Lez. 20: Turbine ad azione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lez. 20: Turbine ad azione"

Transcript

1 Condizioni di ristagno allo scarico del rotore Lez. 0: Turbine ad azione

2 Lavoro di turbina ad impulso Si consideri un triangolo delle velocità generico per una turbina ad impulso (grado di reazione: Λ =0): W = K R W s = K R W 1 edefinitounrapportocaratteristico X := U/C u1 si vuole determinare il valore X tale da massimizzare il lavoro fornito dallo stadio; C u = U W cos β = U K RW 1 cos β = U K R eillavorosiscrivecome ( Cu1 U ) cos β cos β 1 L = W = U ( C u1 C u ) = U ( Cu1 U ) ( 1+K R cos β cos β 1 NB: β - β è l a v a r i a z i o n e d i a n g o l o n e c e s s a r i a a r i p o r t a r e l a v e l o c i t à a l l o s c a r i c o i n direzione assiale tenendo in conto dell effetto delle perdite NB: la condizione W <W 1 comporta una riduzione della velocità meridiana; per contrastare questa riduzione, si può assegnare un certo grado di divergenza (da b 1 a b ) al canale palare nel piano meridiano )

3 Definizione angoli palettaggi Definizione angoli palettaggi Lo studente dovrà, nel corso dello studio di testi diversi e di diversa epoca, porre sempre attenzione a come sono definiti gli angoli dei triangoli di velocità Consideriamo il triangolo rettangolo formato ad esempio dal vettorevelocità assoluta, C,dallasuaproiezioneindirezionecirconferenziale, C u,edaquella in direzione assiale, C a. Per definire univocamente un triangolo rettangolo basta un solo angolo, dato che un angolo per definizione vale π/, e l altro è il complentare del primo. Perciò come angolo di riferimento α si può considerare indifferentemente: α a : l angolo compreso fra C e C a α u : l angolo compreso fra C e C u Ovviamente, α a + α u = π/ Similmente si procede per gli angoli di tipo β per le velocità relative Finora nella trattazione della materia, si sono utilizati gli angoli di tipo α a, β a. Nel seguito di questa lezione saranno impiegati gli angoli di tipoα u, β u.

4 Velocità periferica ottimale Velocità periferica ottimale Il lavoro di stadio di turbina in termini adimensionali si può scrivere come : ( ) L cos β Cu = X (1 X) 1+K R 1 cos β 1 Perdite costanti (K R = cost): il lavoro adimensionale descrive una parabola il cui massimo si registra per X = 1. Perdite variabili: K R diminuisce con la deviazione β = β 1 β,ovvero all aumentare di X; ne consegue che per una turbina monostadio ad azione si preferisce un valore di X leggermente superiore a 0.5, in modo da ridurre β Figure: Rendimento in funzione di X

5 Lavoro adimensionale ottimo di turbina ad impulso Lavoro adimensionale ottimo di turbina ad impulso Dall analisi condotta il valore ottimale di velocità U è p a r i a l l a m e t à d e l l a v e l o c i t à in ingresso C u1 ;perquestascelta,ilvaloremassimodellavoroè L max U (1 + K R ) U ossia in termini adimensionali ψ = L/U : se consideriamo la geometria del distributore fissata (in termini di α 1 )allora U ott = 1 C 1 cos α 1 con C 1 funzione del salto entalpico disponibile erealizzatoneldistributore,e quindi: L max U = C 1 cos α 1

6 Criteri per la massimizzazione del lavoro Criteri per la massimizzazione del lavoro La conservazione dell entalpia totale attraverso lo statore consente di scrivere: 1,s h 0 0 = h 1 + C 1 = h 1s + C Qunidi l energia cinetica in uscita dal distributore può essere espressa come ( ) C 1 = h0 0 h 1 = h 0 0 h 1s + C 1s C ( ) 1 = h 0 0 h 1s C ( ) 1s 1 K N Il lavoro può essere visto come somma del lavoro ideale al netto delle perdite nel distributore, nella girante, e allo scarico L = C 1 C + W W ( ) 1 = h 0 0 h 1s ( ) 1 K N W ( ) 1 1 K R }{{}}{{} C 1s R N R R C }{{} Rscar per massimizzare il lavoro occorre: (i) minimizzare le perdite nei condotti fissi e mobili, (ii) mantenere bassa la velocità nei condotti della girante (bassaw 1 ovvero, a pari C 1, aumentare U), (iii) bassa velocità allo scarico (scarico assiale).

7 Rendimento periferico Rendimento periferico Il rendimento periferico di una turbina ad impulso (di tipo total-to static ) si scrive come: L η p := h 0 0 h =1 R N + R R + R scar 1s h 0 0 h 1s che sostituendo le relazioni viste in precedenza diviene: η p = L C 1s = C u 1 X (1 X) ( ) cos β 1+K R cos β 1 = X (1 X) Cu 1 K N cos α 1 ( 1+K R cos β cos β 1 ) K N cos α 1 che mostra, data la dipendenza di K N e K R da X, unmassimospostatoper X> 1 echediminuisceconα (visto che aumenta la deviazione della corrente nella girante). Figure: Rendimento periferico in funzione di X

8 Rendimento turbina Rendimento turbina Il rendimento complessivo della turbina deve tenere conto anche delle perdite per attrito e ventilazione (quest ultime proporzionali all area del disco girante) η turb = L (R N + R R + R scar ) R attr+r vent ṁ h 0 0 h 1s = η p η

9 Compensazione perdite tramite aumento grado di reazione Compensazione perdite tramite aumento grado di reazione Ancora nel caso di macchine ad azione è possibile avere, con palettaggi leggermente divergenti, un grado di reazione cinematico nullo ed uno scarico assiale: aumentando però la velocità W s necessaria aumentano le perdite ma il rendimento è complessivamente migliore. Visto che χ > 0equindi p <p 1, vista la conservazione della portata tra l ingresso e l uscita si ricava che il rapporto tra le aree sarà ṁ = ρ 1 W 1 A 1 = ρ W A A A 1 = ρ 1 ρ 1 K R > 1 esupponendochea = hb e h 1 = h allora b >b 1 elasezionelongitudinaledeveessereleggermentedivergente.

