TEST D INGRESSO DI MATEMATICA - FISICA
|
|
- Giulio Carrara
- 2 anni fa
- Visualizzazioni
Transcript
1 L.S. GALILEO GALILEI SELVAZZANO (PD) TEST D INGRESSO DI MATEMATICA - FISICA Nome e cognome:. classe : data :. Obiettivi: sondare alcune conoscenze in ambito matematico-fisico utili allo svolgimento del programma Modalità della prova: il test è suddiviso in due parti rispettivamente di e domande; ad ogni domanda corrisponde un punto; i quesiti n, 5, 9 richiedono una sola risposta corretta; i quesiti rimanenti richiedono una risposta corretta per ogni richiesta, eventualmente accompagnata da spiegazioni se ritieni necessario. Prima parte Unità dì misura. Cos'è un'unità di misura? a) È qualcosa che puoi misurare, per esempio il peso di un oggetto. b) È un numero fìsso, che serve per calcolare la misura di qualcosa. c) È un campione scelto in precedenza, che confrontiamo con gli altri còrpi. d) È uno strumento, come il righello o il cronometro, per misurare gli oggetti. e) È il valore che si ottiene misurando aspetti come la lunghezza o la durata di qualcosa.. Nel seguente elenco di nomi, scegli con una crocetta quelli che rappresentano delle unità di misura: Peso. Asta millimetrata. Kilometro all'ora. π (Pi greco) Grammo. Orologio. (Radice quadrata). Variabile. Bilancia Minuto Incognita Metro quadrato.. A ciascuna delle domande seguenti, da una risposta di fantasia, inserendo una opportuna unità di misura: «Quanto ci hai messo ad arrivare?».. «Cosa hai comprato in quella pasticceria?».. «La tua spiaggia è molto lontana?» «Quanto è grande questo campo da calcio?». Nelle frasi seguenti, inserisci i numeri giusti: a) II mio zainetto pesa 8 kilogrammi, cioè... grammi. b) La lattina contiene centilitri, che è lo stesso che... litri. c) Un foglio è grande, centimetri quadrati. In metri quadrati sarebbe uguale a... d) Un biscotto pesa 0, grammi, cioè... kilogrammi. e) Questa scatola contiene 00 zollette da un centimetro cubo. Vale a dire...metri cubi Aree 5. Cosa si intende in geometria per «area»? Qual è la risposta migliore? a) Una zona pianeggiante sgombra da costruzioni. b) II risultato di una formula algebrica come c a + b. c) La superficie di un pallone, di un libro o di un altro oggetto qualunque. d) II numero di quadratini tutti uguali che possono stare all'incirca in un certo contorno. e) La misura di una figura geometrica regolare, come il quadrato, il triangolo equilatero, il cerchio.
2 . Negli anni precedenti hai imparato le formule per calcolare l'area di alcune figure semplici. Su ognuna delle figure seguenti, indica con delle lettere le parti della_figura che devi conoscere per poterne calcolare l'area e scrivi accanto a essa la formula necessaria (se necessario, traccia altre linee).. Le due figure qui sotto mostrano lo stesso contorno curvo sovrapposto a due «quadrettature» diverse. Puoi determinare, almeno approssimativamente, l'area racchiusa dal contorno in ciascuno dei due casi? I risultati sono differenti?. Sotto quali aspetti? Puoi proporre un metodo alternativo per misurare l'area in questione? 8. L'area colorata nel diagramma è compresa sotto la curva in colore nero. Come unità dì misura di lunghezza puoi assumere il Iato del quadretto unitario. Determina una misura approssimata dell'area calcolandola come se si trattasse: } di un trapezio rettangolo; ) di due trapezi rettangoli. Quale dei due procedimenti da il valore più vicino al vero?. Come si potrebbe migliorare la precisione della misura?.
3 Volumi 9. Cosa si intende in geometria per «volume»? Qual è la risposta più adatta? a) La grandezza dì un oggetto solido. b) L'acqua spostata quando l'oggetto viene immerso in essa. c) La misura che si ottiene moltiplicando l'area dì base per l'altezza. d) La massa posseduta da un corpo qualunque, solido, liquido o gassoso. e) II numero di cubetti uguali che riempie meglio lo spazio occupalo da un corpo. 0. Negli anni precedenti hai imparato le formule per calcolare il volume di alcuni solidi semplici. Su ognuna delle figure seguenti, indica con delle lettere le parti della figura che devi conoscere per poterne calcolare il volume e scrivi accanto a essa la formula necessaria (se necessario, traccia altre linee). Frazioni e proporzioni. Fra le seguenti eguaglianze frazionarie, scegli con una crocetta quelle corrette: : : Trasforma le seguenti frazioni in numeri decimali: 8 0 0
4 . L'acqua che scorre in una conduttura viene divisa in due condutture più piccole, A e B. La conduttura A può portare due volte più acqua della conduttura B. Quale frazione del volume di acqua proveniente dalla condotta principale scorre nella condotta B e nella condotta A?. Una somma di viene suddivisa fra tre famiglie in modo proporzionale al numero dei componenti. La prima famiglia è costituita da sette persone, la seconda da tre persone e la terza da cinque persone. Quanto riceve ciascuna famiglia? Quale frazione del totale?
