CENNI DI TEORIA DEI GIOCHI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CENNI DI TEORIA DEI GIOCHI"

Transcript

1 CENNI DI TEORIA DEI GIOCHI CHI NE E' IL PADRE FONDATORE? Von Neumann. COSA SI STUDIA? La teoria dei giochi analizza matematicamente l interazione tra individui che perseguono scopi convergenti, oppure in parziale o totale conflitto. I giochi di cui si occupa questa teoria devono avere almeno due individui che interagiscono. COSA NON SI STUDIA? La teoria dei giochi NON si occupa dei giochi individuo contro caso, come il lotto, i dadi, la roulette, (se ne occupa il calcolo delle probabilità) PERCHE SI STUDIA? La teoria dei Giochi rappresenta un buon modello per descrivere le interazioni strategiche tra agenti economici. La teoria microeconomica è basata sulla teoria delle scelte individuali. Molti risultati economici coinvolgono l interazione strategica. Es: Mercati non perfettamente competitivi, Free riding. Questi cenni sono utili per capire come si comporta una persona razionale e intelligente di fronte a vari tipi di problemi. Più in generale oggi introdurremo dei concetti che ci accompagneranno durante tutto il Corso. 1

2 In altre lezioni vedremo che le persone (anche noi!) molte/troppe volte non si comportano né in modo intelligente né razionale. Ciò implica che, non poche volte, le scelte delle persone sono la causa dei loro stessi disagi. Cioè, avrebbero potuto stare meglio se avessero agito in modo più intelligente e razionale. Come vedremo, è più facile a dirci che a farsi (errare humanum est). 2

3 Elementi Costitutivi del gioco: 1. I Giocatori 2. Le Regole: ordine delle mosse, azioni possibili, informazione 3. Gli Esiti (per ogni possibile profilo di scelte) 4. Le Vincite o Utilità attesa. Assunzioni e Definizioni del gioco: La teoria dei giochi assume che gli agenti siano intelligenti e razionali. Intelligenti significa che capiscono la situazione in cui si trovano - compreso il fatto che anche gli altri individui sono intelligenti e razionali - e sono in grado di fare ragionamenti logici corretti. Razionali significa che hanno preferenze coerenti sugli esiti finali del processo decisionale e che hanno l obiettivo di massimizzare queste preferenze. La coerenza di cui si parla è esplicitata dallo: Assioma di razionalità. L ipotesi di base della teoria dei giochi è che tutti i giocatori si comportino razionalmente, ossia nessun giocatore sceglie un azione se ne ha a disposizione un altra che gli permette di ottenere risultati migliori, qualunque sia il comportamento dell avversario. La coerenza razionale richiesta ai giocatori impone che valga la proprietà transitiva nelle preferenze: se il diploma è preferito alla vacanza e la vacanza al libro allora il diploma deve essere preferito al libro. 3

4 ALTRE UTILI DEFINIZIONI Azioni: L insieme delle mosse a disposizione dei giocatori Strategia: Piano completo di azione. La strategia specifica un azione (o anche solo un ipotesi di azione) per ognuna delle situazioni in cui il giocatore può essere chiamato a decidere. Funzione di Utilità: Se sono solo (economia di R. Crusoe) - quindi l'esito delle mie scelte dipende solo dall'opzione che seleziono - e devo decidere fra più opzioni possibili, allora sceglierò l'opzione che mi permette di ottenere il miglior esito in base a una mia scala di preferenze. In questo tipo di economia ogni individuo sceglie senza interagire con gli altri e ognuno ha una sua funzione di utilità sull insieme dei beni. Per esempio, se l insieme dei beni è una fetta di torta, un libro, una vacanza, un diploma, ognuno è in grado di quantificare numericamente la sua utilità per ciascuno dei beni. In altre lezioni approfondiremo preferenze => utilità. Qui accenno al fatto che: dette x1, x2,..., xn le possibili opzioni fra le quali scegliere e indicata con u(xk) una funzione che in qualche modo fornisce una misura della soddisfazione (o felicità per usare un termine molto impegnativo) derivante dalla scelta xk, allora sarà sufficiente confrontare gli n valori attesi u(x1),..., u(xn) e optare per la scelta in corrispondenza della quale si ottiene il valore massimo della funzione u. 4

5 La cosa diventa invece molto più difficile se l'esito della mia scelta dipende anche dalle decisioni prese da altri soggetti: l'utilità che mi aspetto da una mia scelta xk non è funzione della sola xk, ma anche delle decisioni di almeno un altro soggetto, sulle quali non ho alcun controllo. In altre parole, se l'altro soggetto ha m opzioni tra le quali selezionare la propria azione yi, con i=1,...,m, allora da ogni mia possibile scelta xk potrò ottenere m esiti diversi a seconda della scelta effettuata dall'altro. Potrei aspettare che l'altro decida e quindi regolarmi di conseguenza. Ma anche l'altro potrebbe ragionare allo stesso modo, rischiando di entrare in un circolo vizioso. In situazioni del genere si parla di decisioni in presenza di interazione strategica, e la questione si complica notevolmente. La teoria dei giochi ci aiuta ad affrontare in modo formale e logico simili problemi. Qualche altra classificazione aiuta a comprendere il legame tra situazioni, comportamenti e risultati. Le mosse di un gioco possono essere simultanee o sequenziali Simultanee: ciascun giocatore decide le proprie scelte ignorando le scelte compiute dagli altri giocatori anche se i giocatori compiono le scelte in momenti diversi si ha una interazione simultanea (è come se i giocatori decidessero simultaneamente: ciascuno deve decidere senza sapere cosa hanno deciso gli altri) Sequenziali: i giocatori decidono le proprie scelte in modo sequenziale e ciascun giocatore compie le proprie scelte conoscendo le scelte dei giocatori che hanno deciso prima di lui ESEMPI: Nel gioco degli scacchi le mosse sono sequenziali, nel gioco della morra cinese le mosse sono simultanee. 5

6 In una gara d asta per un appalto le ditte fanno un offerta simultaneamente, senza conoscere le offerte fatte dagli altri concorrenti. Gli interessi dei giocatori possono essere completamente contrapposti (gioco a somma zero) o parzialmente contrapposti ESEMPI: Nel gioco degli scacchi gli interessi sono completamente contrapposti: se un giocatore vince, l altro perde. I giochi economici e sociali non sono quasi mai a somma zero: due imprese possono collaborare insieme per produrre di più di quanto riuscirebbero a produrre separatamente. Un gioco può essere disputato una sola volta oppure può essere ripetuto più volte. ESEMPI: Un meccanico d auto si può comportare diversamente se ha a che fare con un automobilista di passaggio o con un cliente abituale. In una corsa sui cento metri non c è possibilità di collaborazione tra i corridori ma in una maratona o una gara di ciclismo i corridori possono ritenere utile collaborare tra di loro. I giocatori possono avere informazione perfetta del gioco oppure no Un gioco è a informazione completa se le regole del gioco e le funzioni di utilità di tutti i giocatori sono conoscenza comune di tutti i giocatori. 6

7 Questo assunto non è molto realistico ma è una prima semplificazione per costruire una teoria. Si possono comunque studiare anche i giochi a informazione incompleta, ma la teoria è più complessa. Tutti i giochi con mosse simultanee sono giochi a informazione incompleta. ESEMPI: Nel gioco degli scacchi ciascun giocatore, nel momento in cui deve fare una mossa, conosce esattamente la situazione attuale e tutte le mosse che hanno portato a quella situazione. Nel gioco del poker, invece, un giocatore conosce le carte che ha in mano e quelle scartate dai giocatori ma non sa nulla delle carte possedute dagli altri giocatori. I giocatori possono sottoscrivere accordi vincolanti oppure operare indipendentemente l uno dall altro. L importanza di Nash nella Scienza Economica La teoria dei giochi cooperativi studia il formarsi di coalizioni con accordi sottoscritti e vincolanti che possono essere di vantaggio ai singoli componenti. Lo studio di questo tipo di coalizioni è stato introdotto da Von Neumann (e Morgensten). La teoria dei giochi non cooperativi si occupa dei meccanismi delle decisioni dei singoli, sulla base di ragionamenti individuali egoistici, in assenza di alleanze vincolanti. Questa teoria è stata introdotta di Nash. Detto ciò, necessita parlare un po di Storia del pensiero economico: 7

