Esercizio 1 Risolvere l equazione di Schrödinger per una particella unidimensionale in presenza di un potenziale periodico:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizio 1 Risolvere l equazione di Schrödinger per una particella unidimensionale in presenza di un potenziale periodico:"

Transcript

1 Esercizio 1 Risolvere l equazione di Schrödinger per una particella unidimensionale in presenza di un potenziale periodico: H P + V (x, V (x + L V (x. (1 m Hψ Eψ. ( Soluzione. In rappresentazione {X } l equazione agli autovalori ( si scrive ossia d m dx ψ E(x + V (xψ E (x Eψ E (x d dx ψ E(x + m [E V (x] ψ E(x 0. (3 Essendo questa una equazione differenziale del secondo ordine in x, allora esistono in generale due soluzioni indipendenti. Risolviamola per 0 x L. Consideriamo due soluzioni u(x e v(x tali che u(0 1 u (0 0 v(0 0 v (0 1 (4 Supponiamo di conoscere la soluzione di (3 tra 0 ed L. Siano allora u(l a v(l c u (L b v (L d In L x L la soluzione è la stessa di quella per 0 x L, ma le condizioni iniziali sono diverse, dunque u(x + L au(x + bv(x v(x + L cu(x + dv(x (5 di conseguenza, iterando il procedimento, posso determinare completamente le soluzioni u(x e v(x x R. In notazione matriciale, è possibile scrivere le (5 come ( u(x + L v(x + L ( a b c d ( u(x v(x. (6 Ma noi non sappiamo ancora se queste soluzioni sono accettabili. Per vederlo, dobbiamo valutarne il comportamento all infinito. Per valutare le soluzioni dell equazione all infinito, consideriamo ϕ ± (x tali che ϕ ± (x + L ω ± ϕ ± (x 1

2 ossia, in forma matriciale, ( ϕ+ (x + L ϕ (x + L ( ω+ 0 0 ω ( ϕ+ (x ϕ (x. (7 Per eseguire la diagonalizzzione, è necessario trovare le radici dell equazione ( a ω b det 0 c d ω ossia di Prima di continuare ricordiamo il ω (a + dω + (ad bc 0. (8 Teorema 1 (del Wronskiano Date due soluzioni u(x e v(x della (3, il Wronskiano è definito da W [u, v](x u(xv (x v(xu (x. Il teorema del Wronskiano afferma che W (x non dipende da x. Dimostrazione d W (x dx u (xv(x v (x u(x e usando la (3 per u e v, si ottiene d W (x 0. dx Essendo il valore del wronskiano indipendente da x, allora è possibile valutarlo in x 0, ottenendo W [u, v] 1. Osservando che ad bc u(lv (L v(lu (L W [u, v](l 1 allora l equazione (8 diventa Posto u(l + v (L, otteniamo le radici Sono allora possibili due casi: 1.. ω (u(l + v (Lω (9 ω ± ± 4 1. (10 > 1. In questo caso esistono due soluzioni reali e tali che ω +ω 1, che dunque possono essere rappresentate come ω ± e ±αl, α R, α > 0. < 1. Le soluzioni sono allora due numeri complessi coniugati ω ± e ±ikl.

3 Nel primo caso, la diagonalizzazione porta a ϕ ± (x + L e ±αl ϕ ± (x ed iterando il procedimento ad nl x (n + 1L, n N, si ottiene ϕ ± (x + nl e ±αnl ϕ ± (x. (11 Questo vale chiaramente anche per n Z, ossia per n < 0. Si vede dunque che queste soluzioni sono inaccettabili: per n, la soluzione e αnl diverge, mentre per n diverge la soluzione e αnl. Nel secondo caso, invece, ripetendo il ragionamento di estensione delle soluzioni, si ottiene ϕ ± (x + nl e ±iknl ϕ ± (x (1 e sono accettabili in entrambi i limiti n ±. Di conseguenza, esistono soluzioni accettabili solo se < 1. Siccome avevamo posto u(l + v (L, con u, v soluzioni dell equazione di Schrödinger, allora la dipendenza delle soluzioni dall energia E fa sì che anche sia funzione dell energia. Questo significa che esistono dei valori di energia che non sono permessi. Infatti gli unici valori di energia permessi sono quelli tali che (E < 1. Come vedremo nel prossimo esempio, questo spiega lo spettro a bande dei solidi, poiché la struttura atomica di un cristallo è costituita da ioni quasi fermi che generano un potenziale periodico tridimensionale. Esempio 1 Risolvere l esercizio precedente in 0 x L per un potenziale della forma { V0 0 x a V (x (13 0 a x L Soluzione. Chiamiamo I la regione 0 x a e II la regione a x L. In I l equazione di Schrödinger (3 si scrive d dx ψ E(x + k ψ E (x 0, (14 dove è stato posto k m(e + V 0 (15 3