10 Limiti prestazionali del singolo stadio ad azione Limiti prestazionali del singolo stadio ad azione Il rotore della turbina è sottoposto a due diversi tipi di sollecitazioni meccaniche forze aerodinamiche non costanti dovute al campo di pressioni del fluido; forze di inerzia che in un regime di funzionamento costante sono costanti; Lo sforzo di trazione σ ammissibile è determinato in base alla temperatura di esercizio una volta scelto il materiale con cui sono realizzate le palette Si dimostra che la sollecitazione massima che viene esercitata per una certa configurazione è proporzionale alla velocità periferica della paletta σ max U calcolata al diametro medio; esiste quindi un valore massimo di velocità periferica utilizzabile che dipende dal materiale e che è dell ordine di [m/s]. Il lavoro massimo ricavabile da una turbina ad azione a stadio singolo sarà quindi limitato superiormente L max U max = [m /s ] equindiilmassimosaltoentalpicosfruttabile,conunrendimento tipico di 0.8 sarà h max = L max η p [m /s ]

11 Tecniche per superare i limiti prestazionali del singolo stadio ad azione Tecniche per superare i limiti prestazionali del singolo stadio ad azione Il salto entalpico può essere anche espresso come h 0 0 h 1s = C 1s = C 1 K N = 1 K N U cos α 1 1 X Allora per sfruttare l intero salto entalpico disponibile si hanno due opzioni: 1 aumentare l angolo α 1 ma questo comporta aumento della velocità C 1 e quindi perdite nello statore e quindi minore rendimento, ecc... ; diminuire X ma si lavora così in condizioni di basso rendimento, minor lavoro e U ma, a parità di potenza all albero che deve essere fornita, maggiore deve essere la portata che evolve nella turbina e quindi minore è l impulso specifico della stessa. oppure si può considerare una diversa architettura della turbina ad azione: Turbina a salti di velocità (Curtiss) Turbina a salti di pressione (Parsons): turbina pluri-stadio

12 Turbina ad azione a salti di velocità (Curtiss) Turbina ad azione a salti di velocità (Curtiss) Per macchine a prestazioni più elevate si possono utilizzare turbine a salti di velocità ove ad un primo stadio del tutto identico a quello della turbina a singolo stadio, si fa seguire uno o più stadi ove la pressione rimane costante e il flusso viene solamente deviato (almeno nel caso ideale) di stadio in stadio. Nel caso in figura è stato preso C u1 =4U: sivedràchequestaèlasoluzione migliore per un sistema bistadio; il lavoro estratto sarà L = L I + L II = U (C u1 C u )+U (C u3 C u4 )=8U che a parità di salto di pressione (legato al salto entalpico disponibile)e pari U (funzione del materiale) è di quattro volte superiore al lavoro ottenibile dal singolo stadio.

13 Perdite in Turbina ad azione a salti di velocità Perdite in Turbina ad azione a salti di velocità Considerando ora il caso reale con le perdite K R e K N dalle relazioni trovate per la macchina monostadio e adattate alla bistadio si ha: C1 = ( h 0 0 h ) ( ) 1s 1 K dist (h0 h 1s ) eillavorosaràpossibilescriverlocomesommadelsaltoentalpico ideale (per il rapporto di espansione dato) e delle perdite [ L = L I + L II C1 = C W ( ) ] [ 1 1 K C3 I + C 4 w ( ) ] 3 1+K II = = ( h 0 0 h 1s ) }{{} salto ideale mentre il rendimento ( 1+Kdist )( ) h 0 0 h 1s }{{} R distr η p =1 w 1 ( 1+K I ) }{{} R I i R i h 0 0 h 1s + C ( 1 K radd ) } {{ } R radd w 3 } ( 1 K II {{ R II

14 Valore ottimale di X per Turbina a Z salti di velocità Valore ottimale di X per Turbina a Z salti di velocità Si dimostra che per una macchina con Z stadi il valore ottimale di X è X ott = U = 1 C u1 Z eillavoromassimo L max =Z U Ne segue che per una macchina a salti di velocità: il lavoro specifico alla portata aumenta da U az U ; il salto entalpico sfruttabile può, a parità di velocità tangenziale aumentare nella stessa proporzione (Z volte); la velocità periferica ottimale si riduce di un fattore Z le perdite aumentano con conseguente diminuzione del rendimento perchè: l angolo di deviazione per la prima girante aumenta con aumento delle perdite si devono aggiungere le perdite della giranti successive alla prima

15 Rendimento Turbina ad azione a salti di velocità Rendimento Turbina ad azione a salti di velocità Il rapporto dei rendimenti fra una macchina a Z stadi e quella astadiosingolo soddisfa la: η Z p η p < 1 aumento del modulo di W 1 equindidelleperditeperattritonelrotore; aumento della deviazione β equindidiminuzionedik R. Ne segue dunque che il rendimento, all aumentare del numero di stadi, diminuisce ediminuisceilvaloredix ott :lecaratteristichedelsistemanelsuocomplesso, l accoppiamento con la pompa e le esigenze strutturali saranno quelle che, stabilendo il valore di X, porterannoallasceltadelnumerodistadi. Figure: Z ott al variare di X

16 Turbina ad azione a salti di pressione (Parsons) Turbina ad azione a salti di pressione (Parsons) La turbina a salti di pressione è ottenuta mediante la successione di più stadi semplici con l espansione totale ripartita tra più statori; questaarchitetturaha diversi aspetti da analizzare: visto che la velocità di uscita dal rotore C (i) dello stadio i-esimo che compone la turbina viene utilizzata nello stadio i +1 esimo risulta corretto utilizzare il rendimento total-to-total, η tt,anziché total-to-static,η ts,eleperdite allo scarico dell ultimo stadio saranno accorpate alla perdite per ventilazione; sempre per la ragione sopra vista il fattore di recupero è superiore alla turbina a salti di velocità; nell ipotesi che 1 vi sia un solo albero a velocità angolare ω dove sono calettati tutti i rotori; il diametro medio sia costante lungo la macchina; 3 itriangolidivelocitàsianoglistessipertuttiglistadi allora il salto entalpico del singolo stadio diviene una frazione del salto entalpico totale h 0 Z = h0 Z il che può comportare un rapporto di espansione ridotto al di sottodelvalore critico, ovvero un flusso allo sacrico dello statore subsonico, ed inoltre il rendimento di stadio ηtt Z risulta identico per tutti gli stadi;

17 Velocità periferica ottimale Velocità periferica ottimale Si può dimostatre che, nelle ipotesi sopra fatte, il valore ottimo di X per il singolo stadio vale X Z ott = 1 che implica una riduzione delle velocità periferiche, perunprefissato h 0 fissato, in proporzione della radice del numero di salti Z U Z ott = C u 1 = C 1 cos α 1 = K N C 1s cos α 1 = K 1 cos α 1 h0 Z = U ott Z=1 Z se invece fissiamo, per limiti strutturali ad esempio, U Z max, allorailsalto entalpico è funzione lineare di Z la presenza di più stadi statorici ove si realizza una espansione del gas porta alla necessità di tenute che evitino by-pass della schiera di palettaggi

18 Aumento componente assiale Aumento componente assiale L espansione distribuita nei vari stadi comporta ad una diminuzione della densità del gas attraverso la macchina la progettazione di una turbina a velocità assiale costante porterebbequindi ad un aumento dell altezza delle palette troppo grande (di gran lunga superiore all aumento dovuto alle perdite per attrito per le turbineasaltodi velocità) e quindi a pale svergolate con grado di reazione variabile con il raggio Si considera allora, a C 1 costante, una diminuzione di α 1 con conseguente aumento della componente assiale; conseguenza marginale èlaripartizione non più uniforme del salto entalpico tra i diversi stadi.