8 Secondo A. Smith, l'ambizione individuale serve al bene comune e di conseguenza un gruppo di persone ottiene il massimo risultato quando ogni componente del gruppo fa ciò che è meglio per sé stesso: Non è dalla benevolenza del macellaio, del birraio o del fornaio che ci aspettiamo il nostro desinare, ma dalla considerazione del loro interesse personale. Non ci rivolgiamo alla loro umanità, ma al loro egoismo e parliamo dei loro vantaggi, e mai delle nostre necessità. (La Ricchezza delle Nazioni, Adam Smith). Nella fare la rivoluzione marginalista, Walras aderì all approccio utilitarista di Bentham: si prenda in esame una decisione qualsiasi e si considerino le conseguenze piacevoli e spiacevoli che ne derivano. Vedrete che si sceglierà la decisione che ha il maggior numero di conseguenze piacevoli. In quest ottica, il comportamento umano è esclusivamente riducibile al calcolo egoistico e razionale teso alla massimizzazione della propria utilità. Ecco perché l approccio di Von Neumann e Morgensten era sì utile per gli economisti, ma in fondo non così tanto: Von Neumann e Morgensten studiavano giochi cooperativi che non collimavano con l impostazione egoistica di Smith/Walras. Nash formulò un risultato diverso. Come vedremo, Nash dimostra che è possibile raggiungere una situazione nella quale tutti ottengono il miglior risultato possibile a condizione che si instauri una cooperazione tra i giocatori. Il gioco, però, potrebbe anche essere non cooperativo. Vale a dire, se si agisce in modo egoistico si finisce in un equilibrio in cui tutti potrebbero stare meglio ma, individualmente, nessuno ha l incentivo a muoversi: 8

9 Con Nash, la teoria dei giochi spiegava l homo economicus di Smith. Per discutere di equilibrio di Nash servono ulteriori definizioni 9

10 Rappresentazione tabellare e soluzione dei giochi Strategia Dominante (SD): è dominante poiché un giocatore può scegliere una mossa che gli garantisce un risultato migliore rispetto a quello di tutte le altre mosse, qualunque sia la scelta degli altri giocatori. Cioè, egli ottimizza i suoi risultati indipendentemente dalle scelte dell altro giocatore. Strategia debolmente dominata: è dominante poiché esiste un altra strategia che assicura un payoff non-minore, qualunque sia la strategia adottata dagli altri giocatori (e un payoff strettamente maggiore per almeno una delle strategie degli altri giocatori) Principio di Dominanza (D): (i) Un giocatore non dovrebbe mai scegliere una strategia dominata da qualche altra sua strategia. (ii) Quindi, se un giocatore ha una strategia dominante, questa è la sua strategia ottimale. In base a (D) (ii), se un giocatore dispone di una strategia dominante allora dovrebbe adottarla, indipendentemente dalle sue opinioni su quello che farà l altro giocatore. Nel caso, molto frequente, in cui nessun giocatore disponga di una strategia dominante, non è immediatamente chiaro come determinare la soluzione del gioco. Per analizzare questo problema si ricorre al concetto di equilibrio di Nash (detto anche semplicemente equilibrio). Prima di definirlo, ancora un po' di teoria dei giochi. Essendo intelligente e razionale, il giocatore A che dispone di una strategia dominante deve scegliere quella strategia 10

11 Se il giocatore B NON possiede una SD allora deve scegliere la migliore risposta alla strategia dominante del giocatore A (anche B è intelligente e razionale e sa per certo che l intelligente e razionale signor A porrà in essere la sua SD) Se nessuna delle parti ha una strategia dominante si passa alle strategie dominate. Dato che una strategia dominata garantisce un risultato peggiore rispetto a quello di almeno una delle altre mosse qualunque sia la scelta degli altri giocatori allora: Il giocatore che dispone di una strategia dominata la deve eliminare. L operazione di eliminazione va condotta più volte: un giocatore deve eliminare tutte le strategie dominate Ciascun giocatore deve considerare il fatto che gli altri giocatori eliminano le loro strategie dominate Se durante il procedimento dell eliminazione iterata delle strategie dominate emergono strategie dominanti nel gioco di dimensioni ridotte (ie una volta eliminate le strategie dominate), allora tali SD vanno scelte man mano che si presentano Se tale procedimento termina con un risultato unico, vengono individuate indicazioni per il comportamento dei giocatori e per l esito del gioco. 11

12 ESEMPIO: il giocatore A può scegliere fra due mosse (su, giù) il giocatore B può scegliere fra tre mosse (sinistra, centro, destra). Ogni casella corrisponde ad una combinazione di mosse dei due giocatori: il primo numero di ogni casella corrisponde al risultato (payoff) conseguito dal giocatore A; il secondo numero a quello conseguito dal giocatore B: per il giocatore A nessuna delle due strategie è dominata: su è meglio di giù se B sceglie sinistra oppure centro (1>0); viceversa giù è meglio di su se B sceglie destra (2>0) 12

13 il giocatore B non ha una strategia dominante; tuttavia ha una strategia dominata: destra è dominata da centro (2>1 se A sceglie su; 1>0 se A sceglie giù). Pertanto il giocatore B elimina la strategia destra e il giocatore A deve tener conto di questa eliminazione. Il gioco si riduce alla seguente tabella: 13

14 In questa nuova versione del gioco si ha che per il giocatore A la strategia giù è dominata da su (su è la strategia dominante per il giocatore A) quindi il giocatore A elimina la strategia giù e il giocatore B deve tener conto di questa eliminazione il gioco si riduce ulteriormente: In questa nuova versione del gioco si ha che per il giocatore B la strategia sinistra è dominata da centro (centro è la strategia dominante per il giocatore B) quindi la matrice dei payoff si riduce ad una sola cella e il gioco finisce. L esito del gioco è (su, centro) Questo tipo di eliminazione può far sospettare che in alcuni casi si vadano ad eliminare potenziali situazioni di equilibrio. In realtà si può dimostrare che, nei giochi a somma zero, l eliminazione di strategie (debolmente) dominate non porta alla perdita di equilibri significativi del gioco. 14

15 Secondo metodo risolutivo: Il MiniMax Nei giochi a somma zero l eliminazione di strategie dominate non porta necessariamente alla soluzione del gioco. Il metodo MiniMax può aiutare. Consideriamo il gioco rappresentato dalla seguente matrice dei pagamenti: Il primo giocatore ( Primo ) sceglie le righe, Il secondo giocatore ( Secondo ) sceglie le colonne Primo ragiona in questo modo: Se seleziono la prima riga, il mio avversario (Secondo) dovrà scegliere tra i valori che ha a disposizione nella prima riga (2, 4, 6). Sceglierà ovviamente quello per il quale paga meno, ossia 2. Se seleziono la seconda riga, il secondo giocatore sceglierà 0. Se seleziono la terza riga il secondo giocatore sceglierà 0. Il primo giocatore sa quindi di potersi garantire almeno un guadagno 2. 15

16 Passiamo al punto di vista di Secondo Se gioco la prima colonna il primo giocatore sceglierà 2, quindi dovrò pagare 2 a primo. Se gioco la seconda colonna il primo sceglierà 7, quindi dovrò pagare 7 a primo. Se gioco la terza colonna il primo sceglierà 7, quindi dovrò pagare 7 a primo. Il secondo giocatore sa quindi di poter fare in modo che al massimo paghi 2. 2 è l equilibrio del gioco. 16

17 Vediamo di formalizzare meglio il procedimento. Il primo giocatore individua per ogni riga il valore minimo, quindi sceglie il valore massimo dei minimi ottenuti. Il secondo giocatore esamina le colonne. Per ogni colonna vede il massimo, quindi sceglie il minimo dei massimi ottenuti. Se il MAXIMIN del primo giocatore coincide con il MINIMAX del secondo giocatore il gioco ha equilibrio. In un gioco a somma zero si ha equilibrio se e solo se MAX MIN = MIN MAX. 17

18 Razionalità + Egoismo = Scelte sbagliate? L Equilibrio di Nash (prima il gioco era a somma zero, qui è a somma variabile) In molte situazioni di interazione strategica non ci sono strategie dominanti o dominate oppure la procedura della eliminazione iterata delle strategie dominate aiuta a ridurre la dimensione del gioco, ma non conduce ad una soluzione unica. Per individuare le strategie ottimali in queste situazioni, si deve tener conto del fatto che ciò che è meglio per un giocatore dipende da ciò che è meglio per gli altri giocatori e viceversa. In altri termini, per individuare l esito del gioco si deve individuare una combinazione di strategie dove la scelta di ciascun giocatore sia la migliore risposta a quella degli altri. La combinazione di strategie dove la scelta di ciascun giocatore è la migliore risposta a quella degli altri viene definita equilibrio di Nash. Il concetto di equilibrio di Nash è molto importante in economia. Intuitivamente, si può anche descrivere così: data (o ipotizzata) la scelta dell altro giocatore, a nessuno dei due giocatori conviene cambiare strategia. 18