5 L.S. GALILEO GALILEI SELVAZZANO (PD) TEST D INGRESSO DI MATEMATICA - FISICA Nome e cognome:. classe : data :. Obiettivi: sondare alcune conoscenze in ambito matematico - fisico utili allo svolgimento del programma Modalità della prova: il test è suddiviso in due parti rispettivamente di e domande; ad ogni domanda corrisponde un punto; i quesiti n,, 8 richiedono una sola risposta corretta; i quesiti rimanenti richiedono una risposta corretta per ogni richiesta, eventualmente accompagnata da spiegazioni se ritieni necessario. Seconda parte Rapporti fra grandezze 5. Il peso specifico della sostanza che costituisce un corpo viene calcolato mediante il rapporto fra il peso del corpo e il suo volume. Considera un corpo che occupa un volume di 500 cm e pesa 000 g. ) Qual è il valore della densità della sostanza? In quali unità di misura?... ) Qual è il significato del numero ottenuto?. ) Di che cosa ci fornisce il valore numerico?... ) Quanto pesano due centimetri cubici della sostanza che costituisce il corpo?.. 5) Quanto volume occupa un grammo della sostanza che costituisce il corpo?... Un autocarro si muove lungo una strada rettilinea alla velocità di 0 km/h senza accelerare né frenare. ) Quanti kilometri percorre l'autocarro in un'ora?.. ) Quanti metri percorre in un minuto?. E in un secondo? ) Quanto tempo impiega l'autocarro a percorrere un kilometro?. Il prezzo unitario di una merce rappresenta il costo di un'unità di tale merce. Considera un pacco che contiene 500 fogli e costa 8000 lire. ) Quali unità di misura devi usare per esprimere il prezzo unitario?.. ) Cosa rappresenta il rapporto 500? Che informazione ci fornisce? ) Cosa rappresenta il rapporto 8000? Che informazione ci fornisce?. 500 ) Quanto costa un foglio?. 5) Quanti fogli puoi comprare con 00 lire?.. Espressioni algebriche 8. Quali delle seguenti eguaglianze algebriche sono corrette? + 5. X :,5 9. In un edificio sportivo dove è in corso una partita di pallacanestro, il numero dei ragazzi è il doppio più due del numero delle ragazze. Se indichi con la lettera F il numero delle ragazze e con la lettera M quello dei maschi, come puoi esprimere la relazione fra i due numeri con un'uguaglianza algebrica?
6 0. La relazione A B + rappresenta il legame fra la lunghezza A dell'altezza di un rettangolo e la lunghezza B della sua base. Come puoi interpretare questa relazione? Qual è il lato maggiore? Equazioni di primo grado. Cos'è un'equazione? a) È un'espressione algebrica contenente una o più volte la lettera. b) È una formula matematica che contiene sia termini noti sia termini incogniti. c) È una relazione fra due membri, che può essere corretta, scorretta o indeterminata. d) È un'uguaglianza fra due espressioni algebriche, nelle quali compare un valore sconosciuto. e) È un'equivalenza nella quale si possono portare più termini da una parte all'altra del segno di uguaglianza.. Determina il valore della variabile Z che rende vera la seguente uguaglianza: 8Z -.. Ecco un indovinello: «Ho pensato un numero intero. Gli ho aggiunto unità. Ho moltiplicato il risultato per cinque. Ho ottenuto cinquanta. Qual è il numero che ho pensato all'inizio?» Traduci questo indovinello in un'equazione. Grafici. Un secchio viene riempito sotto un rubinetto aperto. All'inizio, il secchio conteneva già 0,5 litri di acqua. Dal rubinetto esce un litro d'acqua al minuto. Indichiamo con X il tempo trascorso in minuti e con Y l'acqua contenuta nel secchio. Assegna tu dei valori crescenti da zero in avanti a X e determina i corrispondenti valori assunti da Y, compilando una tabella. Usa quindi i valori della tabella per tracciare un grafico. X Y Y X
7 Trasformazioni di scala 5. Considera un reticolo a forma di cubo costituito da dodici bastoncini di legno uniti a tre a tre ad angolo retto. Un vertice del cubo è legato al vertice opposto da un elastico. Ora supponi che il cubo subisca una trasformazione di scala, realizzata sostituendo tutti i bastoncini con altri lunghi il doppio. Rispondi alle seguenti domande: a) Come varia la lunghezza dell'elastico?. b) Come varia l'area complessiva della carta necessaria a rivestire il cubo? c) Come varia il volume complessivo racchiuso nel cubo?.. Il modello di un'automobile di Formula è realizzato in scala :5. Determina il fattore di scala fra i seguenti elementi del modello e i corrispondenti elementi dell'automobile: a) La larghezza degli alettoni:... :.... b) La superficie delle scritte pubblicitarie:... :.... c) II raggio degli pneumatici:... :.... d) La capacità del serbatoio:... :.... Relazioni funzionali. A quale condizione due grandezze variabili sono dette direttamente proporzionali? a) Quando una delle due grandezze aumenta, anche l'altra aumenta, e viceversa. b) II prodotto fra le due grandezze resta sempre lo stesso anche se le grandezze variano. c) La variazione subita da una grandezza è sempre uguale alla corrispondente variazione della seconda grandezza, d) Calcolando il rapporto fra le due grandezze prima e dopo che esse subiscano una variazione, si ottiene lo stesso risultato. 