19 Rendimento Turbina ad azione a salti di pressione Rendimento Turbina ad azione a salti di pressione Si può dimostrare che il rendimento di una turbina a salti di pressione si scrive come: η tt = 1 K N KN cos α 1 X (1 X)(1+K R ) [ ]} {KR + X cos α 1 (1 + K R ) X K R (1 + K R ) Rispetto alla turbina a salti di velocità, il rendimento si presenta maggiore e con un andamento più piatto nell intorno del massimo; ancora una volta, considerando anche le perdite per ventilazione (proporzionali ad U) il massimo si sposta ad X inferiori rispetto al X ott dell analisi fluidodinamica ed inoltre la cifra di pressione (che è inversamente proporzionale a U )risultasuperioreabassix. Figure: Confronto tra η tt e η ts in funzione di X

Design di schiere nel piano interpalare

Design di schiere nel piano interpalare Lecture 15 nel Text: Motori Aeronautici Mar. 6, 015 nel Triangoli di Disegno di di Mauro Valorani Univeristà La Sapienza 15.79 Agenda nel 1 Triangoli di Triangoli di 3 Disegno di di Disegno di di 15.80

Dettagli

5. Esercitazione 5: Dimensionamento del primo stadio di una turbina assiale

5. Esercitazione 5: Dimensionamento del primo stadio di una turbina assiale 5. Esercitazione 5: Dimensionamento del primo stadio di una turbina assiale Lo scopo della presente esercitazione è il dimensionamento del primo stadio di una turbina assiale con i seguenti valori di progetto:

Dettagli

Lez. 22: Prestazioni Fuori Progetto di Compressori

Lez. 22: Prestazioni Fuori Progetto di Compressori Confronto fra progetto e verifica Lez. 22: Prestazioni Fuori Progetto di Compressori Prestazioni Fuori Progetto di Compressori Stadio singolo Il progetto del singolo stadio è effettuato per valori di portata

Dettagli

Compressore e turbina [1-19]

Compressore e turbina [1-19] Politecnico di Milano Facoltà di Ingegneria Industriale Corso di Laurea in Ingegneria Aerospaziale Insegnamento di Propulsione Aerospaziale Anno accademico 2011/12 Capitolo 4 sezione c Compressore e turbina

Dettagli

Turbomacchine Impiegate in Aeronautica

Turbomacchine Impiegate in Aeronautica Lezione 11 1 Turbomacchine Impiegate in Aeronautica Ci si occuperà ora in maggior dettaglio delle turbomacchine più diffuse nel campo aeronautico. Esse sono: Tra i compressori Compressore radiale centrifugo

Dettagli

4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale

4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale 4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale Lo scopo della presente esercitazione è il dimensionamento del primo stadio di un compressore assiale. Con riferimento alla

Dettagli

Corso di Motori Aeronautici

Corso di Motori Aeronautici Corso di Motori Aeronautici Mauro Valorani Laurea Magistrale in Ingegneria Aeronautica (MAER) Sapienza, Università di Roma Anno Accademico 011-1 Sett. 9: Turbo-macchine Assiali 1 Analisi dello Stadio Singolo

Dettagli

Lecture 14 L equazione di Eulero Text:

Lecture 14 L equazione di Eulero Text: Lecture 14 Text: Motori Aeronautici Mar. 6, 015 Mauro Valorani Univeristà La Sapienza 14.58 Agenda 1 3 14.59 Bilancio microscopico Momento Polare Il momento polare d L, valutato in un punto P del campo

Dettagli

Lecture 18. Text: Motori Aeronautici Mar. 26, Mauro Valorani Università La Sapienza. Analisi dimensionale delle turbomacchine

Lecture 18. Text: Motori Aeronautici Mar. 26, Mauro Valorani Università La Sapienza. Analisi dimensionale delle turbomacchine Lecture 18 Analisi Text: Motori Aeronautici Mar. 26, 2015 Analisi Mauro Valorani Università La Sapienza 18.331 Agenda Analisi 1 Numero di giri e 18.332 Analisi L analisi e il confronto tra le turbomacchine

Dettagli

Esercizi di Macchine a Fluido

Esercizi di Macchine a Fluido Università degli Studi di Udine Facoltà di Ingegneria Esercizi di Macchine a Fluido a cura di L. Casarsa Esercizi proposti nelle prove scritte dell esame di Macchine I e II modulo dai docenti G.L Arnulfi,

Dettagli

Studio e ottimizzazione di un motore ibrido per velivoli

Studio e ottimizzazione di un motore ibrido per velivoli Studio e ottimizzazione di un motore ibrido per velivoli Elaborato di Laurea di Gherardo Gualandi Relatore Chiar.mo Prof. Ing. Luca Piancastelli MOTIVAZIONI DELLO STUDIO Fornire una adeguata sovralimentazione

Dettagli

Dimensionamento di massima di una turbina a vapore ad azione

Dimensionamento di massima di una turbina a vapore ad azione ad azione Giulio Cazzoli v 1.2 Maggio 2014 Si chiede di effettuare il dimensionamento di massima di una turbina a vapore da utilizzarsi in un impianto cogenerativo in contropressione, le cui specifiche

Dettagli

061473/ Macchine (a.a. 2016/17)

061473/ Macchine (a.a. 2016/17) 061473/090856 - Macchine (a.a. 2016/17) Nome: Matricola: Data: 01/02/2017 Prova da sostenere: I parte II parte Prova completa Parte B (11 punti su 32). Punteggio minimo: 5/11. Per chi sostiene la prova

Dettagli

Esercitazione 2 Ciclo a vapore a recupero

Esercitazione 2 Ciclo a vapore a recupero Esercitazione 2 Ciclo a vapore a recupero Lo scopo di questa esercitazione è la progettazione di un ciclo a recupero: l impianto è composto da un ciclo a vapore ad un livello di pressione che utilizza