19 Esempio: La coppia di strategie (a, x), che porta a utilità (1, 8), è il massimo dei minimi (= maximin) per entrambi i giocatori. Infatti: nella riga più in basso (min) sono indicati i valori minimi del secondo giocatore, che guarda per colonna e solo il secondo numero in parentesi; nella colonna più a destra (min) sono indicati i valori minimi del primo giocatore, che guarda per riga e solo il primo numero in parentesi. Possiamo concludere che (a, x) è un equilibrio? No. Non ci sono elementi per dire che i due giocatori si metteranno d accordo per giocare le strategie (a, x). Infatti: se il secondo giocatore annuncia di voler giocare la strategia maximin x, il primo preferirà giocare la strategia b, piuttosto che la a (dato x, primo deve infatti scegliere tra a=1 e b=4) Se invece fosse possibile un accordo sarebbe utile per entrambi convergere verso la strategia (b, z), che porta a un guadagno (10, 10). La coppia (b, z) soddisfa infatti le condizioni di equilibrio di Nash: 19

20 il primo giocatore, che guarda le righe, nota che nella riga b non ci sono soluzioni migliori il secondo giocatore, che guarda le colonne, nota che nella colonna z non ci sono soluzioni migliori. Perciò (b,z) è una situazione di equilibrio. Ricapitoliamo collassando secoli di Storia del Pensiero in tre(!) righe: Bentham+Smith+Walras=agente egoista, solitario e ottimizzante la propria utilità Von Neumann=agente ottimizzante, ma interagisce con gli altri cooperando Nash=agente ottimizzante e interagente, ma anche egoista-non cooperativo Tornando alla tabella, non sempre è possibile convergere verso la soluzione cooperativa o verso un equilibrio efficiente, ottimo come (b,z). Quando la ricerca del massimo benessere individuale da parte di ciascun agente contrasta con l'interesse collettivo e quindi conduce ad un equilibrio in cui tutti stanno peggio di come potrebbero stare allora si parla di DILEMMA SOCIALE. Il dilemma del prigioniero ne è un esempio classico. 20

21 Dilemma del Prigioniero Il dilemma può essere descritto come segue. Due criminali vengono accusati di aver commesso un reato. Gli investigatori li arrestano entrambi e li chiudono in due celle diverse, impedendo loro di comunicare (gioco non cooperativo). Ad ognuno di loro vengono date due scelte: confessare l'accaduto, oppure non confessare. Il PM inoltre spiega loro che: se solo uno dei due confessa, chi ha confessato evita la pena; l'altro viene però condannato a 7 anni di carcere. se entrambi confessano, entrambi vengono condannati a 6 anni. se nessuno dei due confessa, entrambi vengono condannati a 1 anno (diciamo perché comunque erano già colpevoli di spaccio). Insomma l'unico modo per essere liberi è confessare sperando che l'altro non confessi. 21

22 Questo gioco può essere descritto con la seguente matrice: confessa non confessa confessa (6,6) (0,7) non confessa (7,0) (1,1) La miglior strategia di questo gioco non cooperativo è (confessa, confessa). Per ognuno dei due (simmetrico) lo scopo è infatti di minimizzare la propria condanna e ogni prigioniero: confessando: rischia 0 o 6 anni non confessando: rischia 1 o 7 anni La strategia non confessa è dunque strettamente dominata dalla strategia confessa. Eliminando le strategie strettamente dominate si arriva all'equilibrio di Nash, dove i due prigionieri confessano e si fanno 6 anni di carcere. Il dilemma consiste nel fatto che la soluzione migliore per entrambi ( ottimo paretiano ) sarebbe cooperare e non confessare (1 anno di carcere invece di 6), ma questo non è un equilibrio. NB Ottimo paretiano: Una situazione è di ottimo paretiano se non ci sono altre possibili situazioni in cui almeno un individuo può stare meglio senza che nessun altro stia peggio. NB Mano invisibile (laissez-faire): se ciascuno persegue l'ottimo individuale, allora emergerà l'ottimo collettivo. NB Nei giochi ripetuti, l equilibrio di Nash è non confesso/non confesso. 22

23 Tornando al dilemma, per migliorare la posizione occorrerebbe: a) poter comunicare => accordo (ma non sempre si può comunicare, es. guerra fredda) b) ma anche se si potessero accordare per non confessare entrambi, chi può garantire che l'accordo venga rispettato? In effetti c'è una forte tentazione a non rispettarlo in quanto questo porterebbe chi non rispetta ad essere liberato (il gioco è simmetrico => la posizione dei due è identica). Di qui il ruolo della fiducia, dei possibili accordi e del rischio che qualcuno non li rispetti: se c'è questo rischio nessuno li rispetterà. Lo Stato potrebbe allora fare la parte del Deus ex Machina: l'intervento politico può essere utile. Fissiamo le idee: Strategie dominanti: Io sto facendo il meglio che posso indipendentemente dalla tua strategia. Tu stai facendo il meglio che puoi indipendentemente dalla mia strategia. Equilibrio di Nash: Sto facendo il meglio che posso dato ciò che tu stai facendo. Tu stai facendo il meglio che puoi dato quello che io sto facendo. => L equilibrio in strategie dominanti è un caso particolare di equilibrio di Nash poiché quest'ultimo è più interdipendente. L equilibrio in strategie dominanti è anche un equilibrio di Nash, mentre il contrario non è vero. 23

24 DILEMMI SOCIALI Ne ricordo la definizione: Quando la ricerca del massimo benessere individuale da parte di ciascun agente contrasta con l'interesse collettivo - conducendo ad un equilibrio in cui tutti stanno peggio di come potrebbero stare - allora si parla di DILEMMA SOCIALE. Oltre al dilemma del prigioniero ci sono molte altre situazioni di dilemma sociale. Due TV in casa : In una casa ci sono due TV e tutti alzano il volume della propria TV in una spirale che alla fine rende impossibile, per tutti, capire il programma TV. Ci vorrebbe un accordo (condiviso e rispettato da tutti) di abbassare tutti il volume. Però, se poi se uno ri-alza un po per sentire leggermente meglio... Insomma, mi fido? Quanto? Ora proviamo a giocare anche noi. Metto in palio 100! Li vince chi offre di più Il secondo arrivato perde quanto offerto Chi vuole cominciare a offrire 1 per vincerne 100? 24

25 Mia previsione: (quasi) nessuno vuole giocare. A lezione si è sospettosi. Chissà, in altre occasioni o con un banditore che conoscete meglio "Asta da un euro" (l'originale è in $). Il gioco: Si mettono all'asta 100 euro, partendo da un offerta iniziale di 1 euro. Chi offre di più paga e si aggiudica i 100 euro. Chi fa la seconda offerta paga, ma non vince nulla. Sembra che stiamo offrendo una buona opportunità: diamo la possibilità di vincere 100 euro spendendone solo 1. Già ma noi, come il subdolo PM del dilemma del prigioniero, puntiamo sull'avidità e la miopìa delle persone... Infatti, qualcuno rilancia offrendo 2, qualcun altro 3, ecc. La stangata è iniziata. Quando si arriva all'offerta di 50 euro intravediamo l'affare perché chi aveva offerto 49 euro, pur di non perderli, rilancia offrendone 51. Dunque, se ci si ferma a 51, incassiamo 101, guadagnando 1 euro (senza avere investito alcunché!). Ma la stessa logica che aveva condotto chi aveva offerto 49 euro a rilanciare offrendone 51 per non perdere i 49 euro, porterà chi aveva offerto 50 che ora paga senza prendere nulla in cambio a rilanciare a sua volta a 52 ecc...(in altre lezioni parleremo della ben diffusa loss aversion) Insomma, per non perdere i giocatori finiscono per arricchire il banditore: aste di questo tipo, effettuate realmente, sono arrivate a euro NB il vincitore paga un prezzo sproporzionato rispetto al premio che ottiene (es. pago 300 euro per averne 100) e lo sconfitto paga un alto prezzo (nell'esempio 299 euro) per una battaglia che non frutta nulla. Morale: si vince non giocando. Vi sembra assurdo? 25

26 Anticipato che in questo Corso vedremo comportamenti generalizzati anche più irrazionali, analizziamo psicologicamente cosa può essere successo: Si tratta di situazioni in cui ci si infila probabilmente senza pensarci troppo; ora ne vorremmo uscire poiché - ex post realizziamo che non è più conveniente; ma non smettiamo perché non siamo è disposti a perdere tutto quello che è stato impegnato fino a quel momento (anche poiché si tratterebbe di certificare una sconfitta e questo succede agli altri, mica a noi...). ESEMPIO: Certe guerre sono cominciate, proseguite e finite seguendo modalità abbastanza simili alla nostra (in fondo innocua) asta. 26

