche Michaelis-Menten Dipendenza di k da T Antonino Polimeno 1 senza catalizzatore... con catalizzatore... Antonino Polimeno 2 Catalisi

Dettagli

Esercitazioni di Meccanica Quantistica I

Esercitazioni di Meccanica Quantistica I Esercitazioni di Meccanica Quantistica I Sistema a due stati Consideriamo come esempio di sistema a due stati l ammoniaca. La struttura del composto è tetraedrico : alla sommità di una piramide con base

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni non lineari Sia F C 0 ([a, b]), cioé F è una funzione continua in un intervallo [a, b] R, tale che F(a)F(b) < 0 1.5 1 F(b) 0.5 0 a

Dettagli

n(z) = n(0) e m gz/k B T ; (1)

n(z) = n(0) e m gz/k B T ; (1) Corso di Introduzione alla Fisica Quantistica (f) Prova scritta 4 Luglio 008 - (tre ore a disposizione) [sufficienza con punti 8 circa di cui almeno 4 dagli esercizi nn. 3 e/o 4] [i bonus possono essere

Dettagli

Corso di Modelli Matematici in Biologia Esame del 6 Luglio 2016

Corso di Modelli Matematici in Biologia Esame del 6 Luglio 2016 Corso di Modelli Matematici in Biologia Esame del 6 Luglio 206 Scrivere chiaramente in testa all elaborato: Nome, Cognome, numero di matricola. Risolvere tutti gli esercizi. Tempo a disposizione: DUE ORE.

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Dinamica del corpo rigido Antonio Pierro Definizione di corpo rigido Moto di un corpo rigido Densità Momento angolare Momento d'inerzia Per consigli, suggerimenti, eventuali errori o altro potete scrivere

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

Prova Scritta di di Meccanica Analitica. 12 Gennaio 2017

Prova Scritta di di Meccanica Analitica. 12 Gennaio 2017 Prova Scritta di di Meccanica Analitica 1 Gennaio 017 Problema 1 Si studi il sistema meccanico costituito da un punto materiale di massa unitaria soggetto al potenziale V x) = a lnx) x > 0 x a) Scrivere

Dettagli

La struttura elettronica degli atomi

La struttura elettronica degli atomi 1 In unità atomiche: a 0 me 0,59A unità di lunghezza e H 7, ev a H=Hartree unità di energia L energia dell atomo di idrogeno nello stato fondamentale espresso in unità atomiche è: 4 0 me 1 e 1 E H 13,

Dettagli

m p 6, j m 1 2 m e 3, j m 1 2 5, m 2 82, N w

m p 6, j m 1 2 m e 3, j m 1 2 5, m 2 82, N w Teoria della carica elettrica e calcolo del valore teorico Questa relazione è stata ricavata senza porre alcuna ipotesi restrittiva e dunque risulta di validità universale, applicabile in ogni circostanza

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

EQUILIBRIO TERMODINAMICO LOCALE. Contents. 1 Variabili termodinamiche locali 2. 2 Quantità di moto 3

EQUILIBRIO TERMODINAMICO LOCALE. Contents. 1 Variabili termodinamiche locali 2. 2 Quantità di moto 3 Contents EQUILIBRIO TERMODINAMICO LOCALE 1 Variabili termodinamiche locali 2 2 Quantità di moto 3 3 Variabile intensiva coniugata alla quantità di moto 4 4 Densità delle variabili estensive 6 5 Equilibrio

Dettagli

Campi conservativi e forme esatte - Esercizi svolti

Campi conservativi e forme esatte - Esercizi svolti Campi conservativi e forme esatte - Esercizi svolti 1) Dire se la forma differenziale è esatta. ω = 2 2 (1 + 2 2 ) 2 d + 2 2 (1 + 2 2 ) 2 d 2) Individuare in quali regioni sono esatte le seguenti forme

Dettagli

SECONDO METODO DI LYAPUNOV

SECONDO METODO DI LYAPUNOV SECONDO METODO DI LYAPUNOV Il Secondo Metodo di Lyapunov permette di studiare la stabilità degli equilibri di un sistema dinamico non lineare, senza ricorrere alla linearizzazione delle equazioni del sistema.