Dettagli

MACCHINE Lezione 9 Turbine Idrauliche II Francis e Kaplan

MACCHINE Lezione 9 Turbine Idrauliche II Francis e Kaplan MACCHINE Lezione 9 Turbine Idrauliche II Francis e Kaplan Dr. Paradiso Berardo Laboratorio Fluidodinamicadelle delle Macchine Dipartimento di Energia Politecnico di Milano Turbine a reazione generalità

Dettagli

STUDIO DI MASSIMA DELLA TURBINA PER UN GRUPPO DI SOVRALIMENTAZIONE AD ALTISSIMO RAPPORTO DI COMPRESSIONE. Tesi di Laurea di STEFANO LAMBERTINI

STUDIO DI MASSIMA DELLA TURBINA PER UN GRUPPO DI SOVRALIMENTAZIONE AD ALTISSIMO RAPPORTO DI COMPRESSIONE. Tesi di Laurea di STEFANO LAMBERTINI STUDIO DI MASSIMA DELLA TURBINA PER UN GRUPPO DI SOVRALIMENTAZIONE AD ALTISSIMO RAPPORTO DI COMPRESSIONE Tesi di Laurea di STEFANO LAMBERTINI Inquadramento del problema Questo lavoro si inserisce nel progetto

Dettagli

Studio di massima di un sistema di sovralimentazione di un motore diesel turbocompound basato su turbina Allison 250-C18

Studio di massima di un sistema di sovralimentazione di un motore diesel turbocompound basato su turbina Allison 250-C18 ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA Studio di massima di un sistema di sovralimentazione di un motore diesel turbocompound basato su

Dettagli

Lezione VIII Considerazioni sul rapporto caratteristico del manovellismo. Considerazioni sul rapporto λ

Lezione VIII Considerazioni sul rapporto caratteristico del manovellismo. Considerazioni sul rapporto λ Considerazioni sul rapporto λ Per quanto detto, sembrerebbe, da un lato conveniente ridurre il rapporto caratteristico del manovellismo in quanto così facendo si riduce la spinta sul cilindro pari a essendo

Dettagli

Corso di Motori Aeronautici

Corso di Motori Aeronautici Corso di Motori Aeronautici Mauro Valorani Laurea Magistrale in Ingegneria Aeronautica (MAER) Sapienza, Università di Roma Anno Accademico 011-1 Sett. 8: Turbomacchine (II) 1 Rendimenti Turbomacchine Classificazione

Dettagli

Lecture 13. Text: Motori Aeronautici Mar. 26, Mauro Valorani Univeristà La Sapienza. Introduzione alle turbomacchine.

Lecture 13. Text: Motori Aeronautici Mar. 26, Mauro Valorani Univeristà La Sapienza. Introduzione alle turbomacchine. Lecture 13 Text: Motori Aeronautici Mar. 26, 2015 Mauro Valorani Univeristà La Sapienza 13.237 Agenda 1 2 13.238 01 01 0 1 00 11 000 111 000 111 000 111 000 111 000 111 000 111 000 111 000 111 000 111

Dettagli

Lecture 15 Equilibrio radiale Text:

Lecture 15 Equilibrio radiale Text: Lecture 15 Text: Motori Aeronautici Mar. 26, 2015 Mauro Valorani Univeristà La Sapienza 15.279 Agenda 1 2 15.280 Quando le pale presentano un forte sviluppo, si deve studiare il flusso non solo nel piano

Dettagli

061473/ Macchine (a.a. 2015/16)

061473/ Macchine (a.a. 2015/16) 061473/090856 - Macchine (a.a. 2015/16) Nome: Matricola: Data: 03/02/2016 Prova da sostenere: I parte II parte Prova completa Parte B (11 punti su 32). Punteggio minimo: 5/11. Per chi sostiene la prova

Dettagli

PROGETTO PRELIMINARE DI UNA TURBINA RADIALE PER UN TURBOCOMPRESSORE AD ALTISSIMO RAPPORTO DI COMPRESSIONE. Tesi di Laurea di MATTEO ZACCARI

PROGETTO PRELIMINARE DI UNA TURBINA RADIALE PER UN TURBOCOMPRESSORE AD ALTISSIMO RAPPORTO DI COMPRESSIONE. Tesi di Laurea di MATTEO ZACCARI PROGETTO PRELIMINARE DI UNA TURBINA RADIALE PER UN TURBOCOMPRESSORE AD ALTISSIMO RAPPORTO DI COMPRESSIONE Tesi di Laurea di MATTEO ZACCARI Questo elaborato è parte integrante del progetto riguardante un

Dettagli

Studio di massima di un turbocompressore per uso aeronautico con riferimento ad un compressore esistente

Studio di massima di un turbocompressore per uso aeronautico con riferimento ad un compressore esistente Alma Mater Studiorum - Università degli Studi di Bologna Facoltà di Ingegneria Studio di massima di un turbocompressore per uso aeronautico con riferimento ad un compressore esistente Tesi di Laurea in

Dettagli

Studio e modellazione di una turbina Tesla

Studio e modellazione di una turbina Tesla Studio e modellazione di una turbina Tesla Candidato: Andrea Bozzelli Relatore: Giampaolo Manfrida Principio di funzionamento: scambio energetico per effetto dell attrito viscoso Componenti: Rotore: dischi

Dettagli

Studio di massima di un turbocompressore aeronautico ad alto rapporto di compressione

Studio di massima di un turbocompressore aeronautico ad alto rapporto di compressione Studio di massima di un turbocompressore aeronautico ad alto rapporto di compressione CANDIDATO Emidio Palestini RELATORE: Chiar.mo Prof. Luca Piancastelli Anno Accademico 2009-2010 Sessione III Obiettivi

Dettagli

STUDIO DI FATTIBILITA DI UN MICROGRUPPO TURBOJET PER U.A.V.