27 Altro esempio di Dilemma sociale: La soluzione migliore sarebbe la cella (2,2) ma la soluzione dipende dai payoffs dei giocatori e i payoffs dipendono dalle scelte politiche Ecco che in certi casi, dove le scelte individuali stentano a produrre un risultato valido, è importante che la politica intervenga. 27

28 UNA ULTERIORE CONCLUSIONE PARADOSSALE Supponiamo che, ceteris paribus, ad un certo punto abbiamo qualche opportunità di scelta in più rispetto ad una situazione precedente. La LOGICA: la situazione non può che essere migliore di prima: male che vada, torno alla situazione di partenza. Il PARADOSSO: quanto appena detto non è affatto ovvio in presenza di interazione strategica. Consideriamo come esempio il gioco (A vs B) rappresentato dalla seguente matrice: A; B b1 b2 a1 1; 1 5; 3 a2 3; 5 10; 10 Per il principio di razionalità, verrà logicamente scelta la coppia di strategie (a2, b2) che fornisce un payoff pari a 10 a ciascun giocatore. Ora, aggiungiamo un'ulteriore strategia per ciascun giocatore ma non sottraiamo nulla: 28

29 A; B b1 b2 b3 a1 1; 1 5, 3 0, 4 a2 3; 5 10, 10 0, 11 a3 4; 0 11, 0 1, 1 L'ESITO PARADOSSALE: si converge su (a3, b3) e cioè su un payoff di solo 1 a testa, ben minore del 10 ottenuto con una opzione in meno. Il fatto è che ho subdolamente aggiunto payoffs in modo che Mr. B esclude dalle possibili soluzioni la colonna b2 e Mr. A esclude la riga a2. Per completezza: Se A sceglie: a1 => B sceglie b3 a2 => B sceglie b3 a3 => B sceglie b3 Se B sceglie: b1 => A sceglie a3 b2 => A sceglie a3 b3 => A sceglie a3 => l'equilibrio è (a3,b3) QED. Dato che si possono fare esempi in cui diminuendo tutti i payoff di un gioco si ottiene una soluzione migliore per entrambi i giocatori, si arriva alla MORALE: scegliere quando ci sono di mezzo gli altri è sempre complicato. 29

30 Il dilemma sociale della Tragedia delle risorse comuni. Oltre al dilemma del prigioniero (DdP), un altro notissimo fallimento del coordinamento tra privati è un dilemma sociale chiamato Tragedia delle risorse comuni. Cos'è? Si tratta di una situazione in cui c è una moltitudine di individui ciascuno dei quali si trova a dover scegliere se privilegiare il proprio tornaconto personale immediato o il benessere della collettività in cui vive. In un certo senso si tratta di versioni del DdP con molti giocatori. Cosa succederà? Quando un gran numero di anonimi individui gioca un dilemma sociale in cui c'è da scegliere tra se stessi e gli altri c è da aspettarsi che le cose vadano molto male. Homo homine lupus ammoniva Hobbes: la natura umana è fondamentalmente egoistica e a determinare le azioni dell'uomo sono soltanto l'istinto di sopravvivenza e quello di sopraffazione (ricordate A. Smith?). D'altronde, costringere la gente a comportarsi meglio in tali situazioni è raramente cosa agevole. E poi, siamo sicuri che il politico non è un lupus? In fondo anche lui è un uomo. 30

31 L esempio standard di dilemma sociale è chiamato Tragedia delle risorse comuni per il titolo di un articolo di Garrett Hardin del L archetipo è il problema dei pascoli comuni nei villaggi inglesi del In molti villaggi era presente, in posizione centrale, un terreno, che le famiglie del villaggio potevano utilizzare liberamente per il pascolo delle loro greggi e mandrie. I fatti hanno evidenziato che, senza misure di controllo, le famiglie tendevano a sovrautilizzare il pascolo, desertificandolo in breve tempo. 31

32 La tragedia in versione miniaturizzata, ma formale. In un piccolo villaggio abitato da dieci famiglie di pastori c è un terreno comune che viene destinato al pascolo delle capre. Supponiamo che una capra che abbia a sua disposizione una frazione a ]0, 1] del terreno comune produca litri di latte al giorno e che una capra senza erba da mangiare non dia latte. Questa funzione di produzione è tale che una capra che ha a disposizione a=10% del terreno comune, produce un litro di latte: a litri

33 Un pianificatore sociale, chiamato a decidere il numero ottimale n di capre, comincia col notare che ciascuna capra dovrà avere a disposizione una frazione a = 1/n del terreno comune. Sostituendo a = 1/n nella fz di produzione, la produzione totale (=> n*b) di latte sarà: che risulta massima quando n = 10, dando luogo a una produzione di 10 litri di latte al giorno. Il pianificatore, se è persona equa e se ha il potere di imporre le sue regole, dovrebbe allora concedere ad ogni famiglia la licenza di tenere una capra e ciascuna famiglia finirebbe con un litro di latte al giorno. 33

34 Ma supponiamo ora che il pianificatore non sia in grado di imporre le sue indicazioni e che ciascuna famiglia prenda in modo autonomo la sua decisione sul numero x delle capre da tenere. Se supponiamo che ciascuna famiglia si preoccupi solo di massimizzare la sua propria utilità - cioè la sua propria produzione di latte - e che non abbia alcuna attenzione per ciò che accadrà nel futuro, allora, indicato con c (visto come un parametro) il numero delle capre delle altre nove famiglie, una certa famiglia dovrà massimizzare la funzione di x la quale, come nel caso del pianificatore sociale, ha un massimo per x = 10, quale che sia il valore di c, ossia indipendentemente dal numero di capre che le altre nove famiglie decideranno di tenere. In definitiva, data la simmetria della situazione, ciascuna famiglia deciderà di tenere 10 capre, sicché 100 capre pasceranno sul terreno comune che, in breve, sarà ridotto a un deserto. E la produzione totale di latte, quando n = 100, diviene assolutamente ridicola: L = 100 e litri La Figura 1 sostituisce per una certa famiglia, vista come un giocatore razionale, la matrice di pagamento. Essa mostra la produzione di latte (l) di tale famiglia come funzione del numero x di capre che essa detiene e del numero complessivo c delle capre tenute dalle altre nove famiglie viste come un avversario unico. La Figura 2 mostra alcune curve di livello della superficie di produzione del latte in cui è tenuto costante c. 34

CENNI DI TEORIA DEI GIOCHI (Cap. 13 del libro di testo di micro)

CENNI DI TEORIA DEI GIOCHI (Cap. 13 del libro di testo di micro) CENNI DI TEORIA DEI GIOCHI (Cap. 13 del libro di testo di micro) CHI NE E' IL PADRE FONDATORE? J. Von Neumann COSA STUDIA? La Teoria dei giochi analizza matematicamente l interazione tra individui che

Dettagli

Teoria dei Giochi non Cooperativi

Teoria dei Giochi non Cooperativi Politecnico di Milano Descrizione del gioco Egoismo Razionalità 1 L insieme dei giocatori 2 La situazione iniziale 3 Le sue possibili evoluzioni 4 I suoi esiti finali I Giochi della teoria Perché studiare

Dettagli

Teoria dei giochi Gioco Interdipendenza strategica

Teoria dei giochi Gioco Interdipendenza strategica Teoria dei giochi Gioco Interdipendenza strategica soggetti decisionali autonomi con obiettivi (almeno parzialmente) contrapposti guadagno di ognuno dipende dalle scelte sue e degli altri Giocatori razionali

Dettagli

Giochi e decisioni strategiche

Giochi e decisioni strategiche Teoria dei Giochi Giochi e decisioni strategiche Strategie dominanti L equilibrio di Nash rivisitato Giochi ripetuti Giochi sequenziali Minacce impegni e credibilità Deterrenza all entrata 1 Giochi e decisioni

Dettagli

Note sulla teoria dei giochi 1

Note sulla teoria dei giochi 1 Note sulla teoria dei giochi 1 1. Le caratteristiche di un gioco La teoria dei giochi è usata per lo studio delle situazioni di interazione strategica, vale a dire le situazioni in cui l'utilità di un

Dettagli

Multiagent systems. Christian Schunck, Ph.D. UD 1.2: Esempi di Giochi

Multiagent systems. Christian Schunck, Ph.D. UD 1.2: Esempi di Giochi Multiagent systems Sistemi i di Agenti Christian Schunck, Ph.D. UD 1.2: Esempi di Giochi Christian Schunck,Ph.D. Multiagent Systems Sistemi di Agenti UD 1.1 30/03/2010 Dia 2 TIPOLOGIE DI GIOCHI SOMMA COSTANTE/NON

Dettagli

DILEMMA O NON DILEMMA, QUESTO È IL DILEMMA!