4 e nella regione II dove d dx ψ E(x + γ ψ E (x 0, (16 γ me. (17 Nella regione I, le soluzioni soddisfacienti le condizioni iniziali (4 sono u(x cos(kx v(x 1 sin(kx (18 k mentre, nella regione II, le soluzioni sono delle combinazioni lineari u(x α cosh(γx + β sinh(γx v(x δ cosh(γx + ɛ sinh(γx (19 dove le costanti α, β si ottengono imponendo le condizioni di raccordo per u(x e γ, δ si ottengono dalle condizioni di raccordo per v(x. Si ha: che risolte forniscono: cos(ka α cosh(γa + β sinh(γa (0 k sin(ka γ[α sinh(γa + β cosh(γa] (1 1 sin(ka δ cosh(γa + ɛ sinh(γa k ( cos(ka γ[δ sinh(γa + ɛ cosh(γx] (3 α cos(ka cosh(γa + k sin(ka sinh(γa (4 γ β sinh(γa cos(ka k sin(ka cosh(γa (5 γ δ 1 k sin(ka cosh(γa 1 sinh(γa cos(ka (6 γ ɛ 1 k sinh(γa sin(ka + 1 cos(ka cosh(γa. (7 γ Sostituendo in u(l + v (L, si ottiene ( γ cos(ka cosh γ(l a + k k sin(ka sinh γ(l a. (8 γ I valori permessi di energia permessi sono quelli tali che < 1. Poiché la regione in cui ciò avviene tipicamente non è connessa, allora lo spettro viene detto a bande. 4

5 Esercizio (Regola d oro di Fermi Determinare la probabilità di transizione per unità di tempo da uno stato a ad uno stato b al primo ordine perturbativo di un sistema per cui si suppone di aver risolto l equazione agli autovalori per l hamiltoniana del sistema non perturbato, avente a e b come autostati. Soluzione. I tipici problemi in cui bisogna valutare la probabilità di transizione per unità di tempo tra due stati sono quelli di scattering. Per descrivere un processo di scattering, si considera una parte incidente (solitamente un fascio di particelle oppure un onda elettromagnetica che interagisce con un sistema bersaglio che viene diffuso. L elemento base per la descrizione di processi di questo tipo è la probabilità di transizione dallo stato del sistema bersaglio prima dell urto a quello dopo l urto. Poiché è possibile supporre che all inizio del processo la parte incidente sia molto lontana dal bersaglio, allora l hamiltoniana per tale parte incidente sarà quella libera nel continuo. Siccome inoltre gli stati iniziali e finali sono nel continuo, bisognerebbe considerare dei pacchetti d onde per descrivere la diffusione. Per evitare le difficoltà di calcolo che questo metodo porterebbe, tuttavia, si utilizza l estensione adiabatica della carica. Sia H 0 l hamiltoniana del sistema imperturbato; supponiamo risolta l equazione agli autovalori H 0 E E E (9 e supponiamo che il sistema sia inizalmente nello stato a. Tenendo conto dell interazione con la parte incidente, l hamiltoniana del sistema diventa H H 0 + V. L estensione adiabatica della carica consiste nel porre 1 V (t { V ti t t f 0 altrove (30 e nel far tendere t i e t f + al risultato ottenuto. Questo porta al risultato corretto (al primo ordine perturbativo, la Regola d oro di Fermi. Calcoliamo la probabilità di transizione W a b al primo ordine nelle perturbazioni. Questo significa che, nello sviluppo dell operatore di evoluzione temporale u(t, t 0 u 0 (t, t 0 + u (n (t, t 0 (31 1 si ometterà, per semplicità di notazione, di scrivere la dipendenza del potenziale dalle coordinate. 5 n1

6 si considera solamente il primo termine: u (1 (t, t 0 1 i t dove t 0 t i t 1 t f t. Allora si deve calcolare t 0 dt 1 u 0 (t, t 1 V (t 1 u 0 (t 1, t 0, (3 W a b (t, t 0 b u (1 (t, t 0 a ; (33 dal confronto di (3 e di (33 si osserva che bisogna calcolare la quantità b u 0 (t, t 1 V (t 1 u 0 (t 1, t 0 a b e i (t t 1 E b V (t 1 e i (t 1 t 0 E a a e i t 0 E a e i t E b e i (E b Ea t 1 b V a con b V a 0 solo se t i t t f ; dunque l integrale in (3 deve essere eseguito solamente tra t i e t f. Poniamo τ t f t i e ω ba E b E a. (34 Allora possiamo scrivere W a b (t, t 0 1 tf i e i t 0 E a e i t E b dt 1 e i (E b Ea t 1 b V a t i 1 b V e iω bat f e iω ba t i a i ω ba 1 b V a e iω (t f +t i e iω ba τ e iω ba τ ba i ω ba 1 b V a e iω (t f +t i sin ( τ ω ba ba ω ba 1 ( b V sin τ ω ba a Per calcolare la probabilità di transizione per unità di tempo w a b, bisogna eseguire il limite t i t f + in modo da recuperare V costante t R ( spegniamo la carica. Allora si ha W a b (τ w a b lim. (35 τ τ 6 ( ωba

7 Lemma sin S (xτ lim π δ(x (36 τ x τ dove il limite si intende eseguito nel senso delle distribuzioni. Dimostrazione. Per eseguire il limite nel senso delle distribuzioni, bisogna applicare una funzione di prova f S a (36: lim τ dx sin (xτ x τ f(x (37 e bisogna mostrare che questo è uguale a π f(0. Posto y xτ, l espressione precedente diventa lim dy sin (y ( y f c f(0 (38 τ y τ perché nel limite il supporto di f diventa l origine. Bisogna dunque calcolare il valore della costante c dy sin y. (39 y Per fare ciò, osserviamo che e analogamente di conseguenza dy sin y 1 y 4 da cui c π. dp 1 eipy 1 ( e iy e iy sin y iy y dq 1 e iqy 1 ( e iy e iy sin y iy y 1 4 dy dp 1 4 π π Osserviamo che, nel nostro caso, x ω ba / dp dq e i(p qy dq π δ(p q 7