Dettagli

Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica

Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 8 Intervalli di confidenza Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università

Dettagli

Teoria cinetica dei Gas. Gas Ideali Velocità quadratica media Termodinamica dei gas ideali

Teoria cinetica dei Gas. Gas Ideali Velocità quadratica media Termodinamica dei gas ideali Teoria cinetica dei Gas Gas Ideali Velocità quadratica media Termodinamica dei gas ideali Definizione di Gas Perfetto. Un gas perfetto è un grand ensemble di particelle indistinguibili, identiche e puntiformi

Dettagli

I FRATTALI. Chiara Mocenni. giovedì 15 dicembre 11

I FRATTALI. Chiara Mocenni. giovedì 15 dicembre 11 I FRATTALI Chiara Mocenni (mocenni@dii.unisi.it) IL CAOS DETERMINISTICO Sistema deterministico Comportamento aperiodico Sensibilità alle condizioni iniziali Attrattori strani Infiniti cicli repulsivi GLI

Dettagli

Molecole. 04/09/13 3-MOL-0.doc 0

Molecole. 04/09/13 3-MOL-0.doc 0 Molecole 04/09/13 3-MOL-0.doc 0 Legame covalente H 2 + Il potenziale cui è soggetto l elettrone ha 2 minimi equivalenti 1) H + si avvicina a H 2) Se la barriera diventa abbastanza sottile la probabilità

Dettagli

Costruzioni in zona sismica

Costruzioni in zona sismica Costruzioni in zona sismica Lezione 7 Sistemi a più gradi di libertà Il problema dinamico viene formulato con riferimento a strutture con un numero finito di gradi di libertà. Consideriamo le masse concentrate

Dettagli

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo LEZIONE 9 9.1. Prodotto misto. Siano dati i tre vettori geometrici u, v, w V 3 (O) definiamo prodotto misto di u, v e w il numero u, v w. Fissiamo un sistema di riferimento O ı j k in S 3. Se u = u x ı

Dettagli

Integrazione con metodo Monte Carlo

Integrazione con metodo Monte Carlo 28 Ottobre 2010 Outline 1 Integrazione numerica I metodi deterministici di integrazione numerica (come Simpson, trapezi, e in generale Newton-Cotes) lavorano tipicamente con campionature uniformi del dominio.

Dettagli

dq = C P (T ) dt dq = T 1 C P (T ) dt q = [16.10T ] K K (JK 1 ) + 2 K 1 ( K)2 = 18.6 kj

dq = C P (T ) dt dq = T 1 C P (T ) dt q = [16.10T ] K K (JK 1 ) + 2 K 1 ( K)2 = 18.6 kj Esercizio 1 Calcolo q, w, U e H per riscaldamento gas ideale Calcolare q, w, U e H per un gas ideale in seguito all'aumento della sua temperatura da 25 C a 120 C in condizioni di pressione costante, sapendo

Dettagli

Studio delle oscillazioni del pendolo semplice e misura dell accelerazione di gravita g.

Studio delle oscillazioni del pendolo semplice e misura dell accelerazione di gravita g. Studio delle oscillazioni del pendolo semplice e misura dell accelerazione di gravita g. Abstract (Descrivere brevemente lo scopo dell esperienza) In questa esperienza vengono studiate le proprieta del

Dettagli

Sistema a tre stati L. P. 25 marzo 2014

Sistema a tre stati L. P. 25 marzo 2014 Sistema a tre stati L. P. 25 marzo 204 Consideriamo un sistema costituito da N particelle identiche, ognuna delle quali può trovarsi in uno di tre stati: i {0,, 2}, le cui energie valgono rispettivamente

Dettagli

Valutazione della capacità dissipativa di un sistema strutturale

Valutazione della capacità dissipativa di un sistema strutturale Tecniche innovative per l identificazione delle caratteristiche dinamiche delle strutture e del danno Valutazione della capacità dissipativa di un sistema strutturale Prof. Ing. Felice Carlo PONZO - Ing.