8. A quale condizione due grandezze variabili sono dette inversamente proporzionali? a) Quando una delle due grandezze aumenta, l'altra diminuisce, e viceversa. b) II prodotto fra le due grandezze resta sempre lo stesso anche se le grandezze variano. c) Calcolando il rapporto fra le due grandezze prima e dopo che esse subiscano una variazione, si ottiene lo stesso risultato, d) La variazione subita da una grandezza è sempre uguale all'inverso della corrispondente variazione della seconda grandezza. 9. La lunghezza della pellicola cinematografica e la durata del film corrispondente sono direttamente proporzionali. Considera un film contenuto in una pellicola lunga 5 m e della durata di un'ora e mezza. Di quanto si accorcia il film se la pellicola subisce dei tagli pari complessivamente a 00 m? 0. L'acquisto di un regalo importante viene spesso condiviso fra più persone, in modo che la spesa per ognuno dei partecipanti non sia troppo elevata. Supponi che i partecipanti paghino ciascuno lire. Cosa succede se un quarto dei partecipanti all'ultimo momento cambia idea e ritira la propria quota? Quanto si trovano a dover pagare i restanti?
Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...
Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.
Rilevazione degli apprendimenti. Anno Scolastico 2004 2005 PROVA DI MATEMATICA. Scuola Secondaria di I grado. Classe Prima. Codici. Scuola:...
Ministero dell Istruzione dell Università e della Ricerca Istituto Nazionale per la valutazione del sistema educativo di istruzione e di formazione Rilevazione degli apprendimenti Anno Scolastico 2004
Kangourou Italia Gara del 20 marzo 2003 Categoria Cadet Per studenti di terza media o prima superiore
15-20-.qxd 29/03/2003 8.22 Pagina 16 Kangourou Italia Gara del 20 marzo 2003 Categoria Per studenti di terza media o prima superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Quale dei seguenti
UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica
UNIONE MATEMATICA ITALIANA C. I. I. M. Commissione Italiana per l'insegnamento della Matematica ESEMPI DI TERZE PROVE per il NUOVO ESAME DI STATO LA COMPONENTE MATEMATICA ISTITUTO MAGISTRALE Tipologia
Ogni primino sa che...
Ogni primino sa che... A cura della équipe di matematica 25 giugno 2015 Competenze in ingresso Tradizionalmente, nei primi giorni di scuola, gli studenti delle classi prime del Pascal sostengono una prova
Simulazione della Prova Nazionale. Matematica
VERSO LA QUARTA PROVA scuola secondaria di primo grado Simulazione della Prova Nazionale Invalsi di Matematica 2 17 maggio 2010 Scuola..................................................................................................................................................
I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno
Kangourou Italia Gara del 19 marzo 2015 Categoria Cadet Per studenti di terza della scuola secondaria di primo grado e prima della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti
PROVA DI MATEMATICA - Scuola Secondaria di II grado - Classe Seconda
PROVA DI MATEMATICA - Scuola Secondaria di II grado - Classe Seconda Rilevazione degli apprendimenti Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Seconda Spazio per
ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5
ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA PER IL CORSO DI LAUREA IN SCIENZE DELLA FORMAZIONE PRIMARIA Ana Millán Gasca Luigi Regoliosi La lettura e lo studio del libro Pensare in matematica da parte degli
SCHEDE PROGRAMMATE PER L APPRENDIMENTO DELLA MATEMATICA. Emidio Tribulato. Centro studi LOGOS - Messina
SCHEDE PROGRAMMATE PER L APPRENDIMENTO DELLA MATEMATICA Emidio Tribulato Centro studi LOGOS - Messina 1 Emidio Tribulato SCHEDE PROGRAMMATE PER L APPRENDIMENTO DELLA MATEMATICA C 2010- Tutti i diritti
Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...
Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.
5 10 17 26 37 2,,,,,,... 2 3 4 5 6
MATEMATICA GENERALE 2014 - CTF Funzioni e successioni - Esercizi Docente: ALESSANDRO GAMBINI 1. a) Rappresenta mediante espressione analitica la seguente successione numerica. Motiva la tua risposta. 5
TEST INVALSI DI MATEMATICA PER LE CLASSI SECONDE (a.s. 2010-2011)
TEST INVALSI DI MATEMATICA PER LE CLASSI SECONDE (a.s. 2010-2011) D1. Nella tabella che vedi sono riportati i dati relativi alla distribuzione di alunni e insegnanti nella scuola secondaria di primo grado
Kangourou Italia Gara del 15 marzo 2001 Categoria Cadet Per studenti di terza media e prima superiore
Kangourou Italia Gara del 15 marzo 2001 Categoria Cadet Per studenti di terza media e prima superiore Regole:! La prova è individuale. E' vietato l'uso di calcolatrici di qualunque tipo.! Vi è una sola
2. La disequazione 9 (3x 2 + 2) > 16 (x - 3) è soddisfatta: A) sempre B) solo per x < 0 C) solo per x > 2/3 D) mai E) solo per x < 2/3
MATEMATICA 1. Per quali valori di x è x 2 > 36? A) x > - 6 B) x < - 6, x > 6 C) - 6 < x < 6 D) x > 6 E) Nessuno 2. La disequazione 9 (3x 2 + 2) > 16 (x - 3) è soddisfatta: A) sempre B) solo per x < 0 C)
Simulazione della Prova Nazionale. Matematica
VERSO LA PROVA nazionale scuola secondaria di primo grado Simulazione della Prova Nazionale Invalsi di Matematica 8 marzo 011 Scuola..................................................................................................................................................
Kangourou Italia Gara del 15 marzo 2012 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado
Testi_12Mat_5-8-Ecolier.qxd 24/06/12 17:29 Pagina 27 Kangourou Italia Gara del 15 marzo 2012 Categoria Per studenti di quarta o quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono
Matematica Livello secondario I Indice del Quaderno d'accompagnamento 1
Matematica Livello secondario I Indice del Quaderno d'accompagnamento 1 Indice / Terminologia addendo x L'addizione, la somma, l'addendo, più 1 2a 24 addizionare x L'addizione, la somma, l'addendo, più
Didattiche disciplinari integrate SSIS A.A. 2008/2009 Modulo di Matematica Docente L. Parenti
Didattiche disciplinari integrate SSIS A.A. 2008/2009 Modulo di Matematica Docente L. Parenti SCHEDE DI LAVORO La seguente rassegna di esempi deve essere analizzata nella duplice chiave di lettura: - aspetti
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Sessione suppletiva Il candidato risolva uno dei due problemi e dei quesiti in cui si articola il questionario. PROBLEMA Nel piano riferito
Gli automobilisti che precedono l autoambulanza vedono riflessa nello specchietto retrovisore la scritta:
PROVA INVALSI 2012-2013 Soluzioni D1 - A Osserva la seguente fotografia: Gli automobilisti che precedono l autoambulanza vedono riflessa nello specchietto retrovisore la scritta: Se la parola "AMBULANZA"
PRIMA DI SVOLGERE GLI ESERCIZI RIPASSA GLI ARGOMENTI SUL LIBRO E GLI APPUNTI SUL QUADERNO.