8 A questo punto possiamo scrivere ossia, ricordando che δ ( ω ba w a b π b V a δ ( ωba ( δ Eb E a δ(eb E a 3, (40 w a b π b V a δ (E b E a, (41 che è la Regola d oro di Fermi. Osserviamo che la δ (E b E a rappresenta la densità della degenerazione in energia: nel limite τ 0, per la conservazione dell energia non possono avvenire transizioni se E b E a. Esempio Supponiamo di avere una perturbazione armonica per un sistema: H H 0 + V (t (4 con V (t Be iωt + B e iωt (43 (si osserva che V V è hermitiano. Calcolare la probabilità di transizione per unità di tempo tra lo stato iniziale a e lo stato b. Soluzione. Supponiamo che V (t agisca nell intervallo di tempo 0 t T : ad esempio un onda monocromatica che interagisce con il sistema nell intervallo di tempo tra 0 e T. In tal caso la probabilità di transizione dallo stato a allo stato b è W a b b 1 T (T t Eat i E dt e b i V (t e a i 0 b 1 T dt e i E b t V (t e i Eat a i 0 T i b B a dt e i(ωba+ωt + 1 T 0 i b B a dt e i(ω ba ωt 0 ( 1 e i(ω i b B a ba +ωt ( e i(ω ba ωt 1 i b B a i (ω ba+ω 3 una delle proprieta della δ di Dirac è che δ(ax 1 a δ(x. 8 i (ω ba ω

9 1 b B a e i(ω sin ( (ω ba+ω T ba + ω T (ω ba +ω + b B a e i(ω sin ( (ω ba ω T ba ω T (ω ba ω Osserviamo che la funzione sin(ω T ω ha un massimo pronunciato quando ω 0. Di conseguenza, nell ultima espressione, il primo addendo costituisce il termine dominante quando ω ba + ω 0, ossia quando E b E a + ω 0. Analogamente, il secondo addendo è il termine dominante quando ω ba ω 0, ossia quando E b E a ω 0. Se V (t rappresenta un onda elettromagnetica, nel primo caso si ha l emissione stimolata di un fotone di energia ω E a E b, mentre nel secondo caso si parla di assorbimento di un fotone di energia ω E b E a. Poiché le energie alle quali questi fenomeni avvengono con maggiore probabilità sono prossime a quelle del fotone assorbito od emesso, si parla, in questi casi, di formule di risonanza. Siccome le due predominanze caratteristiche dei processi di assorbimento e di emissione sono ben distinte, allora, in prima approssimazione, è possibile trascurare i termini di interferenza per W a b. Dunque l espressione per la probabilità di transizione per unità di tempo diventa W a b (T w a b lim T 0 T 1 lim ( b B a sin (ω ba + ω T ( T 0 + (ωba +ω T + 1 lim ( b B a sin (ω ba ω T ( T 0 (ωba ω T π ( b B a δ (E b E a + ω + b B a δ (E b E a ω ossia w a b π ( b B a δ (E b E a + ω + b B a δ (E b E a ω (44 che è la regola d oro di Fermi. Infatti, siccome, a seconda della ω, è possibile considerare solamente emissione od assorbimento, allora la regola d oro per emissione coincide con il primo addendo di (44, mentre la regola d oro per l assorbimento coincide con il secondo addendo di tale espressione. 9 +

10 10

H = H 0 + V. { V ti t t f 0 altrove

H = H 0 + V. { V ti t t f 0 altrove Esercizio 1 (Regola d oro di Fermi Determinare la probabilità di transizione per unità di tempo da uno stato a ad uno stato b al primo ordine perturbativo di un sistema per cui si suppone di aver risolto

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. PRIMA PARTE anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. PRIMA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA PRIMA PARTE anno accademico 015-016 (1) Si consideri una particella che può colpire uno schermo diviso in tre zone, indicate dai ket 1,, 3, e si supponga

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 2011-2012 Si consideri un sistema che può trovarsi in uno di tre stati esclusivi 1, 2, 3, e si supponga che esso si trovi

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 007-008 () Sia dato un sistema che può trovarsi in tre stati esclusivi,, 3, e si supponga che esso si trovi nello stato

Dettagli

Compito di recupero del giorno 27/11/2015

Compito di recupero del giorno 27/11/2015 Compito di recupero del giorno 27/11/2015 Esercizio n. 1 Una particella di massa m e spin 1/2 si muove in due dimensioni nel piano xy ed è soggetta alla seguente Hamiltoniana: H = 1 2m (p2 x + p 2 y) +

Dettagli

NOTE SU VARIABILI AZIONE ANGOLO E TEORIA PERTURBATIVA. Armando Bazzani Dipartimento di Fisica e Astranomia - Meccanica Analitica

NOTE SU VARIABILI AZIONE ANGOLO E TEORIA PERTURBATIVA. Armando Bazzani Dipartimento di Fisica e Astranomia - Meccanica Analitica NOTE SU VARIABILI AZIONE ANGOLO E TEORIA PERTURBATIVA Armando Bazzani Dipartimento di Fisica e Astranomia - Meccanica Analitica 9 Ottobre 13 Consideriamo un sistema dinamico unidimensionale con Hamiltoniana

Dettagli

Stati Coerenti. Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana. p = i d.