Dettagli

()Probablità, Statistica e Processi Stocastici

()Probablità, Statistica e Processi Stocastici Probablità, Statistica e Processi Stocastici Dinamiche stocastiche Iniziamo la seconda parte del corso, non più dedicata a metodi statistici ma ad alcuni esempi di dinamiche stocastiche. Esse potrebbero

Dettagli

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1 Chimica Fisica - Chimica e Tecnologia Farmaceutiche Lezione n. 19 L equazione di Schrodinger L atomo di idrogeno Orbitali atomici 02/03/2008 Antonino Polimeno 1 Dai modelli primitivi alla meccanica quantistica

Dettagli

Ripasso segnali e processi casuali. Trasmissione dell Informazione

Ripasso segnali e processi casuali. Trasmissione dell Informazione Ripasso segnali e processi casuali 1 Breve ripasso di segnali e trasformate Dato un segnale s(t), la sua densità spettrale si calcola come dove S(f) è la trasformata di Fourier. L energia di un segnale

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it PNI 8 - SESSIONE SUPPLETIVA QUESITO Si determinino le costanti a e b in modo tale che la funzione: ax + b per x f(x) = { e x per x > x risulti continua e derivabile nel punto x=. Per essere

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = tan(2x 2 + 3y 2 )

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = tan(2x 2 + 3y 2 ) Analisi Matematica II Corso di Ingegneria Gestionale Compito del 7-9- - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1 Dall idrostatica alla idrodinamica Fisica con Elementi di Matematica 1 Concetto di Campo Insieme dei valori che una certa grandezza fisica assume in ogni punto di una regione di spazio. Esempio: Consideriamo

Dettagli

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica Bilancio di energia: il Primo Principio della Termodinamica Termodinamica dell Ingegneria Chimica 1 I Sistemi termodinamici Un sistema è definito da una superficie di controllo, reale o immaginaria, che

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Le Derivate Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato durante

Dettagli

Formulario di Meccanica Statistica

Formulario di Meccanica Statistica Formulario di Meccanica Statistica I. CALORIMETRIA e CONDUZIONE DEL CALORE Capacità termica di un corpo Calore specifico Cambiamenti di fase Legge di Fourier : Legge di Stefan-Boltzmann II. DILATAZIONE

Dettagli

Teoria dei mezzi continui

Teoria dei mezzi continui Teoria dei mezzi continui Il modello di un sistema continuo è un modello fenomenologico adatto a descrivere sistemi fisici macroscopici nei casi in cui le dimensione dei fenomeni osservati siano sufficientemente

Dettagli

ANALISI DI SERIE TEMPORALI CAOTICHE (1)

ANALISI DI SERIE TEMPORALI CAOTICHE (1) ANALISI DI SERIE TEMPORALI CAOTICHE (1) Problematiche Ricostruzione dello stato Dimensione di embedding C. Piccardi e F. Dercole Politecnico di Milano ver. 28/12/2009 1/15 Per studiare e comprendere appieno

Dettagli

PRIMA SIMULAZIONE - 10 DICEMBRE QUESITI

PRIMA SIMULAZIONE - 10 DICEMBRE QUESITI www.matefilia.it PRIMA SIMULAZIONE - 0 DICEMBRE 05 - QUESITI Q Lanciando una coppia di dadi cinque volte qual è la probabilità che si ottenga un punteggio totale maggiore di sette almeno due volte? Calcoliamo

Dettagli

MECCANICA STATISTICA CLASSICA

MECCANICA STATISTICA CLASSICA MECCANICA STATISTICA CLASSICA INTRODUZIONE La meccanica statistica è una tecnica utilizzata per estendere i principi di conservazione della meccanica classica a sistemi di molte particelle, senza considerare