DILEMMA O NON DILEMMA, QUESTO È IL DILEMMA! MADD-SPOT, 1, 2015 DILEMMA O NON DILEMMA, QUESTO È IL DILEMMA! DI LUCIA PUSILLO La Teoria dei Giochi si occupa in generale delle tecniche matematiche per analizzare situazioni in cui due o più individui

Dettagli

Economia Politica Microeconomia (ECN0006) 10 CFU a.a. 2012-2013. Eleonora Pierucci eleonora.pierucci@unibas.it

Economia Politica Microeconomia (ECN0006) 10 CFU a.a. 2012-2013. Eleonora Pierucci eleonora.pierucci@unibas.it Economia Politica Microeconomia (ECN0006) 10 CFU a.a. 2012-2013 Eleonora Pierucci eleonora.pierucci@unibas.it Teoria dei giochi Cos è un gioco? Si definisce come gioco una situazione in cui ciascuno dei

Dettagli

Teoria dei giochi. 1. Introduzione ed esempi. Slides di Teoria dei Giochi, Vincenzo Cutello 1

Teoria dei giochi. 1. Introduzione ed esempi. Slides di Teoria dei Giochi, Vincenzo Cutello 1 Teoria dei giochi 1. Introduzione ed esempi Vincenzo Cutello 1 Cos è la teoria dei giochi? Da Wikipedia: La teoria dei giochi è la scienza matematica che analizza situazioni di conflitto e ne ricerca soluzioni

Dettagli

Richiami di microeconomia

Richiami di microeconomia Capitolo 5 Richiami di microeconomia 5. Le preferenze e l utilità Nell analisi microeconomica si può decidere di descrivere ogni soggetto attraverso una funzione di utilità oppure attraverso le sue preferenze.

Dettagli

Cooperazione di Agenti Informatici Corso di Laurea Specialistica in Informatica A.A. 2008/09 Prof. Alberto Postiglione

Cooperazione di Agenti Informatici Corso di Laurea Specialistica in Informatica A.A. 2008/09 Prof. Alberto Postiglione ooperazione di genti Informatici orso di Laurea Specialistica in Informatica.. 2008/09 Prof. lberto Postiglione UD.2: Esempi di Giochi Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2

Dettagli

La Teoria dei Giochi. I do not believe in luck, but I do believe in assigning value to things (J. Nash)

La Teoria dei Giochi. I do not believe in luck, but I do believe in assigning value to things (J. Nash) La Teoria dei Giochi I do not believe in luck, but I do believe in assigning value to things (J. Nash) Di cosa si occupa la TdG 1944 Theory of Games and Economic Behavior di John von Neumann (matematico)

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 3 marzo 2015 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2015.html MODALITÀ DI ESAME È previsto un appello alla fine

Dettagli

OLIGOPOLIO. Introduzione

OLIGOPOLIO. Introduzione OLIGOPOLIO Introduzione Nelle precedenti lezioni abbiamo visto differenti forme di mercato quali la concorrenza perfetta e il monopolio. Queste due strutture di mercato sono assai diverse 1, tuttavia entrambe

Dettagli

CAPITOLO 1 PENSARE DA ECONOMISTI. La microeconomia studia le decisioni individuali in condizioni di scarsità.

CAPITOLO 1 PENSARE DA ECONOMISTI. La microeconomia studia le decisioni individuali in condizioni di scarsità. Capitolo 1 Pensare da economisti pagina 1 CAPITOLO 1 PENSARE DA ECONOMISTI La microeconomia studia le decisioni individuali in condizioni di scarsità. Alternativamente: l analisi dell impiego di risorse

Dettagli

Teoria dei Giochi. Anna Torre. Almo Collegio Borromeo 6 marzo 2012

Teoria dei Giochi. Anna Torre. Almo Collegio Borromeo 6 marzo 2012 Teoria dei Giochi Anna Torre Almo Collegio Borromeo 6 marzo 2012 UN PO DI STORIA UN PO DI STORIA Von Neumann, Morgenstern Theory of Games and Economic Behavior (Princeton, 1944); UN PO DI STORIA Von Neumann,

Dettagli

Corso di Politica Economica

Corso di Politica Economica Corso di Politica Economica Lezione 10: Introduzione alla Teoria dei Giochi David Bartolini Università Politecnica delle Marche (Sede di S.Benedetto del Tronto) d.bartolini@univpm.it (email) http://utenti.dea.univpm.it/politica

Dettagli

MICROECONOMIA. L oligopolio. Enrico Saltari Università di Roma La Sapienza

MICROECONOMIA. L oligopolio. Enrico Saltari Università di Roma La Sapienza MICROECONOMIA L oligopolio Enrico Saltari Università di Roma La Sapienza 1 Π 1 = P Q 1 2 Secondo i criteri adottati, l oligopolio può essere definito come quella forma di mercato composta da un numero

Dettagli

Selezione avversa, screening e segnalazione

Selezione avversa, screening e segnalazione Selezione avversa, screening e segnalazione Il modello principale agente è uno strumento fondamentale per analizzare le relazioni economiche caratterizzate da problemi di asimmetrie informative un primo

Dettagli

Corso di Politica Economica Teoria delle votazioni

Corso di Politica Economica Teoria delle votazioni Corso di Politica Economica Teoria delle votazioni Prof. Paolo Buonanno Università degli Studi di Bergamo Funzione di Benessere Sociale Problema della scelta di un punto socialmente ottimale lungo la frontiera

Dettagli

Teoria dei giochi cap.13

Teoria dei giochi cap.13 Teoria dei giochi cap.13 Argomenti trattati Decisioni strategiche Strategie dominanti L equilibrio di Nash Giochi ripetuti F. Barigozzi Microeconomia CLEC 1 Un pò di storia Economisti e matematici studiosi

Dettagli

Teoria dei giochi. a.a. 2009/2010. Dott. Laura Vici

Teoria dei giochi. a.a. 2009/2010. Dott. Laura Vici Teoria dei giochi a.a. 2009/2010 Dott. Laura Vici Dipartimento di Scienze Economiche Università di Bologna E-mail: laura.vici@unibo.it Home page: http://www2.dse.unibo.it/lvici Esercitazione per il corso

Dettagli

Lezione IV: Giochi e Strategie

Lezione IV: Giochi e Strategie Lezione IV: Giochi e Strategie Una decisione può essere definita strategica se è basata su di un ipotesi relativa al comportamento di altri soggetti e/o mira ad influenzarlo. Ex: la scelta dei titoli di

Dettagli

Oligopolio. G. Degli Antoni 26/2/2014 (Economia Applicata/Industriale)

Oligopolio. G. Degli Antoni 26/2/2014 (Economia Applicata/Industriale) Oligopolio G. Degli Antoni 26/2/2014 (Economia Applicata/Industriale) Oligopolio In Oligopolio le imprese possono produrre beni sostanzialmente omogenei, oppure differenziati (automobili, bibite, giornali)

Dettagli

Introduzione alla Teoria dei Giochi

Introduzione alla Teoria dei Giochi Introduzione alla Teoria dei Giochi A. Agnetis Questi appunti presentano alcuni concetti introduttivi fondamentali di Teoria dei Giochi. Si tratta di appunti pensati per studenti di Ingegneria Gestionale

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

massimizzazione del benessere sociale

massimizzazione del benessere sociale POLITICA ECONOMICA A.A. 2011-2012 Prof. Francesca Gastaldi TEORIA DELL ECONOMIA DEL BENESSERE (1930-1950) che studia il funzionamento di una economia di produzione e di scambio domandandosi quale debba

Dettagli

Corso di POLITICA ECONOMICA

Corso di POLITICA ECONOMICA Corso di POLITICA ECONOMICA Giuseppe Croce Università La Sapienza - sede di Latina a.a. 2013-14 Queste slides non sostituiscono in alcun modo i testi consigliati per la preparazione dell esame ma intendono

Dettagli

Utilità Attesa (Cap. 24 Hey)

Utilità Attesa (Cap. 24 Hey) Utilità Attesa (Cap. 24 Hey) Solito preambolo: In Economia le scelte/decisioni vengono distinte in: 1. decisioni in situazioni di certezza 2. decisioni in situazioni di rischio 3. decisioni in situazioni

Dettagli

L oligopolio a.a. 2008/2009. Dott. Laura Vici

L oligopolio a.a. 2008/2009. Dott. Laura Vici L oligopolio a.a. 008/009 Dott. Laura Vici Esercitazioni: giovedì 9:00-11:00, Aula A, Via Berti Pichat, 6 Ricevimento: giovedì 1:00-15:00 Dipartimento di Scienze Economiche- Strada Maggiore, 45 Studion.