Stati Coerenti. Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana. p = i d. 1 Stati Coerenti Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana H = 1 m p + 1 m ω x (1) Per semplicitá introduciamo gli operatori autoaggiunti adimensionali

Dettagli

I POSTULATI DELLA MECCANICA QUANTISTICA

I POSTULATI DELLA MECCANICA QUANTISTICA 68 I POSTULATI DELLA MECCANICA QUANTISTICA Si intende per postulato una assunzione da accettarsi a priori e non contraddetta dall esperienza. I postulati trovano la loro unica giustificazione nella loro

Dettagli

Teoria delle Perturbazioni (aspetti elementari)

Teoria delle Perturbazioni (aspetti elementari) Teoria delle Perturbazioni (aspetti elementari) Corso MMMQ UNIMI (G. Gaeta, a.a. 2018/19) 3 Novembre 2018 Questa breve dispensa discute gli aspetti più elementari della teoria delle perturbazioni in Meccanica

Dettagli

L equazione di Schrödinger

L equazione di Schrödinger 1 Forma dell equazione L equazione di Schrödinger Postulato - ψ r, t 0 ) definisce completamente lo stato dinamico del sistema al tempo t 0. L equazione che regola l evoluzione di ψ r, t) deve essere:

Dettagli

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini Istituzioni di Matematiche, Integrali fratti corso di laurea in Scienze geologiche. Mauro Costantini tipo: Il nostro obiettivo è studiare gli integrali (indefiniti e definiti delle funzioni razionali,

Dettagli

Effetto Zeeman. p q c A) 2. i h ψ t. = Hψ (2)

Effetto Zeeman. p q c A) 2. i h ψ t. = Hψ (2) Effetto Zeeman Effetto Zeeman normale La hamiltoniana di una particella in presenza di un campo elettromagnetico, descritto dal potenziale vettore A e dal potenziale scalare Φ é H = 2M e l euazione di

Dettagli

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 8. I decadimenti γ

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 8. I decadimenti γ Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 8 I decadimenti γ Decadimenti γ (Cenni da cap. 9 del Krane) I decadimenti γ consistono nel passaggio di un nucleo da uno stato eccitato

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli

Metodo variazionale e applicazione all atomo di elio

Metodo variazionale e applicazione all atomo di elio Metodo variazionale e applicazione all atomo di elio Descrizione del metodo Il metodo detto variazionale è un metodo approssimato che si usa per ottenere una stima dell energia dello stato fondamentale

Dettagli

Appendice 1 RISONANZE. Istituzioni di Fisica Nucleare e Subnucleare Lezione 6 A. Andreazza - a.a. 2015/16

Appendice 1 RISONANZE. Istituzioni di Fisica Nucleare e Subnucleare Lezione 6 A. Andreazza - a.a. 2015/16 Appendice RISONANZE Istituzioni di Fisica Nucleare e Subnucleare Lezione 6 Generalizzazione a scattering anelastico (Krane.8) Nel caso ci sia la possibilità di assorbimento, questo può venire descritto

Dettagli

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T ANALISI MATEMATICA I, Compito scritto del 5/7/6 Corso di Laurea in Matematica COGNOME e NOME... MATR... 3 4 T Nelle risposte devono essere riportati anche i conti principali e le motivazioni principali.

Dettagli

8π c 3 ν2. dx x 2 /(e x 1) fotoni/m 2 /sec,

8π c 3 ν2. dx x 2 /(e x 1) fotoni/m 2 /sec, Corso di Introduzione alla Fisica Quantistica (f) Prova scritta 8 Giugno 7 - (tre ore a disposizione) Soluzione 1.) Una stazione radio trasmette emettendo una potenza di un kilowatt alla frequenza di 9

Dettagli

Campi conservativi e forme esatte - Esercizi svolti

Campi conservativi e forme esatte - Esercizi svolti Campi conservativi e forme esatte - Esercizi svolti 1) Dire se la forma differenziale è esatta. ω = 2 2 (1 + 2 2 ) 2 d + 2 2 (1 + 2 2 ) 2 d 2) Individuare in quali regioni sono esatte le seguenti forme

Dettagli

PRIMA PARTE anno accademico

PRIMA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA PRIMA PARTE anno accademico 017-018 (1) Si consideri una particella che può colpire uno schermo in cui sono praticate tre fenditure, indicate dai ket

Dettagli

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti Equazioni differenziali del 2 ordine Prof. Ettore Limoli Sommario Equazione differenziale omogenea a coefficienti costanti... 1 Equazione omogenea di esempio... 2 Equazione differenziale non omogenea a

Dettagli

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1 Effetto Stark Studiamo l equazione di Schrödinger per l atomo di idrogeno in presenza di un campo elettrico costante e diretto lungo l asse z, E = E k. La hamiltoniana di Schrödinger per l atomo di idrogeno

Dettagli

Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti

Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Fulvio Bisi Corso di Analisi Matematica A (ca) Università di Pavia Facoltà di Ingegneria 1 ODE lineari del secondo

Dettagli

Analisi Matematica III 04 Novembre In coordinate polari l insieme K è rappresentabile come unione dei seguenti insiemi normali

Analisi Matematica III 04 Novembre In coordinate polari l insieme K è rappresentabile come unione dei seguenti insiemi normali . ( punti) Si determini il valore dell integrale della funzione f(, y) + y, sull insieme di integrazione K {(, y) R : ( ) + y, + (y ) }. In coordinate polari l insieme K è rappresentabile come unione dei