Dettagli

Lezione 5 Moti di particelle in un campo magnetico

Lezione 5 Moti di particelle in un campo magnetico Lezione 5 Moti di particelle in un campo magnetico G. Bosia Universita di Torino G. Bosia - Fisica del plasma confinato Lezione 5 1 Moto di una particella carica in un campo magnetico Il confinamento del

Dettagli

Algoritmi in C++ (seconda parte)

Algoritmi in C++ (seconda parte) Algoritmi in C++ (seconda parte) Introduzione Obiettivo: imparare a risolvere problemi analitici con semplici programmi in C++. Nella prima parte abbiamo imparato: generazione di sequenze di numeri casuali

Dettagli

CRESCITA DI POPOLAZIONI. Consideriamo una popolazione di esseri viventi e indichiamo con n(t) il numero di individui della popolazione al tempo t:

CRESCITA DI POPOLAZIONI. Consideriamo una popolazione di esseri viventi e indichiamo con n(t) il numero di individui della popolazione al tempo t: CRESCITA DI POPOLAZIONI Consideriamo una popolazione di esseri viventi e indichiamo con n(t) il numero di individui della popolazione al tempo t: n : R N Questa è una funzione costante a tratti, cioè una

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013 Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 013 Problema 1 Un cubo di legno di densità ρ = 800 kg/m 3 e lato a = 50 cm è inizialmente in quiete, appoggiato su un piano orizzontale.

Dettagli

Lezione 10 Moto dei fluidi

Lezione 10 Moto dei fluidi Lezione 10 Moto dei fluidi Caratterizzazione del moto Consideriamo soltanto il caso di liquidi in moto nei condotti. Parametri descrittivi del moto: Portata Q di un condotto: è il volume di liquido che

Dettagli

Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente

Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente Firenze - Dip. di Fisica 2 agosto 2008 Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente In questa dispensa, che presentiamo a semplice titolo di esercizio e applicazione

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 9 - EQUAZIONI DIFFERENZIALI ORDINARIE valori iniziali Valori iniziali Ci occuperemo della soluzione numerica di equazioni del prim ordine

Dettagli

Fusione termonucleare controllata e High Performance Computing. S. Briguglio, G. Fogaccia e G. Vlad ENEA Frascati

Fusione termonucleare controllata e High Performance Computing. S. Briguglio, G. Fogaccia e G. Vlad ENEA Frascati Fusione termonucleare controllata e High Performance Computing S. Briguglio, G. Fogaccia e G. Vlad ENEA Frascati Sommario La fusione nucleare La simulazione particle in cell (PIC) Il porting di un codice

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco Robotica industriale Richiami di statica del corpo rigido Prof. Paolo Rocco (paolo.rocco@polimi.it) Sistemi di forze P 1 P 2 F 1 F 2 F 3 F n Consideriamo un sistema di forze agenti su un corpo rigido.

Dettagli

1) Entropia di variabili aleatorie continue. 2) Esempi di variabili aleatorie continue. 3) Canali di comunicazione continui. 4) Canale Gaussiano

1) Entropia di variabili aleatorie continue. 2) Esempi di variabili aleatorie continue. 3) Canali di comunicazione continui. 4) Canale Gaussiano Argomenti della Lezione 1) Entropia di variabili aleatorie continue ) Esempi di variabili aleatorie continue 3) Canali di comunicazione continui 4) Canale Gaussiano 5) Limite di Shannon 1 Entropia di una

Dettagli

Teoria dei Segnali Trasmissione binaria casuale; somma di processi stocastici

Teoria dei Segnali Trasmissione binaria casuale; somma di processi stocastici eoria dei Segnali rasmissione binaria casuale; somma di processi stocastici Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it eoria dei Segnali rasmissione

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Cinematica. Velocità. Riferimento Euleriano e Lagrangiano. Accelerazione. Elementi caratteristici del moto. Tipi di movimento