Compiti di matematica e scienze a. s. 2014 2015 classe 2 M da fare su un unico quaderno Alcuni esercizi vanno svolti sul quaderno. Il quaderno e la scheda verranno ritirati al ritorno dalle vacanze PRIMA
ESERCIZI DI FISICA (A)
ESERCIZI DI FISICA (A) Operazioni tra grandezze fisiche e cifre significative 1. Determinare quante cifre significative hanno i seguenti numeri: (a) 0,75; (b) 8,051; (c) 152,46; (d) 12,00; (e) 4,5 10 2
INVALSI. Ministero dell Istruzione dell Università e della Ricerca
X MATEMATICA_COP_Layout 1 15/03/11 08:51 Pagina 2 Ministero dell Istruzione dell Università e della Ricerca INVALSI Istituto nazionale per la valutazione del sistema educativo di istruzione e di formazione
al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi
Evelina De Gregori Alessandra Rotondi al via 1 Percorsi guidati per le vacanze di matematica e scienze per la Scuola secondaria di primo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio Test d'ingresso NUMERI
CURRICOLO MATEMATICA ABILITA COMPETENZE
CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando
TEST DI AUTOVALUTAZIONE PER STUDENTI CHE INTENDONO ISCRIVERSI ALLA LAUREA TRIENNALE IN ASTRONOMIA
I TEST DI AUTOVALUTAZIONE PER STUDENTI CHE INTENDONO ISCRIVERSI ALLA LAUREA TRIENNALE IN ASTRONOMIA 1. Date le due frazioni 3/7 e 4/7, trovare una frazione compresa fra esse 2. Risolvere l equazione: (x
ESEMPI DI TEST DI INGRESSO FISICA 2010 G. Selvaggi, R. Stella Dipartimento Interateneo di fisica di Fisica 3 marzo 2010
ESEMPI DI TEST DI INGRESSO FISICA 2010 G. Selvaggi, R. Stella Dipartimento Interateneo di fisica di Fisica 3 marzo 2010 1 Fisica 1. Un ciclista percorre 14.4km in mezz ora. La sua velocità media è a. 3.6
PROGRAMMI PER GLI ESAMI I PATENTE DE MAESTRI E DELLE MAESTRE DELLE SCUOLE PRIMARIE
Programmi per le Scuole normali e magistrali, e per gli esami di Patente de Maestri e delle Maestre delle Scuole primarie approvati con regio decreto 9 novembre 1861 n. 315 (Raccolta ufficiale delle leggi
Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:
PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando
Rilevazione degli apprendimenti. Anno Scolastico 2012 2013 PROVA DI MATEMATICA. Scuola secondaria di II grado. Classe Seconda Fascicolo 5
Rilevazione degli apprendimenti Anno Scolastico 2012 2013 PROVA DI MATEMATICA Scuola secondaria di II grado Classe Seconda Fascicolo 5 Spazio per l etichetta autoadesiva ISTRUZIONI Troverai nel fascicolo
Rilevazione degli apprendimenti. Anno Scolastico 2012 2013 PROVA DI MATEMATICA. Scuola secondaria di II grado. Classe Seconda Fascicolo 1
PROVA DI MATEMATICA - Scuola Secondaria di II grado - Classe Seconda Rilevazione degli apprendimenti Anno Scolastico 2012 2013 PROVA DI MATEMATICA Scuola secondaria di II grado Classe Seconda Fascicolo
Esempio di test di ingresso per i Corsi di Laurea della classe L-31 Scienze e tecnologie informatiche
Esempio di test di ingresso per i Corsi di Laurea della classe L-31 Scienze e tecnologie informatiche Il tempo a disposizione per la risoluzione dei quesiti è di 90 minuti. Il test si ritiene superato
PRIMO ESEMPIO DI STUDIO DI UN FENOMENO FISICO: VOGLIAMO STUDIARE IL MOTO DI UNA BICICLETTA (SU CUI C E UNA PERSONA CHE PEDALA).
Grandezze Fisiche PRIMO ESEMPIO DI STUDIO DI UN FENOMENO FISICO: VOGLIAMO STUDIARE IL MOTO DI UNA BICICLETTA (SU CUI C E UNA PERSONA CHE PEDALA). Il MOVIMENTO è collegato allo SPAZIO. Le misure nello SPAZIO
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f
Percorsi di matematica per il ripasso e il recupero
Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado
Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Primaria. Classe Quarta. Codici. Scuola:... Classe:..
Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Primaria Classe Quarta Codici Scuola:..... Classe:.. Studente:. Spazio per l etichetta
GRANDEZZE FISICHE (lunghezza, area, volume)
DISPENSE DI FISICA LA MISURA GRANDEZZE FISICHE (lunghezza, area, volume) Misurare significa: confrontare l'unità di misura scelta con la grandezza da misurare e contare quante volte è contenuta nella grandezza.
Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa
Master della filiera cereagricola Giovanni Di Bartolomeo Stefano Papa Facoltà di Agraria Università di Teramo Impresa e mercati Parte prima L impresa L impresa e il suo problema economico L economia studia
Elenco Ordinato per Materia Chimica
( [B,25404] Perché le ossa degli uccelli sono pneumatiche, cioè ripiene di aria? C (A) per consentire i movimenti angolari (B) per immagazzinare come riserva di ossigeno X(C) per essere più leggere onde
La Minimizzazione dei costi
La Minimizzazione dei costi Il nostro obiettivo è lo studio del comportamento di un impresa che massimizza il profitto sia in mercati concorrenziali che non concorrenziali. Ora vedremo la fase della minimizzazione
CAPITOLO VII USO DELLA CARTA TOPOGRAFICA
CAPITOLO VII USO DELLA CARTA TOPOGRAFICA LA CARTA TOPOGRAFICA 88. La carta topografica è una rappresentazione grafica di una parte più o meno ampia della superficie terrestre in una determinata scala.