Dettagli

Teoria dello scattering

Teoria dello scattering Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 7 Teoria dello scattering Teoria dello scattering Abbiamo già usato la regola d oro di Fermi per calcolare delle sezioni d urto:

Dettagli

DIFFUSIONE DA UN BERSAGLIO DI MASSA FINITA bozza 0/ DIFFUSIONE DA UN BERSAGLIO DI MASSA FINITA L esperimento Un fascio composto di un grande numero di particelle proiettile di tipo incide su un bersaglio

Dettagli

EQUAZIONE DI SCHRÖDINGER STAZIONARIA: Buche di Potenziale

EQUAZIONE DI SCHRÖDINGER STAZIONARIA: Buche di Potenziale Capitolo 6 EQUAZIONE DI SCHRÖDINGER STAZIONARIA: Buche di Potenziale Consideriamo lo studio di stati stazionari di sistemi elementari. Il sistema più semplice è quello di una particella libera, la cui

Dettagli

Appunti della lezione sulla Equazione Differenziale delle Onde

Appunti della lezione sulla Equazione Differenziale delle Onde Appunti della lezione sulla Equazione Differenziale delle Onde ultima revisione: 21 giugno 2017 In tutti i casi analizzati precedentemente si osserva che le onde obbediscono alla stessa Equazione Differenziale

Dettagli

Esperimenti computazionali con Mathematica: la trasformata di Fourier

Esperimenti computazionali con Mathematica: la trasformata di Fourier Matematica Open Source http://www.extrabyte.info Quaderni di Analisi Matematica 06 Esperimenti computazionali con Mathematica: la trasformata di Fourier Marcello Colozzo 3 0 5 5 0 Ω LA TRASFORMATA DI FOURIER

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA MECCANICA QUANTISTICA anno accademico 2012-2013 (1) Per un sistema n-dimensionale si scrivano: (a) gli elementi di matrice dell operatore posizione x

Dettagli

5.2 Sistemi ONC in L 2

5.2 Sistemi ONC in L 2 5.2 Sistemi ONC in L 2 Passiamo ora a considerare alcuni esempi di spazi L 2 e di relativi sistemi ONC al loro interno. Le funzioni trigonometriche Il sistema delle funzioni esponenziali { e ikx 2π },

Dettagli

Fondamenti di Meccanica Quantistica (Prof. Tarantelli)

Fondamenti di Meccanica Quantistica (Prof. Tarantelli) Fondamenti di Meccanica Quantistica (Prof. Tarantelli) 1 MOTO LINEARE E L OSCILLATORE ARMONICO 2 EQUAZIONE DI SCHRODINGER Equazione di Schrödinger: descrive il comportamento di un insieme di particelle:

Dettagli

Prova Scritta di di Meccanica Analitica

Prova Scritta di di Meccanica Analitica Prova Scritta di di Meccanica Analitica 7 gennaio 015 Problema 1 Un punto di massa unitaria si muove sull asse x soggetto al potenziale V (x) = x e x a) Determinare le posizioni di equilibrio e la loro

Dettagli

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica Esercizi di Fisica Matematica 3, anno 014-015, parte di meccanica hamiltoniana e quantistica Dario Bambusi 09.06.015 Abstract Gli esercizi dei compiti saranno varianti dei seguenti esercizi. Nei compiti

Dettagli

Ingegneria civile - ambientale - edile

Ingegneria civile - ambientale - edile Ingegneria civile - ambientale - edile Analisi - Prove scritte dal 7 Prova scritta del 9 giugno 7 Esercizio Determinare i numeri complessi z che risolvono l equazione Esercizio (i) Posto a n = n i z z

Dettagli

8.1 Problema della diffusione in meccanica quantistica

8.1 Problema della diffusione in meccanica quantistica 8.1 Problema della diffusione in meccanica quantistica Prima di procedere oltre nello studio dell interazione puntuale, in questo paragrafo vogliamo dare un breve cenno alle nozioni di base della teoria

Dettagli

Lezione 11 Funzioni sinusoidali e onde

Lezione 11 Funzioni sinusoidali e onde Lezione 11 Funzioni sinusoidali e onde 1/18 Proprietà delle funzioni seno e coseno sono funzioni periodiche di periodo 2π sin(α + 2π) = sin α cos α + 2π = cos α a Sin a Cos a a a 2/18 Funzione seno con

Dettagli

Analisi 4 - SOLUZIONI (compito del 29/09/2011)

Analisi 4 - SOLUZIONI (compito del 29/09/2011) Corso di laurea in Matematica Analisi 4 - SOLUZIONI compito del 9/09/0 Docente: Claudia Anedda Calcolare, tramite uno sviluppo in serie noto, la radice quinta di e la radice cubica di 9 Utilizzando la

Dettagli

Calcolo delle Differenze

Calcolo delle Differenze Carla Guerrini 1 Calcolo delle Differenze Le differenze finite introdotte nel 17-esimo secolo per il calcolo delle funzioni, si prestano bene ad essere utilizzate in procedimenti e problemi discreti: da

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Antonino Polimeno Università degli Studi di Padova Equazioni differenziali - 1 Un equazione differenziale è un equazione la cui soluzione è costituita da una funzione incognita

Dettagli

SECONDA PARTE anno accademico

SECONDA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA SECONDA PARTE anno accademico 2018-2019 (1) Per un sistema meccanico d-dimensionale determinare: (a) gli elementi di matrice dell operatore posizione