Cinematica. Velocità. Riferimento Euleriano e Lagrangiano. Accelerazione. Elementi caratteristici del moto. Tipi di movimento Cinematica Velocità Riferimento Euleriano e Lagrangiano Accelerazione Elementi caratteristici del moto Tipi di movimento Testo di riferimento Citrini-Noseda par. 3.1 par. 3.2 par 3.3 fino a linee di fumo

Dettagli

I principi della dinamica come si insegnano e (soprattutto) cosa ci insegnano. mercoledì 4 febbraio 2015

I principi della dinamica come si insegnano e (soprattutto) cosa ci insegnano. mercoledì 4 febbraio 2015 I principi della dinamica come si insegnano e (soprattutto) cosa ci insegnano 1 Perché sono così importanti i tre principi della dinamica? 2 e prima di tutto, cosa dicono i principi della dinamica? 3 Il

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

1 Schemi alle differenze finite per funzioni di una variabile

1 Schemi alle differenze finite per funzioni di una variabile Introduzione In questa dispensa vengono forniti alcuni elementi di base per la soluzione di equazioni alle derivate parziali che governano problemi al contorno. A questo scopo si introducono, in forma

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE

PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE (da un idea di M. Impedovo Variabili aleatorie continue e simulazione Progetto Alice n. 15, ) 1. La simulazione Nelle schede precedenti

Dettagli

Dinamica delle Strutture

Dinamica delle Strutture Corso di Laurea magistrale in Ingegneria Civile e per l Ambiente e il Territorio Dinamica delle Strutture Prof. Adolfo SANTINI Ing. Francesco NUCERA Prof. Adolfo Santini - Dinamica delle Strutture 1 Dinamica

Dettagli

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata

Dettagli

Forze Conservative. In generale il lavoro fatto da una forza (più precisamente, da un campo di forze):

Forze Conservative. In generale il lavoro fatto da una forza (più precisamente, da un campo di forze): Forze Conservative In generale il lavoro fatto da una forza (più precisamente, da un campo di forze): L = f i F d r, può dipendere dal percorso seguito dalla particella. Se il lavoro fatto da una forza

Dettagli

Sistemi dinamici-parte 2 Parentesi di Poisson e trasformazioni canoniche

Sistemi dinamici-parte 2 Parentesi di Poisson e trasformazioni canoniche Sistemi dinamici-parte 2 Parentesi di e trasformazioni AM Cherubini 11 Maggio 2007 1 / 25 Analogamente a quanto fatto per i sistemi lagrangiani occorre definire, insieme alla struttura del sistema, anche

Dettagli

CANALE STAZIONARIO CANALE TEMPO INVARIANTE

CANALE STAZIONARIO CANALE TEMPO INVARIANTE CANALE STAZIONARIO Si parla di un Canale Stazionario quando i fenomeni che avvengono possono essere modellati da processi casuali e le proprietà statistiche di tali processi sono indipendenti dal tempo.

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

Rottura di ergodicità in sistemi anisotropi

Rottura di ergodicità in sistemi anisotropi Università Cattolica del Sacro Cuore Sede di Brescia Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Fisica TESI DI LAUREA SPECIALISTICA Rottura di ergodicità in sistemi anisotropi

Dettagli

Φ D 2 L. k > 0. M O=A s. sistema (che è rappresentato in figura ). Infine, vogliamo calcolare le reazioni vincolari sul sistema.

Φ D 2 L. k > 0. M O=A s. sistema (che è rappresentato in figura ). Infine, vogliamo calcolare le reazioni vincolari sul sistema. Esercizio 1. Un sistema materiale è costituito da una lamina piana omogenea di massa M e lato L e da un asta AB di lunghezza l e massa m. La lamina scorre con un lato sull asse x ed è soggetta a una forza

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Sistemi

Dettagli

1.Pressione di un Gas

1.Pressione di un Gas 1.Pressione di un Gas Un gas è formato da molecole che si muovono in modo disordinato, urtandosi fra loro e urtando contro le pareti del recipiente che le contiene. Durante gli urti, le molecole esercitano

Dettagli