La misura. Rita Fazzello
1 Il significato di misura In questa unità riprenderemo le nozioni riguardanti le grandezze e le loro misure, che certamente ricorderai dalla scuola primaria. Il termine grandezza indica tutto ciò che
Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2002 2003 PROVA DI MATEMATICA. Scuola Secondaria Superiore.
Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico Progetto Pilota Valutazione della scuola italiana Anno Scolastico
Giuseppe Ruffo. Fisica: lezioni e
Giuseppe Ruffo Fisica: lezioni e problemi Unità A2 - La rappresentazione di dati e fenomeni 1. Le rappresentazioni di un fenomeno 2. I grafici cartesiani 3. Le grandezze direttamente proporzionali 4. Altre
G. Pettarin ECDL Modulo 3: Word 84
G. Pettarin ECDL Modulo 3: Word 84 La scheda vai a La scheda Vai è probabilmente la meno utilizzata delle tre: permette di spostarsi in un certo punto del documento, ad esempio su una determinata pagina
ESAME DI STATO PROVA NAZIONALE
Ministero della Pubblica Istruzione ESAME DI STATO Anno Scolastico 2007 2008 PROVA NAZIONALE Scuola Secondaria di I grado Classe Terza Classe:.. Studente:. Fascicolo 1 Istituto Nazionale per la Valutazione
Kangourou Italia Gara del 21 marzo 2013 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado
Kangourou Italia Gara del 21 marzo 2013 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Il numero 200013 2013
I Giochi di Archimede -- Soluzioni triennio 21 novembre 2007
PROGETTO OLIMPIDI DI MTEMTI U.M.I. UNIONE MTEMTI ITLIN MINISTERO DELL PULI ISTRUZIONE SUOL NORMLE SUPERIORE I Giochi di rchimede -- Soluzioni triennio 1 novembre 007 Griglia delle risposte corrette Problema
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004
ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e
PROVA DI MATEMATICA. Scuola Primaria. Classe Quinta. Rilevazione degli apprendimenti INVALSI. Anno Scolastico 2009 2010
Ministero dell Istruzione dell Università e della Ricerca INVALSI Istituto nazionale per la valutazione del sistema educativo di istruzione e di formazione PROVA DI MATEMATICA - Scuola Primaria - Classe
I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno
Kangourou Italia Gara del 21 marzo 2002 Categoria Cadet Per studenti di terza media e prima superiore Regole: La prova è individuale. Ogni tipo di calcolatrice è vietato Vi è una sola risposta esatta per
Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ;
Primo anno Secondo anno Terzo anno Primo anno MATEMATICA Scuola dell Infanzia Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; legge
Galileo e il piano inclinato
tradizione e rivoluzione nell insegnamento delle scienze Istruzioni dettagliate per gli esperimenti mostrati nel video Galileo e il piano inclinato prodotto da Reinventore con il contributo del MIUR per
Parte Seconda La Misura
Il procedimento di misura è uno dei procedimenti fondamentali della conoscenza scientifica in quanto consente di descrivere quantitativamente una proprietà di un oggetto o una caratteristica di un fenomeno.
a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.
1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità
Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia
Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia L'educazione matematica ha il compito di avviare l'alunno verso una maggiore consapevolezza e padronanza del pensiero
ISTITUZIONE SCOLASTICA Via Tuscolana, 208 - Roma Sede associata Liceo-Ginnasio ''B.Russell" Verifica sommativa di Fisica
ISTITUZIONE SCOLASTICA Via Tuscolana, 208 - Roma Sede associata Liceo-Ginnasio ''B.Russell" Verifica sommativa di Fisica Questionario a risposta multipla Prova di uscita di Fisica relativa al modulo DESCRIZIONE
PROVA DI MATEMATICA. Scuola Primaria. Classe Quinta. Rilevazione degli apprendimenti. Anno Scolastico 2011 2012
Ministero dell Istruzione dell Università e della Ricerca Rilevazione degli apprendimenti Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Primaria Classe Quinta Spazio per l etichetta autoadesiva
INVALSI. C l. Ministero dell Istruzione dell Università e della Ricerca
V MATEMATICA_COP_Layout 1 15/03/11 08:15 Pagina 2 Ministero dell Istruzione dell Università e della Ricerca INVALSI Istituto nazionale per la valutazione del sistema educativo di istruzione e di formazione
Guardiamo ora però la cosa da un altro punto di vista analizzando il seguente grafico a forma di torta. La torta in 5 parti
L EQUIVALENZA FRA I NUMERI RAZIONALI (cioè le frazioni), I NUMERI DECIMALI (quelli spesso con la virgola) ED I NUMERI PERCENTUALI (quelli col simbolo %). Ora vedremo che ogni frazione (sia propria, che
Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte
Competenza chiave europea: MATEMATICA Scuola Primaria DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte TAB. A TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE al termine della Scuola Primaria
GIOCHI D AUTUNNO 2003 SOLUZIONI
GIOCHI D AUTUNNO 2003 SOLUZIONI 1) MARATONA DI MATHTOWN Pietro arriva alle 16.56, Renato alle 17.01, Desiderio alle 16.54 e Angelo alle 17.04. L ultimo ad arrivare è Angelo che arriva alle 17.04 2) PARI
Sistemi Di Misura Ed Equivalenze
Sistemi Di Misura Ed Equivalenze (a cura Prof.ssa M.G. Gobbi) Una mamma deve somministrare al figlio convalescente 150 mg di vitamina C ogni giorno. Ha a disposizione compresse da 0,6 g: quante compresse
Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).
Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................
Kangourou Italia Gara del 15 marzo 2001 Categoria Student Per studenti di quarta e quinta superiore
Kangourou Italia Gara del 1 marzo 001 Categoria Student Per studenti di quarta e quinta superiore Regole:! La prova è individuale. E vietato l uso di calcolatrici di qualunque tipo.! Vi è una sola risposta
SIMULAZIONI TEST INVALSI
SIMULAZIONI TEST INVALSI FRAZIONI In figura è rappresentato il gioco del Tangram con i pezzi che lo compongono. A quale frazione dell area del Tangram corrisponde il pezzo colorato in grigio? A. Un settimo
FORMARE COMPETENZE CON LA MATEMATICA
FORMARE COMPETENZE CON LA MATEMATICA marcata esigenza di promuovere nella formazione scolastica vere e proprie competenze e non solo conoscenze e abilità. Sembrerebbe che il valore educativo della matematica
Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile
Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione
Quale numero riportato sulla piantina identifica il Partenone? A. 19 B. 17 C. 14 D. 1
E1. L immagine qui sotto è una ricostruzione dell Acropoli di Atene. L edificio indicato con P è il Partenone, tempio dedicato alla dea Atena. Osserva ora questa piantina dell Acropoli: Quale numero riportato
Le scale di riduzione
Le scale di riduzione Le dimensioni di un oggetto, quando sono troppo grandi perché siano riportate sul foglio da disegno, si riducono in scala. Scala 1 a 200 (si scrive 1 : 200) rappresenta una divisione.
ESERCIZI CINEMATICA IN UNA DIMENSIONE
ESERCIZI CINEMATICA IN UNA DIMENSIONE ES. 1 - Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l altro rispettivamente alla velocità costante di v! = 50,00 km/h e v 2 = 100,00 km
LE FUNZIONI MATEMATICHE
ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante
Basi di matematica per il corso di micro
Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione
SERVIZIO NAZIONALE DI VALUTAZIONE 2010 11
SERVIZIO NAZIONALE DI VALUTAZIONE 2010 11 Rapporto tecnico sulle caratteristiche delle prove INVALSI 2011 Scuola secondaria di secondo grado classe II MATEMATICA Domanda D1 item a D1. Nella tabella che
Blocco_A_2014 pag. 1
Blocco_A_2014 pag. 1 D1. Quattro amiche devono eseguire la seguente moltiplicazione: 25 (-30) Per trovare il risultato ognuna svolge il calcolo in modo diverso. Chi ha svolto il calcolo in modo NON corretto?
Matematica e Statistica I Anno Accademico 2009-2010 Foglio di esercizi settimana 2
Matematica e Statistica I Anno Accademico 9- Foglio di esercizi settimana Funzioni di variabile reale: modelli, grafici, composizione, invertibilità; relazioni lineari. ESERCIZIO. In una città sono stati
Lezione 14: L energia
Lezione 4 - pag. Lezione 4: L energia 4.. L apologo di Feynman In questa lezione cominceremo a descrivere la grandezza energia. Per iniziare questo lungo percorso vogliamo citare, quasi parola per parola,
Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto
Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Carissimi, eccovi gli argomenti trattati in quest anno scolastico. Ti servono quale ripasso!!!se qualcosa non fosse chiaro batti
Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.
Le equazioni Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche,
1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica
A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta
Ripasso pre-requisiti di scienze per gli studenti che si iscrivono alle classi prime
Ripasso pre-requisiti di scienze per gli studenti che si iscrivono alle classi prime Per seguire proficuamente i corsi di scienze della scuola superiore devi conoscere alcune definizioni e concetti di
LE FORME GEOMETRICHE...TANTE SCATOLE...
LE FORME GEOMETRICHE...TANTE SCATOLE... INSEGNANTI: SIMONA MINNUCCI MICHELA BASTIANI ANNO SCOLASTICO 2011-2012 CLASSE: SECONDA TEMPI: GENNAIO-GIUGNO OBIETTIVO FORMATIVO ESPLORARE LA REALTÀ ATTRAVERSO ESPERIENZE
Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo.