Dettagli

Compitino 1 di Meccanica Quantistica I

Compitino 1 di Meccanica Quantistica I Compitino di Meccanica Quantistica I Facoltà di Scienze, M.F.N., Università degli Studi di Pisa, 5 dicembre 00 (A.A. 0/) (Tempo a disposizione: 3 ore ) Problema. Un sistema a due stati è caratterizzato

Dettagli

Calcolo degli integrali indefiniti

Calcolo degli integrali indefiniti Appendice B Calcolo degli integrali indefiniti Se f è una funzione continua nell intervallo X, la totalità delle sue primitive prende il nome di integrale indefinito della funzione f, o del differenziale

Dettagli

Geometria iperbolica - Primo foglio Andrea Petracci

Geometria iperbolica - Primo foglio Andrea Petracci Geometria iperbolica - Primo foglio Andrea Petracci Esercizio 1. Teorema (Hopf-Rinow). Se M è una varietà riemanniana connessa, allora le seguenti affermazioni sono equivalenti: (1) M è completa con la

Dettagli

Esercitazioni di Meccanica Quantistica I

Esercitazioni di Meccanica Quantistica I Esercitazioni di Meccanica Quantistica I Sistema a due stati Consideriamo come esempio di sistema a due stati l ammoniaca. La struttura del composto è tetraedrico : alla sommità di una piramide con base

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 2013-2014 (1) Si consideri un sistema che può trovarsi in uno di tre stati esclusivi 1, 2, 3, e si supponga che esso si

Dettagli

Esercizio I Sia data una particella libera in tre dimensioni descritta a t = 0 dalla funzione d onda

Esercizio I Sia data una particella libera in tre dimensioni descritta a t = 0 dalla funzione d onda Compito I di MQ. Febbraio 0 Sia data una particella libera in tre dimensioni descritta a t = 0 dalla funzione d onda ψ( x = f(r (r + ix con Hamiltoniana H = µbl y determinare la funzione d onda al tempo

Dettagli

Università degli Studi di Perugia - Corso di Laurea Triennale in Fisica. Corso di. Meccanica Quantistica. Prof. Gianluca Grignani.

Università degli Studi di Perugia - Corso di Laurea Triennale in Fisica. Corso di. Meccanica Quantistica. Prof. Gianluca Grignani. Università degli Studi di Perugia - Corso di Laurea Triennale in Fisica Corso di Prof. Gianluca Grignani Problem Set 6 Problema Si consideri un oscillatore armonico isotropo bidimensionale con Hamiltoniana

Dettagli

ANALISI MATEMATICA II 6 luglio 2010 Versione A

ANALISI MATEMATICA II 6 luglio 2010 Versione A ANALISI MATEMATICA II 6 luglio 2 Versione A Nome Cognome: Matricola Codice corso Docente: Corso di Laurea: Analisi II 75 cr. Analisi D Analisi II V.O. Analisi C es. 23 es. 245 es 24 es. es. 3 pinti b c

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA MECCANICA QUANTISTICA anno accademico 2014-2015 (1) Per un sistema meccanico n-dimensionale si scrivano: (a) gli elementi di matrice dell operatore posizione

Dettagli

1-Forme Differenziali

1-Forme Differenziali 1-Forme Differenziali 30 novembre 2011 1 Definizioni di base Siano n N e A R n un insieme aperto. Con (R n ) denotiamo il duale topologico di R n, cioè l insieme (R n ) = {p : R n R : R-lineari e continue}.

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

MATEMATICA A Commissione Albertini, Mannucci, Motta, Zanella Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

MATEMATICA A Commissione Albertini, Mannucci, Motta, Zanella Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza TEMA ( ) f() = log (determinare il dominio D; calcolare i limiti per che tende agli estremi finiti o infiniti z 4 + (3 + 6i)z + 5 + i = 0. ( + 3 ) α α (log + log + ) d. y = e y, y() = α. TEMA ( ) f() =

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 1 1 / 30 Formulazione del problema In generale

Dettagli

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE. Esercizi Esercizio. Scrivere la forma algebrica, la forma trigonometrica e quella esponenziale dei seguenti numeri complessi: z = + i, z = (cos( π ) + i sin(π

Dettagli

La trasformata di Laplace

La trasformata di Laplace La trasformata di Laplace (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Universitá di Trento anno accademico 2005/2006 La trasformata di Laplace 1 / 34 Outline 1 La trasformata di

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Generalità sulle equazioni differenziali ordinarie del primo ordine Si chiama equazione differenziale ordinaria[ ] del primo ordine un equazione nella quale compare y = y e la sua

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Sezione d urto classica

Sezione d urto classica Capitolo Sezione d urto classica In meccanica classica, ogni particella del fascio incidente segue una traiettoria ben definita sotto l azione del potenziale. Se V (r) è centrale, il momento angolare è

Dettagli

Corso:Fisica moderna/calore specifico dei solidi/modello di Debye

Corso:Fisica moderna/calore specifico dei solidi/modello di Debye 1 / 5 Corso:Fisica moderna/calore specifico dei solidi/modello di Debye Debye riprende l intero modello di Planck per il corpo nero: non solo la quantizzazione dell energia ma anche l idea che vi siano

Dettagli

Analisi Matematica 1 Soluzioni prova scritta n. 1

Analisi Matematica 1 Soluzioni prova scritta n. 1 Analisi Matematica Soluzioni prova scritta n Corso di laurea in Matematica, aa 008-009 5 giugno 009 Sia a n la successione definita per ricorrenza: a n+ 3 a n a 3 n, a 3 a n+ 3 a n a 3 n, a 3 a n+ 3 a