STUDIO DI FATTIBILITA DI UN MICROGRUPPO TURBOJET PER U.A.V. UNIVERSITA DEGLI STUDI DI BOLOGNA FACOLTA DI INGEGNERIA Corso di Laurea in Ingegneria Meccanica Disegno Tecnico Industriale STUDIO DI FATTIBILITA DI UN MICROGRUPPO TURBOJET PER U.A.V. Tesi di Laurea di

Dettagli

061473/ Macchine (a.a. 2014/15)

061473/ Macchine (a.a. 2014/15) 061473/090856 - Macchine (a.a. 2014/15) Nome: Matricola: Data: 02/04/2015 Prova da sostenere: II parte Prova completa Parte B (11 punti su 32). Punteggio minimo: 5/11. Per chi sostiene la prova completa

Dettagli

semplici (De Laval) a salti di velocità (Curtis) AD AZIONE a salti di pressione (Rateau) a salti di pressione e velocità TURBINE A VAPORE

semplici (De Laval) a salti di velocità (Curtis) AD AZIONE a salti di pressione (Rateau) a salti di pressione e velocità TURBINE A VAPORE Capitolo 4 Turbine a Vapore Le turbine a vapore hanno il compito di trasformare l energia potenziale termodinamica contenuta nel vapore ad alta pressione e temperatura in lavoro meccanico. Questa trasformazione

Dettagli

Richiami sulle trasformazioni di scambio di energia sotto forma di lavoro e calore Gli impianti motori termici: Definizioni Rendimenti

Richiami sulle trasformazioni di scambio di energia sotto forma di lavoro e calore Gli impianti motori termici: Definizioni Rendimenti Sommario Definizione di macchina e impianto motore Fonti energetiche geotermica solare Combustibili: solidi, liquidi, gassosi idraulico nucleare previsioni future Richiami sulle trasformazioni di scambio

Dettagli

Lezione VII Calcolo del volano. Forze alterne d inerzia

Lezione VII Calcolo del volano. Forze alterne d inerzia Lezione VII Forze alterne d inerzia Dalla relazione ( cos cos ) = = ω α + λ α con m a pari alla massa totale del pistone, prima definita, più la massa m 1 che rappresenta quella parte della biella che,

Dettagli

MOTORI PER AEROMOBILI

MOTORI PER AEROMOBILI MOTORI PER AEROMOBILI Cap. 5 COMPRESSORE CENTRIFUGO 1.1 Principio di funzionamento del compressore centrifugo Consiste essenzialmente di un corpo o carcassa (casing), contenente una girante (impeller)

Dettagli

Parametric Design SOFTWARE CAD TRAINING. Progettazione di una girante monocurvatura per pompa centrifuga

Parametric Design SOFTWARE CAD  TRAINING. Progettazione di una girante monocurvatura per pompa centrifuga Parametric Design SOFTWARE CAD PLM @ CONSULTING @ TRAINING Progettazione di una girante monocurvatura per pompa centrifuga Indice Obiettivi del lavoro Dati di input Calcolo del profilo palare Calcolo profilo

Dettagli

Pompe Centrifughe - 1

Pompe Centrifughe - 1 Università degli Studi di Modena e Reggio Emilia Corso di Laurea Triennale in Ingegneria Meccanica A.A. 2009/2010 II Periodo di lezione Corso di: Macchine B Docente: Prof. Stefano Fontanesi Pompe Centrifughe

Dettagli

Dinamica dei Fluidi. Moto stazionario

Dinamica dei Fluidi. Moto stazionario FLUIDODINAMICA 1 Dinamica dei Fluidi Studia il moto delle particelle di fluido* sotto l azione di tre tipi di forze: Forze di superficie: forze esercitate attraverso una superficie (pressione) Forze di

Dettagli

061473/ Macchine (a.a. 2016/17)

061473/ Macchine (a.a. 2016/17) 06173/090856 - Macchine (a.a. 2016/17) Nome: Matricola: Data: 22/11/2016 Parte B (11 punti su 32). Punteggio minimo: 5/11. Descrizione del problema Si consideri la centrale idroelettrica in figura, che

Dettagli

Studio di un bruciatore intermedio per un motore aeronautico turbocompound

Studio di un bruciatore intermedio per un motore aeronautico turbocompound ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA Studio di un bruciatore intermedio per un motore aeronautico turbocompound Tesi di laurea di: Davide

Dettagli

Meccanica e Macchine esame 2008 MECCANICA APPLICATA E MACCHINE A FLUIDO

Meccanica e Macchine esame 2008 MECCANICA APPLICATA E MACCHINE A FLUIDO Meccanica e Macchine esame 008 MECCANICA APPLICATA E MACCHINE A FLUIDO Sessione ordinaria 008 Lo schema riportato in figura rappresenta un motore elettrico che eroga una potenza nominale di 0 kw ad un

Dettagli

Studio di massima del comportamento in regime di off- design di un compressore per motore aereonautico

Studio di massima del comportamento in regime di off- design di un compressore per motore aereonautico Università degli studi di Bologna FACOLTA DI INGEGNERIA Tesi in disegno tecnico industriale Studio di massima del comportamento in regime di off- design di un compressore per motore aereonautico Candidato

Dettagli

Esercitazione 3. Esercizio 1

Esercitazione 3. Esercizio 1 Esercitazione 3 Esercizio 1 Una pompa centrifuga opera con velocità di rotazione n d = 1450 rpm. Al punto di massimo rendimento la pompa elabora una portata volumetrica pari a V d = 0.153 m 3 /s di acqua,

Dettagli

Cenni sulle proprietà elastiche dei solidi

Cenni sulle proprietà elastiche dei solidi Cenni sulle proprietà elastiche dei solidi La nozione di corpo rigido deriva dal fatto che i corpi solidi sono caratterizzati dall avere una forma ed un volume non facilmente modificabili. Nella realtà

Dettagli

Riepilogo calcolo ruote dentate a dentatura diritta Verifica a rottura per flessione

Riepilogo calcolo ruote dentate a dentatura diritta Verifica a rottura per flessione Riepilogo calcolo ruote dentate a dentatura diritta Verifica a rottura per flessione 2 M corr σ MAX = m 3 X v Z 1 y Problema di progetto MAX ams 3 2 M corr m σ ams X v Z 1 y Dove Xv coefficiente di maggiorazione

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAICA DI SISTEI AEROSPAZIALI Tema d esame 24-02 - 2016 g f s, f d α G B A J, R d, J l ω d g O T l τ, η Esercizio 1. La gondola motore di un convertiplano, posta nel piano verticale, ha massa e momento

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Esercizi su Impianti e Turbine a Vapore

Esercizi su Impianti e Turbine a Vapore Esercizi su Impianti e Turbine a Vapore 35 IMPIANTO A VAPORE (Appello del 01.09.98, esercizio N 3) Testo Un impianto turbina a vapore ha una potenza utile P u = 160 MW e un rendimento utile η u = 0.43.