Dettagli

Perchè un asta? Lezione 15. Tipi di aste. Tipi di aste. Tipi di aste. Tipi di aste. Aste

Perchè un asta? Lezione 15. Tipi di aste. Tipi di aste. Tipi di aste. Tipi di aste. Aste Perchè un asta? Lezione 15 Aste Una delle forme più antiche di mercato. Arte, immobili pubblici, licenze telefoniche, frutta, e-bay E spesso difficile scoprire quanto potenziali acquirenti valutino effettivamente

Dettagli

scuole medie* La Crisi Economica

scuole medie* La Crisi Economica Economia: una lezione per le scuole medie* La Crisi Economica Giacomo Calzolari Dipartimento di Scienze Economiche Università di Bologna http://www2.dse.unibo.it/calzolari/ * L autore ringrazia le cavie,

Dettagli

MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI

MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI Anna TORRE 1 1 INTRODUZIONE La teoria dei giochi è una disciplina matematica molto recente. La sua nascita viene convenzionalmente

Dettagli

Gli uni e gli altri. Strategie in contesti di massa

Gli uni e gli altri. Strategie in contesti di massa Gli uni e gli altri. Strategie in contesti di massa Alessio Porretta Universita di Roma Tor Vergata Gli elementi tipici di un gioco: -un numero di agenti (o giocatori): 1,..., N -Un insieme di strategie

Dettagli

Decisioni in condizioni di rischio. Roberto Cordone

Decisioni in condizioni di rischio. Roberto Cordone Decisioni in condizioni di rischio Roberto Cordone Decisioni in condizioni di rischio Rispetto ai problemi in condizioni di ignoranza, oltre all insieme Ω dei possibili scenari, è nota una funzione di

Dettagli

Corso di Economia Politica (a.a. 2007-8) Esercitazioni - Microeconomia

Corso di Economia Politica (a.a. 2007-8) Esercitazioni - Microeconomia Corso di Economia Politica (a.a. 007-8) Esercitazioni - Microeconomia Capitolo 6: Problemi 5, 6, 8, 9 Capitolo 7: Problemi 1,, 4 Capitolo 8: Problemi 3, 10 Capitolo 9: Problemi 3, 4, 7, 9 Capitolo 10:

Dettagli

Programma delle Lezioni

Programma delle Lezioni Università degli Studidi Bologna Facoltà di Scienze Politiche Corso di Laurea in Scienze Politiche, Sociali e Internazionali Microeconomia(A-E) Matteo Alvisi Parte 6 (b) TEORIA DEI GIOCHI E DECISIONI STRATEGICHE

Dettagli

Efficienza ed equità

Efficienza ed equità Efficienza ed equità Efficienza ed equità Abbiamo visto nelle lezioni precedenti che, nella situazione ideale di assenza di fallimenti del mercato, il mercato condurrebbe a un risultato Pareto-efficiente.

Dettagli

ESERCITAZIONE 1. 15 novembre 2012

ESERCITAZIONE 1. 15 novembre 2012 ESERCITAZIONE 1 Economia dell Informazione e dei Mercati Finanziari C.d.L. in Economia degli Intermediari e dei Mercati Finanziari (8 C.F.U.) C.d.L. in Statistica per le decisioni finanziarie ed attuariali

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 9 marzo 2010 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2010.html TEOREMI DI ESISTENZA TEOREMI DI ESISTENZA Teorema

Dettagli

Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza

Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza ECONOMIA DELL INFORMAZIONE L informazione è un fattore importante nel processo decisionale di consumatori e imprese Nella realtà,

Dettagli

STRUTTURA DELLE RETI SOCIALI ASTE. Vincenzo Auletta Università di Salerno

STRUTTURA DELLE RETI SOCIALI ASTE. Vincenzo Auletta Università di Salerno STRUTTURA DELLE RETI SOCIALI ASTE Vincenzo Auletta Università di Salerno ASTE Le aste (auctions) sono un altro importante ambito in cui possiamo applicare il framework della teoria dei giochi Come devo

Dettagli

Alcuni modelli micoreconomici

Alcuni modelli micoreconomici E. Marchetti Sapienza Università Roma ESTERNALITA E BENI PUBBLICI Alcuni modelli micoreconomici Complementi di Economia Politica le Esternalità: Definizione di esternalità: Si ha un esternalità quando

Dettagli

13.4 Risposte alle domande di ripasso

13.4 Risposte alle domande di ripasso 86 Capitolo 13 13.4 Risposte alle domande di ripasso 1. Il modello di Cournot è incentrato sull ipotesi che ciascuna impresa consideri costante il livello attuale di output delle concorrenti. Il modello

Dettagli

La Matematica dei Giochi

La Matematica dei Giochi Capitolo 1 La Matematica dei Giochi 1.1 Introduzione Che cosa fanno i bambini non appena cominciano a interagire col mondo esterno? Cominciano a giocare. Che cosa accomuna l umanità da sempre, gli antichi

Dettagli

Lezione 2: Teoria del commercio internazionale: Heckscher-Ohlin

Lezione 2: Teoria del commercio internazionale: Heckscher-Ohlin Corso di Economia e Politica economica nei mercati globali S. Papa spapa@unite.it Lezione 2: Teoria del commercio internazionale: Heckscher-Ohlin Facoltà di Scienze della Comunicazione Università di Teramo

Dettagli

ESERCITAZIONE 8: GIOCHI SEQUENZIALI, ASIMMETRIE INFORMATIVE ED ESTERNALITA

ESERCITAZIONE 8: GIOCHI SEQUENZIALI, ASIMMETRIE INFORMATIVE ED ESTERNALITA MICRECNMI CLE.. 003-004 ssistente alla didattica: Elena rgentesi ESERCITZINE 8: GICHI SEUENZILI, SIMMETRIE INFRMTIVE E ESTERNLIT Esercizio : Giochi sequenziali e minacce credibili Si consideri un mercato

Dettagli

Lezione 1 Introduzione

Lezione 1 Introduzione Lezione 1 Introduzione Argomenti Cosa è l Economia politica I principi fondamentali dell Economia politica Cosa studia l Economia politica Perché studiare l Economia politica 1.1 COSA È L ECONOMIA POLITICA

Dettagli

Organizzazione aziendale Lezione 6 I fallimenti del mercato Cap. 2. Ing. Marco Greco m.greco@unicas.it Tel.0776.299.

Organizzazione aziendale Lezione 6 I fallimenti del mercato Cap. 2. Ing. Marco Greco m.greco@unicas.it Tel.0776.299. Organizzazione aziendale Lezione 6 I fallimenti del mercato Cap. 2 Ing. m.greco@unicas.it Tel.0776.299.3641 Stanza 1S-28 Le cause delle distorsioni Concorrenza insufficiente Rendimenti crescenti di scala

Dettagli

L'oligopolio di Cournot

L'oligopolio di Cournot L'oligopolio di Cournot Esaminiamo la soluzione di Cournot al problema della formazione dei prezzi e delle quantità di equilibrio in oligopolio. Partiamo dal caso più semplice, quello in cui gli oligopolisti

Dettagli

Elementi di economia Economia dell informazione

Elementi di economia Economia dell informazione Elementi di economia Economia dell informazione Dott.ssa Michela Martinoia michela.martinoia@unimib.it Corso di laurea in Scienze del Turismo e Comunità Locale A.A. 2014/15 Informazione completa Significa

Dettagli

Decreto legislativo 4 marzo 2010, n. 28 in materia di mediazione finalizzata alla conciliazione delle controversie civili e commerciali

Decreto legislativo 4 marzo 2010, n. 28 in materia di mediazione finalizzata alla conciliazione delle controversie civili e commerciali LA MEDIAZIONE Decreto legislativo 4 marzo 2010, n. 28 in materia di mediazione finalizzata alla conciliazione delle controversie civili e commerciali La mediazione conciliazione nell assicurazione: opportunità

Dettagli

La decisione. Claudia Casadio Logica e Psicologia del Pensiero Laurea Triennale - Indirizzo Gruppi A.A. 2004-05. Contents First Last Prev Next