Dettagli

METODI MATEMATICI PER L INGEGNERIA - A.A Primo appello del 9/6/2010. e 2ix dx = e ix 2 dx = t e it dt = [ it e it e it ] π/2

METODI MATEMATICI PER L INGEGNERIA - A.A Primo appello del 9/6/2010. e 2ix dx = e ix 2 dx = t e it dt = [ it e it e it ] π/2 METODI MATEMATICI PER L INGEGNERIA - A.A. 29- Primo appello del 9/6/2 Risolvere i seguenti esercizi, spiegando il procedimento usato. Calcolare la proiezione in L 2 π 2, π 2 di xt = t sul sottospazio generato

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

EQUAZIONI LINEARI DEL SECONDO ORDINE

EQUAZIONI LINEARI DEL SECONDO ORDINE EQUAZIONI LINEARI DEL SECONDO ORDINE Umberto Marconi Dipartimento di Matematica Università di Padova 1 Considerazioni generali Nel seguito le funzioni sono continue (e derivabili quanto basta) su un intervallo

Dettagli

La struttura elettronica degli atomi

La struttura elettronica degli atomi 1 In unità atomiche: a 0 me 0,59A unità di lunghezza e H 7, ev a H=Hartree unità di energia L energia dell atomo di idrogeno nello stato fondamentale espresso in unità atomiche è: 4 0 me 1 e 1 E H 13,

Dettagli

Problemi in una dimensione spettro discreto

Problemi in una dimensione spettro discreto Problemi in una dimensione spettro discreto Corso di Fisica Matematica 3, a.a. 017-018 Dipartimento di Matematica, Università di Milano 5/4/018 In questa dispensa consideriamo alcuni aspetti (molto generali)

Dettagli

Vettori applicati. Capitolo Richiami teorici. Definizione 1.1 Un sistema di vettori applicati Σ è un insieme

Vettori applicati. Capitolo Richiami teorici. Definizione 1.1 Un sistema di vettori applicati Σ è un insieme Capitolo 1 Vettori applicati 1.1 Richiami teorici Definizione 1.1 Un sistema di vettori applicati Σ è un insieme {(P i,v i ), P i E, v i V, i = 1,...,N}, (1.1) dove P i è detto punto di applicazione del

Dettagli

Trasformata di Fourier e applicazioni

Trasformata di Fourier e applicazioni Trasformata di Fourier e applicazioni Docente:Alessandra Cutrì Trasformata di Fourier della funzione gaussiana Esempio: Calcoliamo la trasformata di Fourier di f (x) = e x 2 x n f (x) L 1 (R) per ogni

Dettagli

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura)

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura) Soluzione della prova scritta di Analisi Matematica II del 5 Aprile 009 Ingegneria Edile e Architettura x. Calcolare J = ds essendo γ la curva ottenuta intersecando γ + y il cilindro di equazione x + y

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

1. Funzioni implicite

1. Funzioni implicite 1. Funzioni implicite 1.1 Il caso scalare Sia X R 2 e sia f : X R. Una funzione y : (a, b) R si dice definita implicitamente dall equazione f(x, y) = 0 in (a, b) quando: 1. (x, y(x)) X x (a, b); 2. f(x,

Dettagli

ANNO ACCADEMICO 2017/2018 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA III appello 7/9/2018 1

ANNO ACCADEMICO 2017/2018 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA III appello 7/9/2018 1 ANNO ACCADEMICO 7/8 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA III appello 7/9/8 Esercizio. I giocatori A e B giocano con un mazzo di 4 carte, senza le figure, con le seguenti regole: - ad ogni turno

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito del A. f(x, y) = x + y 2 + log(x y)

Analisi Matematica II Corso di Ingegneria Biomedica Compito del A. f(x, y) = x + y 2 + log(x y) Analisi Matematica II Corso di Ingegneria Biomedica Compito del 4-6- - A - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Integrali Curvilinei

Integrali Curvilinei Integrali Curvilinei Gianluca Gorni 11 gennaio 2006 1 Lunghezza di una curva Definizione 1.1. Una curva N-dimensionale è una funzione definita su un intervallo (compatto, se non specificato altrimenti)

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A (ST) V foglio di esercizi ESERCIZIO. Siano f(t) = t t + per ogni t R ed F una primitiva di f. Se F () =, si calcoli F (). Le primitive di f(t) sono tutte della forma

Dettagli

1 Polinomio minimo e ampliamenti

1 Polinomio minimo e ampliamenti Università degli studi di Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2004/2005 AL2 - Algebra 2, gruppi anelli e campi Soluzioni 10 dicembre 2004 1 Polinomio minimo e ampliamenti 1. Determinare

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. SECONDA PARTE anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. SECONDA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA SECONDA PARTE anno accademico 2016-2017 (1) Per un sistema meccanico n-dimensionale scrivere: (a) gli elementi di matrice dello operatore posizione x

Dettagli

Introduzione alla Fisica Moderna - a.a

Introduzione alla Fisica Moderna - a.a Introduzione alla Fisica Moderna - a.a. 2016-17 18/12/2017 Nome Cognome Matricola: 1) Si consideri il sistema dinamico nonlineare ẋ = y x 2, ẏ = x + y 2, Si determinino i punti di equilibrio, si caratterizzi