Dettagli

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA FACOLTA DI INGEGNERIA - Sede di Bologna

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA FACOLTA DI INGEGNERIA - Sede di Bologna ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA FACOLTA DI INGEGNERIA - Sede di Bologna CORSO DI LAUREA SPECIALISTICA in INGEGNERIA MECCANICA TITOLO DELLA TESI: INDIVIDUAZIONE DI UNA METODOLOGIA PER IL DISEGNO

Dettagli

ESAME DI STATO Soluzione. Diagramma del momento motore Velocità angolare di rotazione: n 60 Calcolo della cilindrata 2 2

ESAME DI STATO Soluzione. Diagramma del momento motore Velocità angolare di rotazione: n 60 Calcolo della cilindrata 2 2 ESAE DI STATO 004 ESAE DI STATO DI ISTITUTO TECNICO INDUSTRIALE CORSO DI ORDINAENTO Indirizzo: ECCANICA Tema di: ECCANICA APPLICATA E ACCHINE A LUIDO Una pompa a stantuffo a semplice effetto ha le seguenti

Dettagli

Soluzione Esame di Stato ITIS Termotecnica 2013 SVOLGIMENTO :

Soluzione Esame di Stato ITIS Termotecnica 2013 SVOLGIMENTO : Soluzione Esame di Stato ITIS Termotecnica 2013 SVOLGIMENTO : Come è noto, nella fase 3-4 del diagramma T-s di Rankine-Hirn sotto riportato, il fluido, dalla pressione vigente P2 e temperatura T3, si espande

Dettagli

Ottimizzazione di una turbina idraulica per usi automobilistici

Ottimizzazione di una turbina idraulica per usi automobilistici Università degli studi di Bologna Facoltà di Ingegneria Ottimizzazione di una turbina idraulica per usi automobilistici Candidato Luca Lolli Relatore Prof. Ing.. Luca Piancastelli Definizione del problema

Dettagli

Esercizi di Esame.mcd (1/8)

Esercizi di Esame.mcd (1/8) Esercizi di Esame.mcd (/8) Un ugello convergente è collegato ad un condotto circolare (D : 3.99mm) nel quale è imposto un flusso di energia nel modo calore Q 2. All'uscita del condotto vi è un ugello divergente

Dettagli

1.Pressione di un Gas

1.Pressione di un Gas 1.Pressione di un Gas Un gas è formato da molecole che si muovono in modo disordinato, urtandosi fra loro e urtando contro le pareti del recipiente che le contiene. Durante gli urti, le molecole esercitano

Dettagli

Appunti sull analisi dimensionale per la modellazione del moto uniforme dei fluidi nei condotti circolari. 15 ottobre 2012

Appunti sull analisi dimensionale per la modellazione del moto uniforme dei fluidi nei condotti circolari. 15 ottobre 2012 Appunti sull analisi dimensionale per la modellazione del moto uniforme dei fluidi nei condotti circolari 5 ottobre 202 Analisi dimensionale e teorema Π Si consideri la relazione g 0 = f (g, g 2, g 3,...,

Dettagli

Esercizio n 1. = 200 g t = 0 sistema in quiete a)? a 1. = 100 g m 2. a 2 b)? acc. angolare c)? T 1. e T 2

Esercizio n 1. = 200 g t = 0 sistema in quiete a)? a 1. = 100 g m 2. a 2 b)? acc. angolare c)? T 1. e T 2 Esercizio n 1 Su un disco di massa M e raggio R è praticata una sottile scanalatura di raggio r che non altera il suo momento d'inerzia. Al disco, che può ruotare attorno ad un asse orizzontale passante

Dettagli

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Corso di Laurea in Ingegneria Meccanica PROVE SPERIMENTALI SU BANCO PROVA PER TENUTE A LABIRINTO Relatore: Prof. Paolo GAETANI Tesi di Laurea di:

Dettagli

STUDIO ED OTTIMIZZAZIONE DI UNO STATORE A GEOMETRIA VARIABILE PER UNA MICROTURBINA BASATA SU COMPONENTI COMMERCIALI

STUDIO ED OTTIMIZZAZIONE DI UNO STATORE A GEOMETRIA VARIABILE PER UNA MICROTURBINA BASATA SU COMPONENTI COMMERCIALI ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA STUDIO ED OTTIMIZZAZIONE DI UNO STATORE A GEOMETRIA VARIABILE PER UNA MICROTURBINA BASATA SU COMPONENTI

Dettagli

Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA QUINTA E SESTA SETTIMANA

Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA QUINTA E SESTA SETTIMANA Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A. 2013-2014. Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA QUINTA E SESTA SETTIMANA In sintesi, una tecnologia costituisce un insieme di piani

Dettagli

UNIVERSITÀ DEGLI STUDI DI BRESCIA

UNIVERSITÀ DEGLI STUDI DI BRESCIA UNIVERSITÀ DEGLI STUDI DI BRESCIA ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE (Lauree di primo livello D.M. 509/99 e D.M. 270/04 e Diploma Universitario) SEZIONE B - Seconda

Dettagli

Stadi ad azione e reazione

Stadi ad azione e reazione Turbine a vapore Stadi ad azione e reazione Triangoli velocità turbina azione η = 4 u cosα u c 1 c 1 2 u = cosα η max = cos 2 α c 1 2 Triangoli velocità turbina reazione u c 1 = cosα η max = 2cos2 α 1+

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

Macchina a regime periodico

Macchina a regime periodico Macchina a regime periodico rev. 1.2 J m J v τ, η t r φ motore l m F x, ẋ, ẍ (P.M.E.) p m p a Figura 1: Schema dell impianto di pompaggio Della pompa volumetrica a stantuffo a singolo effetto rappresentata

Dettagli

Esercizi di base sulle turbine idrauliche

Esercizi di base sulle turbine idrauliche Università degli Studi di Modena e Reggio Emilia Facoltà di Ingegneria - sede di Modena Corso di Turbomacchine e Oleodinamica prof. Giuseppe Cantore Esercizi di base sulle turbine idrauliche Water, water,

Dettagli

Le pompe sono macchine operanti su fluidi incomprimibili; esse assorbono lavoro da un motore per trasferire energia ad un fluido.

Le pompe sono macchine operanti su fluidi incomprimibili; esse assorbono lavoro da un motore per trasferire energia ad un fluido. Introduzione Le pompe sono macchine operanti su fluidi incomprimibili; esse assorbono lavoro da un motore per trasferire energia ad un fluido. Si distinguono 2 tipologie di pompe: 1. pompe a flusso permanente:

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Tema d esame 28-02 - 22 Esercizio 1. Un asta di lunghezza 2L e massa m uniformemente distribuita scorre senza attrito in una guida incernierata nel punto O. L estremo A

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileiana 2015-2016 Problema 1 Un secchio cilindrico di raggio R contiene un fluido di densità uniforme ρ, entrambi ruotanti intorno al loro comune asse

Dettagli

SOLUZIONE ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE 2010

SOLUZIONE ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE 2010 SOLUZIONE ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE 2010 1 Lo studio delle frizioni coniche si effettua distinguendo il caso in cui le manovre di innesto e disinnesto si eseguono da fermo, dal caso

Dettagli

Lecture 9 Ciclo Turbo-Gas Text:

Lecture 9 Ciclo Turbo-Gas Text: Lecture 9 Text: Motori Aeronautici Mar. 8, 205 Mauro Valorani Univeristà La Sapienza 9.42 Agenda 2 3 4 9.43 Architettura Modulare dei Motori a Turbina a Gas The core of the engine (turbo-gas) can be thought

Dettagli

MOTORI PER AEROMOBILI

MOTORI PER AEROMOBILI MOTORI PER AEROMOBILI Cap. 4 RICHIAMI SULLE TURBOMACCHINE 1.1 Introduzione Come ricordato nel corso di Propulsori Aerospaziali: Le TURBOMACCHINE sono macchine (cioè convertitori di energia) in cui lo scambio

Dettagli

Appunti sulle turbine ad azione

Appunti sulle turbine ad azione Giulio Cazzoli versione 1.0 Maggio 014 Indice 1 Scelta del tipo di turbina 3 1.1 Azione o reazione................................. 3 1. Turbina a salti di velocità o salti di pressione..................