La decisione. Claudia Casadio Logica e Psicologia del Pensiero Laurea Triennale - Indirizzo Gruppi A.A. 2004-05. Contents First Last Prev Next La decisione Claudia Casadio Logica e Psicologia del Pensiero Laurea Triennale - Indirizzo Gruppi A.A. 2004-05 Contents 1 Dimensioni della decisione................................... 3 2 Modalità della

Dettagli

Ricerca Operativa Dualità e programmazione lineare

Ricerca Operativa Dualità e programmazione lineare Ricerca Operativa Dualità e programmazione lineare L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi alle spiegazioni del

Dettagli

Esercizi di Teoria dei Giochi

Esercizi di Teoria dei Giochi Esercizi di Teoria dei Giochi ultimo aggiornamento: 11 maggio 2010 1. Si consideri il gioco fra 2 giocatori rappresentato (con le notazioni standard) dalla seguente matrice: (3, 1) (5, 0) (1, 0) (2, 6)

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 8 marzo 2012 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2012.html DECISORI RAZIONALI INTERAGENTI di Fioravante Patrone,

Dettagli

Equilibrio generale ed efficienza economica

Equilibrio generale ed efficienza economica Equilibrio generale ed efficienza economica Analisi dell equilibrio generale Efficienza nello scambio Equità ed efficienza Panoramica sull efficienza nei mercati concorrenziali Perché i mercati falliscono

Dettagli

SCELTE INTERTEMPORALI (cap. 20 Hey) Qui siamo nella situazione decisionale numero 1. Detto ciò:

SCELTE INTERTEMPORALI (cap. 20 Hey) Qui siamo nella situazione decisionale numero 1. Detto ciò: SCELTE INTERTEMPORALI (cap. 20 Hey) Anzitutto un preambolo: In Economia le scelte/decisioni vengono distinte in: 1. decisioni in situazioni di certezza 2. decisioni in situazioni di rischio 3. decisioni

Dettagli

REGOLAMENTO UFFICIALE

REGOLAMENTO UFFICIALE REGOLAMENTO UFFICIALE CAMPIONATO ITALIANO MONOPOLY BEST WESTERN ANTARES HOTEL CONCORDE VIALE MONZA, 132 MILANO 25-26 APRILE 2015 1 REGOLAMENTO CAMPIONATO DI MONOPOLY SCOPO DEL GIOCO Essere il giocatore

Dettagli

Economia Pubblica Rischio e Incertezza

Economia Pubblica Rischio e Incertezza Economia Pubblica Rischio e Incertezza Giuseppe De Feo Università degli Studi di Pavia email: giuseppe.defeo@unipv.it Secondo Semestre 2011-12 Seconda parte del corso di Economia Pubblica I problemi dell

Dettagli

5.4 Solo titoli rischiosi

5.4 Solo titoli rischiosi 56 Capitolo 5. Teoria matematica del portafoglio finanziario II: analisi media-varianza 5.4 Solo titoli rischiosi Suppongo che sul mercato siano presenti n titoli rischiosi i cui rendimenti aleatori sono

Dettagli

La condivisione del rischio e la sua ripartizione su ampia scala

La condivisione del rischio e la sua ripartizione su ampia scala La condivisione del rischio e la sua ripartizione su ampia scala Kreps: "Microeconomia per manager" 1 ARGOMENTI DI QUESTA LEZIONE Questa lezione fornisce la principale motivazione economica dell esistenza

Dettagli

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Lezione 1 Introduzione

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Lezione 1 Introduzione UNIVERSITÀ DEGLI STUDI DI BERGAMO Laurea Triennale in Ingegneria Gestionale Lezione 1 Introduzione Prof. Gianmaria Martini Cosa studia l economia L economia è la scienza delle decisioni di soggetti razionali

Dettagli

La scelta in condizioni di incertezza

La scelta in condizioni di incertezza La scelta in condizioni di incertezza 1 Stati di natura e utilità attesa. L approccio delle preferenza per gli stati Il problema posto dall incertezza riformulato (state-preference approach). L individuo

Dettagli

LE DECISIONI. Fondamenti di Psicologia Cognitiva AA 2013-14

LE DECISIONI. Fondamenti di Psicologia Cognitiva AA 2013-14 LE DECISIONI Fondamenti di Psicologia Cognitiva AA 2013-14 1 La scelta razionale Dove mi iscrivo: Arti o Design? Probabilità che diminuisca il mercato del lavoro nei prossimi X anni Arti Design... 2 La

Dettagli

REGOLAMENTO MONOPOLY QUALIFICAZIONI REGIONALI 2014

REGOLAMENTO MONOPOLY QUALIFICAZIONI REGIONALI 2014 REGOLAMENTO MONOPOLY QUALIFICAZIONI REGIONALI 2014 SCOPO DEL GIOCO Essere il giocatore più ricco al termine di una partita a tempo o l ultimo concorrente in gioco dopo che tutti gli altri sono finiti in

Dettagli

Corso di Laurea: Operatori pluridisciplinari e interculturali d'area mediterranea SCIENZA DELLE FINANZE. Docente: Gatto Antonino

Corso di Laurea: Operatori pluridisciplinari e interculturali d'area mediterranea SCIENZA DELLE FINANZE. Docente: Gatto Antonino Corso di Laurea: Operatori pluridisciplinari e interculturali d'area mediterranea SCIENZA DELLE FINANZE Docente: Gatto Antonino Elaborazione: Dott.ssa Locantro Antonia Lucia I motivi dell intervento dello

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 14 marzo 2013 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2013.html IL PARI O DISPARI I II S T S (-1, 1) (1, -1)

Dettagli

Per esempio, se il tasso di interesse è il 10%, il punto A sarebbe: A = 60 000 + [ 50 000 x (1 + 0.1)] = 60 000 + 55 000 = 115 000

Per esempio, se il tasso di interesse è il 10%, il punto A sarebbe: A = 60 000 + [ 50 000 x (1 + 0.1)] = 60 000 + 55 000 = 115 000 Appendice 4A Valore attuale netto: principi-base di finanza In questa appendice illustriamo i fondamenti teorici del valore attuale netto. Prima spieghiamo come vengono effettuate le scelte individuali

Dettagli

Capitolo 34: Informazione Asimmetrica

Capitolo 34: Informazione Asimmetrica Capitolo 34: Informazione Asimmetrica 34.1: Introduzione Fino ad ora abbiamo assunto che tutti gli agenti abbiano accesso alle stesse informazioni sul bene scambiato nel mercato. In questo capitolo studiamo

Dettagli

Corso di Politica Economica

Corso di Politica Economica Corso di Politica Economica Teoria delle Votazioni David Bartolini Università Politecnica delle Marche (Sede di S.Benedetto del Tronto) d.bartolini@univpm.it (email) http://utenti.dea.univpm.it/politica

Dettagli

5.7. Assicurazione e equilibri di separazione.

5.7. Assicurazione e equilibri di separazione. ELORTO DL PR ON LINE DI ECONOMI DEI CONTRTTI 5.7. ssicurazione e equilibri di separazione. In questo paragrafo esaminiamo l attività di screening di una compagnia assicurativa (per definizione neutrale

Dettagli

Capitolo 2: I guadagni dallo scambio

Capitolo 2: I guadagni dallo scambio Capitolo 2: I guadagni dallo scambio 2.1: Introduzione Questo capitolo, sebbene di natura introduttiva, permette di raggiungere importanti conclusioni. In esso si mostra come lo scambio possa dare vantaggi

Dettagli

Come si analizza un gioco

Come si analizza un gioco Come si analizza un gioco Parte III Giochi strategici a somma qualsiasi Alberto Abbondandolo Filippo Giuliani Alessandro Montagnani Università di Pisa Settimana di orientamento in Matematica 2010 Il dilemma

Dettagli

1 Estensione in strategia mista di un gioco

1 Estensione in strategia mista di un gioco AVVERTENZA: Di seguito trovate alcuni appunti, poco ordinati e poco formali, che uso come traccia durante le lezioni. Non sono assolutamente da considerarsi sostitutivi del materiale didattico. Riferimenti:

Dettagli

Le garanzie possono essere di due tipi (Chan e Kanatas, 1985):

Le garanzie possono essere di due tipi (Chan e Kanatas, 1985): Sull uso delle Garanzie. Tassonomia Le garanzie possono essere di due tipi (Chan e Kanatas, 1985): a) Un mutuatario può impegnare come garanzia ( interna all impresa) un cespite che viene utilizzato nel

Dettagli

= 8.000 + 2.000 = 5.000.