Dettagli

PROBLEMA A DUE CORPI: STATI DEL CONTINUO

PROBLEMA A DUE CORPI: STATI DEL CONTINUO Capitolo 10 PROBLEMA A DUE CORPI: STATI DEL CONTINUO Riprendiamo l equazione di Schrödinger per il sistema di due particelle interagenti con l intento di cercare la classe di soluzioni che descrivono stati

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3 Analisi Matematica II Corso di Ingegneria Gestionale Compito A del 7-7-8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

AUTOVALORI, AUTOVETTORI, AUTOSPAZI

AUTOVALORI, AUTOVETTORI, AUTOSPAZI AUTOVALORI, AUTOVETTORI, AUTOSPAZI. Esercizi Esercizio. Sia f : R 3 R 3 l endomorfismo definito da f(x, y, z) = (x+y, y +z, x+z). Calcolare gli autovalori ed una base per ogni autospazio di f. Dire se

Dettagli

Analisi Matematica A e B Soluzioni Prova scritta n. 3

Analisi Matematica A e B Soluzioni Prova scritta n. 3 Analisi Matematica A e B Soluzioni Prova scritta n. Corso di laurea in Fisica, 207-208 9 luglio 208. Si consideri per α =, 2, 5, 8 la seguente funzione funzione F α : R\{0} R F α () = sin t dt. t α 6 Dire

Dettagli

Funzioni condizionatamente definite positive

Funzioni condizionatamente definite positive Funzioni condizionatamente definite positive Nelle lezioni precedenti abbiamo visto come il problema di interpolazione ci abbia portato all uso di funzioni definite positive. Tuttavia, ci sono funzioni

Dettagli

Compito di MQ. Gennaio Risolvere i seguenti esercizi (tempo: tre ore)

Compito di MQ. Gennaio Risolvere i seguenti esercizi (tempo: tre ore) Compito di MQ. Gennaio 0 Vecchio Ordinamento o Applicativo: Risolvere gli esercizi I e II (tempo: due ore Siano date due particelle (non identiche di spin /. A t =0lospindellaprimapunti nella direzione

Dettagli

1 Primitive e integrali indefiniti

1 Primitive e integrali indefiniti Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 2 CALCOLO INTEGRALE Primitive e integrali indefiniti. Definizione di primitiva e di integrale indefinito Data una funzione

Dettagli

Esercizi sulle equazioni differenziali

Esercizi sulle equazioni differenziali Esercizi sulle equazioni differenziali Equazioni differenziali lineari del primo ordine. () u (t) = t [t + u(t)]; () u(t) sin t + u (t) = cos t u (t) sin t; (3) u(t) = + t u (t) + ; Risolvere i seguenti

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del

Analisi Matematica II Corso di Ingegneria Gestionale Compito del Analisi Matematica II Corso di Ingegneria Gestionale Compito del 30-0-08 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

MECCANICA QUANTISTICA. Corso di laurea in fisica PROGRAMMA DEL CORSO E PROGRAMMA D ESAME. Anno accademico 2011/2012

MECCANICA QUANTISTICA. Corso di laurea in fisica PROGRAMMA DEL CORSO E PROGRAMMA D ESAME. Anno accademico 2011/2012 MECCANICA QUANTISTICA Corso di laurea in fisica PROGRAMMA DEL CORSO E PROGRAMMA D ESAME Anno accademico 2011/2012 Argomenti facenti parte del programma d esame. Argomenti facenti parte del programma d

Dettagli

Esercizi Applicazioni Lineari

Esercizi Applicazioni Lineari Esercizi Applicazioni Lineari (1) Sia f : R 4 R 2 l applicazione lineare definita dalla legge f(x, y, z, t) = (x + y + z, y + z + t). (a) Determinare il nucleo di f, l immagine di f, una loro base e le

Dettagli

Conteggi e sezione d urto

Conteggi e sezione d urto Capitolo 1 Conteggi e sezione d urto Consideriamo la reazione a due corpi: a + X b + Y (1.1) che comprende come caso particolare lo scattering elastico. La sezione d urto differenziale per la reazione

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Segnali e trasformate

Segnali e trasformate Segnali e trasformate - Corso di Laurea in Ingegneria Meccanica Segnali e trasformate DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Segnali e trasformate

Dettagli

Applicazioni alla meccanica quantistica Oscillatore armonico quantistico

Applicazioni alla meccanica quantistica Oscillatore armonico quantistico Applicazioni alla meccanica quantistica Oscillatore armonico quantistico Considero l equazione di Schrödinger per gli autovalori Ĥψ = Eψ e prendo un s.o.n.c. di funzioni u j (x). ψ si potrà esprimere come

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

B Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

B Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. B Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. A Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2015/2016

Prove scritte dell esame di Analisi Matematica II a.a. 2015/2016 Prove scritte dell esame di Analisi Matematica II a.a. 5/6 C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 6 giugno 6. Determinare massimi e minimi

Dettagli

Esame del giorno 17 Febbraio Scrivere chiaramente e in stampatello in testa all elaborato:

Esame del giorno 17 Febbraio Scrivere chiaramente e in stampatello in testa all elaborato: Corso di Biomatematica (G. Gaeta) Esame del giorno 17 Febbraio 2016 Scrivere chiaramente e in stampatello in testa all elaborato: Nome, Cognome, numero di matricola. Tempo a disposizione: DUE ORE. Non

Dettagli