Dettagli

ESERCIZIO SOLUZIONE. 13 Aprile 2011

ESERCIZIO SOLUZIONE. 13 Aprile 2011 ESERCIZIO Un corpo di massa m è lasciato cadere da un altezza h sull estremo libero di una molla di costante elastica in modo da provocarne la compressione. Determinare: ) la velocità del corpo all impatto

Dettagli

Corso di Motori Aeronautici

Corso di Motori Aeronautici Corso di Motori Aeronautici Mauro Valorani Laurea Magistrale in Ingegneria Aeronautica (MAER) Sapienza, Università di Roma Anno Accademico 2011-12 Sett. 10: Perdite nelle Turbomacchine 1 Disegno della

Dettagli

Flussi Di Rayleigh. 1 Definizione del flusso di Rayleigh

Flussi Di Rayleigh. 1 Definizione del flusso di Rayleigh Flussi Di Rayleigh 1 Definizione del flusso di Rayleigh Il flusso di Rayleigh descrive molti casi di interesse pratico come i processi di combustione nelle camere di combustione o il moto di un fluido

Dettagli

Corso di Componenti e Impianti Termotecnici RETI DI DISTRIBUZIONE PERDITE DI CARICO CONTINUE

Corso di Componenti e Impianti Termotecnici RETI DI DISTRIBUZIONE PERDITE DI CARICO CONTINUE RETI DI DISTRIBUZIONE PERDITE DI CARICO CONTINUE 1 PERDITE DI CARICO CONTINUE Sono le perdite di carico (o di pressione) che un fluido, in moto attraverso un condotto, subisce a causa delle resistenze

Dettagli

ESAME DI AERODINAMICA 12/12/2006

ESAME DI AERODINAMICA 12/12/2006 ESAME DI AERODINAMICA 12/12/2006 La velocità indotta nel piano y-z passante per l origine da un filamento vorticoso rettilineo semi-infinito disposto lungo l asse x e con origine in x=0, rispetto a quella

Dettagli

Esperienza 1/3: viscosità. della glicerina. Laboratorio di Fisica 1 A. Baraldi, M. Riccò. Università di Parma. a.a. 2012/2013

Esperienza 1/3: viscosità. della glicerina. Laboratorio di Fisica 1 A. Baraldi, M. Riccò. Università di Parma. a.a. 2012/2013 Esperienza 1/3: viscosità Università di Parma della glicerina a.a. 2012/2013 Laboratorio di Fisica 1 A. Baraldi, M. Riccò Coefficiente di viscosità La viscosità è quella grandezza fisica che ci permette

Dettagli

ESAME DI AERODINAMICA 13/7/2009

ESAME DI AERODINAMICA 13/7/2009 ESAME DI AERODINAMICA 3/7/2009 Una presa d aria supersonica è progettata per funzionare a M = 2.6. se la sezione d ingresso ha un area A i = 0.58m 2, la sezione di gola in m 2 è: (b).32 (c).2 (d).4 (e).078

Dettagli

FISICA GENERALE I - 10/12 CFU NP II appello di Febbraio A.A Cognome Nome n. matr.

FISICA GENERALE I - 10/12 CFU NP II appello di Febbraio A.A Cognome Nome n. matr. FISICA GENERAE I - / CFU NP II appello di Febbraio A.A. - 5..4 Cognome Nome n. matr. Corso di Studi Docente Voto 9 crediti crediti crediti Esercizio n. Due masse puntiformi scivolano senza attrito su un

Dettagli

Le Turbine IDRAULICHE

Le Turbine IDRAULICHE Le Turbine IDRAULICHE Prof. Francesco Martelli Prof. David Chiaramonti Ing. A.Mattana Ultimo aggiornamento: 24 Maggio 2013 Versione: 1.00.07 Pag. 1 Classificazione - Dipartimento di Ingegneria Industriale

Dettagli

Laurea in Ingegneria Elettrica, A.A. 2006/2007 Corso di FISICA TECNICA E MACCHINE TERMICHE. TAVOLA 1 Ugello di De Laval*.

Laurea in Ingegneria Elettrica, A.A. 2006/2007 Corso di FISICA TECNICA E MACCHINE TERMICHE. TAVOLA 1 Ugello di De Laval*. Laurea in Ingegneria Elettrica, A.A. 2006/2007 Corso di FISICA TECNICA E MACCHINE TERMICHE Le tavole verranno consegnate e discusse in sede di esame. Lo studente è libero di redigerle manualmente o tramite

Dettagli

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1 Fisica 18 Febbraio 2013 ˆ Esame meccanica: problemi 1, 2 e 3. ˆ Esame elettromagnetismo: problemi 4, 5 e 6. Problema 1 Un corpo di massa M = 12 kg, inizialmente in quiete, viene spinto da una forza di

Dettagli

IMPIANTI ENERGETICI PER L INDUSTRIA TESSILE. RACCOLTA di ESERCIZI con SOLUZIONI

IMPIANTI ENERGETICI PER L INDUSTRIA TESSILE. RACCOLTA di ESERCIZI con SOLUZIONI IMPIANTI ENERGETICI PER L INDUSTRIA TESSILE RACCOLTA di ESERCIZI con SOLUZIONI ESERCIZIO n.1 Del circuito idraulico rappresentato in Figura 1 in sono noti: Diametro delle tubazioni D 1 = D 2 = 0.5 m Lunghezza

Dettagli

ESPERIENZA DELLA BURETTA

ESPERIENZA DELLA BURETTA ESPERIENZA DELLA BURETTA SCOPO: Misura del coefficiente di viscosità di un fluido Alcune considerazioni teoriche: consideriamo un fluido incomprimibile, cioè a densità costante in ogni suo punto, e viscoso