= 8.000 + 2.000 = 5.000. Esercizio 1 Consideriamo il mercato delle barche usate e supponiamo che esse possano essere di due tipi, di buona qualità e di cattiva qualità. Il valore di una barca di buona qualità è q = 8000, mentre

Dettagli

Modello neoclassico per la specializzazione internazionale: Heckscher-Ohlin

Modello neoclassico per la specializzazione internazionale: Heckscher-Ohlin Corso di Politica Economica Europee Stefano Papa spapa@uniroma1.it Modello neoclassico per la specializzazione internazionale: Heckscher-Ohlin Facoltà di Economica Università di Roma Sapienza Da produttività

Dettagli

Sandro Brusco (Stony Brook) Fausto Panunzi (Bocconi) INFORMAZIONE ASIMMETRICA

Sandro Brusco (Stony Brook) Fausto Panunzi (Bocconi) INFORMAZIONE ASIMMETRICA Sandro Brusco (Stony Brook) Fausto Panunzi (Bocconi) INFORMAZIONE ASIMMETRICA Introduzione - 1 Una delle idee più importanti della teoria economica è che i mercati sotto alcune condizioni- allocano i beni

Dettagli

Economia Politica Lezioni 12-16. Le forme di mercato

Economia Politica Lezioni 12-16. Le forme di mercato Economia Politica Lezioni 12-16 Le forme di mercato Frank: Capitolo 11 (par. 1-9) Capitolo 12 (par. 1-9) Capitolo 13 (par 1-3; Appendice 13.2) Per esercitarsi: Capitolo 11: Domande 1,2,4,7-10, 12; Problemi

Dettagli

OPERARE IN BORSA UTILIZZANDO LE MEDIE MOBILI, I CICLI E I CANALI

OPERARE IN BORSA UTILIZZANDO LE MEDIE MOBILI, I CICLI E I CANALI OPERARE IN BORSA UTILIZZANDO LE MEDIE MOBILI, I CICLI E I CANALI www.previsioniborsa.net di Simone Fanton (trader indipendente) Disclaimer LE PAGINE DI QUESTO REPORT NON COSTITUISCONO SOLLECITAZIONE AL

Dettagli

IV Forum Confcommercio sul Fisco

IV Forum Confcommercio sul Fisco IV Forum Confcommercio sul Fisco Intervento del Ministro dell Economia e delle Finanze Prof. Pier Carlo Padoan al IV Forum Confcommercio sul Fisco Meno tasse, meno spesa Binomio per la ripresa Roma, 22

Dettagli

Università degli Studi di Perugia A.A. 2014/2015 Dipartimento di Economia. ECONOMIA INDUSTRIALE Prof. Davide Castellani (davide.castellani@unipg.

Università degli Studi di Perugia A.A. 2014/2015 Dipartimento di Economia. ECONOMIA INDUSTRIALE Prof. Davide Castellani (davide.castellani@unipg. Università degli Studi di Perugia A.A. 2014/2015 Dipartimento di Economia ECONOMIA INDUSTRIALE Prof. Davide Castellani (davide.castellani@unipg.it) Introduzione Differenziazione del prodotto Differenziazione

Dettagli

Dietro la curva di domanda: Q d =Q d (P) Ovvero: Come ci comportiamo? E perché? (Capitolo 3 del libro di testo di micro)

Dietro la curva di domanda: Q d =Q d (P) Ovvero: Come ci comportiamo? E perché? (Capitolo 3 del libro di testo di micro) Dietro la curva di domanda: Q d =Q d (P) Ovvero: Come ci comportiamo? E perché? (Capitolo 3 del libro di testo di micro) Mio Prologo Ripeto i concetti della prima lezione: Nessun uomo dovrebbe essere un'isola:

Dettagli

Come si valuta per competenze? Competenza situata. Definizione dei profili di competenza. Situazioni problema per la valutazione di competenze.

Come si valuta per competenze? Competenza situata. Definizione dei profili di competenza. Situazioni problema per la valutazione di competenze. Come si valuta per competenze? Competenza situata. Definizione dei profili di competenza. Situazioni problema per la valutazione di competenze. Criterio 1. Competenza situata Descrizione Per valutare per

Dettagli

Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo

Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 14 Equilibrio economico generale (efficienza nello scambio) e fallimenti del mercato Facoltà di Scienze della Comunicazione

Dettagli

Esercizio 1 Dato il gioco ({1, 2, 3}, v) con v funzione caratteristica tale che:

Esercizio 1 Dato il gioco ({1, 2, 3}, v) con v funzione caratteristica tale che: Teoria dei Giochi, Trento, 2004/05 c Fioravante Patrone 1 Teoria dei Giochi Corso di laurea specialistica: Decisioni economiche, impresa e responsabilità sociale, A.A. 2004/05 Soluzioni degli esercizi

Dettagli

Il mercato della moneta

Il mercato della moneta Il mercato della moneta Dopo aver analizzato il mercato dei beni (i.e. i mercati reali) passiamo allo studio dei mercati finanziari. Ricordo che, proprio come nello studio del settore reale (IS), anche

Dettagli

La teoria dell utilità attesa

La teoria dell utilità attesa La teoria dell utilità attesa 1 La teoria dell utilità attesa In un contesto di certezza esiste un legame biunivoco tra azioni e conseguenze: ad ogni azione corrisponde una e una sola conseguenza, e viceversa.

Dettagli

MONOPOLIO. 1. Massimizzazione del Profitto

MONOPOLIO. 1. Massimizzazione del Profitto MONOPOLIO Quando nel mercato c è una sola impresa, difficilmente questa accetta il prezzo di mercato come dato. Il monopolista può infatti influire sul prezzo di mercato (price-maker) e quindi sceglie

Dettagli

Capitolo 16 Esternalità, diritti di proprietà e teorema di Coase

Capitolo 16 Esternalità, diritti di proprietà e teorema di Coase Capitolo 16 Esternalità, diritti di proprietà e teorema di Coase COSA ABBIAMO IMPARATO FINORA (PARTE TERZA) Un economia perfettamente concorrenziale è in grado di raggiungere l ottimalità-paretiana (=una

Dettagli

Economia dell informazione, mercati imperfetti e intervento pubblico.

Economia dell informazione, mercati imperfetti e intervento pubblico. COLLEGIO EUROPEO DI PARMA Borgo Lalatta 14, 43100 Parma Tel. + 39 (0)521.207525, Fax + 39 (0)521.384653 www.collegio.europeo.parma.it Diploma Avanzato in Studi Europei (DASE) IL RUOLO ECONOMICO DELLO STATO

Dettagli

La Concorrenza Monopolistica

La Concorrenza Monopolistica La Concorrenza Monopolistica Caratteristiche Molteplicità di imprese Libertà di entrata (entreranno imprese finché vi sarà possibilità di profitti positivi). L entrata di nuove imprese favorisce i consumatori

Dettagli

Esercizi di Ricerca Operativa II

Esercizi di Ricerca Operativa II Esercizi di Ricerca Operativa II Raffaele Pesenti January 12, 06 Domande su utilità 1. Determinare quale è l utilità che un giocatore di roulette assegna a 100,00 Euro, nel momento che gioca tale cifra

Dettagli

Scelta sociale. Definizione del problema. Il teorema di impossibilità di Arrow. Interpretazione e superamento attraverso l indebolimento degli assiomi

Scelta sociale. Definizione del problema. Il teorema di impossibilità di Arrow. Interpretazione e superamento attraverso l indebolimento degli assiomi Scelta sociale Definizione del problema Il teorema di impossibilità di Arrow Interpretazione e superamento attraverso l indebolimento degli assiomi Definizione del problema Il problema della scelta di

Dettagli

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità Introduzione Il caso Il caso commesse e probabilità Il caso i chiama evento casuale quello che si verifica in una situazione in cui gli eventi possibili sono più d uno, ma non si sa a priori quale si verificherà.

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

Intelligenza Artificiale

Intelligenza Artificiale Intelligenza Artificiale Esercizi e Domande di Esame Tecniche di Ricerca e Pianificazione Esercizi Griglia Si consideri un ambiente costituito da una griglia n n in cui si muove un agente che può spostarsi

Dettagli

9. La distribuzione 2 e i test per dati su scala nominale

9. La distribuzione 2 e i test per dati su scala nominale 9. La distribuzione e i test per dati su scala nominale 9.1. La distribuzione 9. 1. 1. La statistica e la sua distribuzione In una popolazione distribuita normalmente con parametri e estraiamo un campione

Dettagli

Economia. La parola economia viene dal Greco antico oikos nomia: le regole che governano la casa

Economia. La parola economia viene dal Greco antico oikos nomia: le regole che governano la casa Economia La parola economia viene dal Greco antico oikos nomia: le regole che governano la casa DIECI PRINCIPI DELL ECONOMIA Così come in una famiglia, anche in una economia si devono affrontare molte

Dettagli