Febbraio 1. Un aereo in volo orizzontale, alla velocità costante di 360 km/h, lascia cadere delle provviste per un accampamento da un altezza di 200 metri. Determina a quale distanza dall accampamento
Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE. Operare con i numeri
COMPETENZA CHIAVE MATEMATICA Fonte di legittimazione Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE L alunno utilizza il calcolo scritto e mentale con i numeri
SISTEMA INTERNAZIONALE DI UNITÀ
LE MISURE DEFINIZIONI: Grandezza fisica: è una proprietà che può essere misurata (l altezza di una persona, la temperatura in una stanza, la massa di un oggetto ) Misurare: effettuare un confronto tra
1) Due grandezze fisiche si dicono omogenee se:
1) Due grandezze fisiche si dicono omogenee se: A. Si possono moltiplicare tra loro B. Si possono dividere tra loro C. Ci possono sommare tra loro D. Sono divisibili per uno stesso numero 2) Un blocchetto
Kangourou Italia Gara del 15 marzo 2007 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria
Testi_07.qxp 16-04-2007 12:02 Pagina 5 Kangourou Italia Gara del 15 marzo 2007 Categoria Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Osserva
Sistemi di forze: calcolo grafico
UNTÀ D3 Sistemi di forze: calcolo grafico TEOA Uso del CAD nei procedimenti grafici 2 appresentazione grafica dei vettori 3 Poligono delle forze 4 Poligono delle successive risultanti 5 Poligono funicolare
PROGRAMMAZIONE di MATEMATICA CLASSE PRIMA
PROGRAMMAZIONE di MATEMATICA 1.NUMERI CLASSE PRIMA Comprende il significato Comprendere il significato Insiemi numerici NQZ Utilizzare le tecniche e le procedure del calcolo aritmetico e algebrico rappresentandole
Grandezze scalari e vettoriali
Grandezze scalari e vettoriali 01 - Grandezze scalari e grandezze vettoriali. Le grandezze fisiche, gli oggetti di cui si occupa la fisica, sono grandezze misurabili. Altri enti che non sono misurabili
Andrea Pagano, Laura Tedeschini Lalli
3.5 Il toro 3.5.1 Modelli di toro Modelli di carta Esempio 3.5.1 Toro 1 Il modello di toro finito che ciascuno può costruire è ottenuto incollando a due a due i lati opposti di un foglio rettangolare.
Prova di Matematica. www.matematicamente.it Prove Invalsi Secondaria di primo grado classe III 2009-2010
Prova di Matematica D. Su una confezione di succo di frutta da 250 ml trovi le seguenti informazioni nutrizionali: INFORMAZIONI NUTRIZIONALI Valori medi per 00 ml Valore energetico 54 Kcal 228 kj Proteine
5A un multiplo di 3 5B una potenza di 5 5C divisibile per 7 e per 11 5D. D. 6 Le soluzioni dell equazione 1 + 3x 2x 2 = 0 sono 3 ± 17 6D 3 ± 17
UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA 0 Settembre 008 Spnz0000 Ingegneria - Scienze Matematiche Fisiche Naturali - Scienze Statistiche Test di Matematica D. Il numero è uguale a A 5 B 5 C D 0 0 D.
GRUPPO DI LAVORO DI PARMA
ATTIVITÀ DI ANALISI QUESITI INVALSI GRUPPO DI LAVORO DI PARMA Coordinamento prof. P. VIGHI ANALISI QUESITI RELATIVI A: FASCICOLO somministrato nella 2^ classe PRIMARIA a.s. 2013-2014 FASCICOLO somministrato
Modulo didattico sulla misura di grandezze fisiche: la lunghezza
Modulo didattico sulla misura di grandezze fisiche: la lunghezza Lezione 1: Cosa significa confrontare due lunghezze? Attività n 1 DOMANDA N 1 : Nel vostro gruppo qual è la matita più lunga? DOMANDA N
Kangourou Italia Gara del 19 marzo 2009 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria
Testi_09.qxp 15-04-2009 20:23 Pagina 5 Kangourou Italia Gara del 19 marzo 2009 Categoria Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Hai
MODULO 1 Le grandezze fisiche
MODULO 1 Le grandezze fisiche Quante volte, ogni giorno, utilizziamo il metro, i secondi, i kilogrammi Ma forse non sappiamo quante menti di uomini ingegnosi hanno dato un senso a quei simboli per noi
Geometria analitica di base (prima parte)
SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una
FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO. Si chiama funzione lineare (o funzione affine) una funzione del tipo = +
FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO Si chiama funzione lineare (o funzione affine) una funzione del tipo = + dove m e q sono numeri reali fissati. Il grafico di tale funzione è una retta, di cui