Dettagli

MECCANICA, MACCHINE ED ENERGIA

MECCANICA, MACCHINE ED ENERGIA MECCANICA, MACCHINE ED ENERGIA 1. Concetto di equilibrio statico e strutture a. Equazioni cardinali della statica nel piano. b. Calcolo delle reazioni nelle strutture isostatiche piane. c. Calcolo delle

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Esercizio 1. Un corsoio di massa m scorre su un piano orizzontale con attrito radente di coefficiente f d. Al corsoio, in C, è collegata la biella B C, di lunghezza b e

Dettagli

P: potenza in kw, n: numero di giri R: raggio puleggia in metri B = 1,1 b + 10 mm dove: B: larghezza corona l = B dove l : lunghezza mozzo puleggia

P: potenza in kw, n: numero di giri R: raggio puleggia in metri B = 1,1 b + 10 mm dove: B: larghezza corona l = B dove l : lunghezza mozzo puleggia ESERCIZIO Si deve provvedere all accoppiamento, con un riduttore a ruote dentate cilindriche a denti diritti, tra un motore asincrono trifase e un albero, rappresentato nello schema, che a sua volta trasmette

Dettagli

Onde d urto normali ed oblique [1-33]

Onde d urto normali ed oblique [1-33] Politecnico di Milano Facoltà di Ingegneria Industriale Corso di Laurea in Ingegneria Aerospaziale Insegnamento di Propulsione Aerospaziale Anno accademico 2011/12 Capitolo 3 sezione c Onde d urto normali

Dettagli

Il progetto di travi in c.a.p Iperstatiche Il sistema equivalente alla precompressione

Il progetto di travi in c.a.p Iperstatiche Il sistema equivalente alla precompressione Università degli Studi di Roma Tre - Facoltà di Ingegneria Laurea magistrale in Ingegneria Civile in Protezione Corso di Cemento Armato Precompresso A/A 2016-17 Il progetto di travi in c.a.p Iperstatiche

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE II compitino di FISICA, 17 Giugno 2010

CORSO DI LAUREA IN SCIENZE BIOLOGICHE II compitino di FISICA, 17 Giugno 2010 CORSO DI LAUREA IN SCIENZE BIOLOGICHE II compitino di FISICA, 17 Giugno 2010 1) Due cariche +2q e q sono fissate lungo l asse x, rispettivamente nei punti O = (0,0) ed A=(d,0), con d = 2 m. Determinare:

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Tema d esame 08-09 - 2014 O C m Ω h l 1 l 2 A x F B m, r, J P R C Esercizio 1. Il sistema in figura, posto nel piano orizzontale, è composto da un disco di massa m, raggio

Dettagli

EQUAZIONE DELLA CONTINUITA = Bilancio di massa nel tempo dt. Massa accumulatasi nel sistema. Massa uscente dal sistema. Massa entrante nel sistema

EQUAZIONE DELLA CONTINUITA = Bilancio di massa nel tempo dt. Massa accumulatasi nel sistema. Massa uscente dal sistema. Massa entrante nel sistema SISTEMI APERTI Ipotesi: EQUILIBRIO LOCALE in ogni punto del sistema aperto le proprietà termostatice assumono il valore ce avrebbero se nell intorno di quel punto il sistema fosse uniforme Ipotesi: MOTO

Dettagli

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare Moto di rotazione Rotazione dei corpi rigidi ϑ(t) ω z R asse di rotazione v m

Dettagli

Soluzioni della prova scritta Fisica Generale 1

Soluzioni della prova scritta Fisica Generale 1 Corso di Laurea in Ingegneria Biomedica, dell Informazione, Elettronica e Informatica Canale 2 (S. Amerio, L. Martucci) Padova, 26 giugno 20 Soluzioni della prova scritta Fisica Generale Problema Una palla

Dettagli

Esercitazione 4 Cicli a vapore avanzati

Esercitazione 4 Cicli a vapore avanzati Esercitazione 4 Cicli a vapore avanzati Questa esercitazione prevede il confronto di 5 diverse configurazioni relative ad un ciclo a vapore USC. Per effettuare i calcoli è stato utilizzato il programma

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

Flussi Di Fanno. 1 Definizione del flusso di Fanno

Flussi Di Fanno. 1 Definizione del flusso di Fanno Flussi Di Fanno 1 Definizione del flusso di Fanno Si consideri un flusso adiabatico all interno di un condotto a sezione costante, in presenza di attrito e senza scambio di lavoro con l esterno. Tale regime

Dettagli

1 e β(ǫ µ) ± 1. (1) n = e β(µ ǫ) (2)

1 e β(ǫ µ) ± 1. (1) n = e β(µ ǫ) (2) APPUNTI PER IL CORSO DI MECCANICA STATISTICA Numero medio d occupazione e condizione di degenerazione M. Falcioni, In un gas perfetto di particelle identiche, il numero di occupazione medio di uno stato

Dettagli

Lez.27 La macchina in corrente continua. Cenni.

Lez.27 La macchina in corrente continua. Cenni. Lez.27 La macchina in corrente continua. Cenni. Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 27 Pagina 1 Conduttore in moto in un campo magnetico Supponiamo

Dettagli

Esercizi sulle Macchine Operatrici Idrauliche

Esercizi sulle Macchine Operatrici Idrauliche Esercizi sulle Macchine Operatrici Idrauliche 17 CAVITAZIONE POMPE (Appello del 06.12.02, esercizio N 1) Testo Una pompa invia una portata Q = 16 dm 3 /s di acqua ad un serbatoio sopraelevato di 8 m. In

Dettagli

Studio di massima dell albero e prototipazione del compressore per un gruppo di sovralimentazione ad altissimo rapporto di compressione

Studio di massima dell albero e prototipazione del compressore per un gruppo di sovralimentazione ad altissimo rapporto di compressione Studio di massima dell albero e prototipazione del compressore per un gruppo di sovralimentazione ad altissimo rapporto di compressione Tesi di laurea di Marco Lambertini Questo lavoro si inserisce in

Dettagli

REGOLAZIONE DELLA PORTATA DI VAPORE IN TURBINA

REGOLAZIONE DELLA PORTATA DI VAPORE IN TURBINA REGOLAZIONE DELLA PORTATA DI VAPORE IN TURBINA La regolazione dell'impianto è di regola asservita a quella della macchina: ogni componente l'impianto viene adeguata alla portata di vapore richiesta dall'espansore.

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Tema d esame 11-02 - 23 Esercizio 1. Il sistema in figura, posto in un piano verticale, è costituito da due dischi di raggio R e di massa uniformemente distribuita rispettivamente

Dettagli