S.Barbarino - Appunti di Microonde. Cap. 23. Klystron Reflex.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "S.Barbarino - Appunti di Microonde. Cap. 23. Klystron Reflex."

Transcript

1 231 - Gnralità Cap 23 Klystron Rflx Il lystron a du cavità da noi prcdntmnt illustrato, ssnzialmnt pr capir il fnomno dlla modulazion di vlocità, com amplificator ha un funzionamnto non molto soddisfacnt a causa dl fort rumor di fondo ch sso produc; pr cui, in pratica tubi basati sul principio sopra accnnato dlla modulazion di vlocità dgli lttroni sono usati soprattutto com oscillatori Pr tal scopo prò, nll intnto di ridurr l difficoltà di rgolazion dovut al dlicato accordo dll du cavità risonanti, si è dimostrato più convnint un tipo di tubo chiamato lystron rflx illustrato schmaticamnt in fig231-1 P G 2 G V V p fig231-1 Esso fa uso dlla sola cavità risonant 1, connssa ad una sola coppia di grigli, G 1 G 2, ch agisc, sia da modulatric (durant il viaggio di andata dgli lttroni) sia da captatric (durant il viaggio di ritorno) 23-1

2 Klystron rflx a cavità strna ubo WE707 A vtro piston P G 2 G 1 G KL C uscita cm C = cavità strna P = placca o rpllr G 1, G 2 = coppia di grigli G = griglia rgolatric dll intnsità dl flusso lttronico K = catodo L = lttrodo focalizzator fig231-2 Gli lttroni uscnti dal catodo K, convnintmnt focalizzati dall lttrodo L d acclrati dalla diffrnza di potnzial V 0, attravrsano la coppia di grigli G 1 G 2 dov subiscono la modulazion di vlocità; ntrano poi nllo spazio fra G 2 l lttrodo rpulsor P, qusto ssndo portato ad un potnzial più ngativo dl catodo cra un campo frnant; prciò il moto dgli lttroni dopo ssr stato rallntato, s invrt di dirzion Nl prcorso di andata ritorno compiuto ntro lo spazio fra G 2 P, in sguito alla modulazion di vlocità imprssa da G 1 G 2, gli lttroni si raggruppano; ssi prciò attravrsano nuovamnt la coppia di grigli nl snso G 2 G 1 in pacchtti capaci di cdr nrgia alla cavità connssa a G 1 G 2 provocando così l autoccitazion 23-2

3 232 - Raggruppamnto dgli lttroni modulati in vlocità in un campo ritardator Supponiamo ch nllo spazio comprso fra gli lttrodi G 2 P, posti a distanza, il potnzial diminuisca con lgg linar in funzion dlla distanza x a partir da G 2, cioè ch il gradint di potnzial sia ngativo, costant pari a ( ) In tal ipotsi l andamnto dl diagramma dl potnzial in funzion dlla distanza è rapprsntato in figura 232-1: E N S I O N I G 1 G 2 V 0 x 0 V p d fig232-1 Ci proponiamo di trovar la lgg dl moto dgli lttroni In un punto gnrico x comprso fra G 2 P si ha: P a = du x dt = m 0 (2321) prciò, indicando con u la vlocità di uscita dgli lttroni da G 2, ossia pr t = t 0, risulta: u x = x = adt = u u x dt = u(t t 0 ) 1 2 m 0 (t t 0) (2322) m 0 (t t 0) 2 (2323) Quindi l acclrazion è costant ngativa, la vlocità dcrsc uniformmnt col tmpo la distanza prcorsa dall lttron è funzion parabolica dl tmpo; allora s si tracciano i diagrammi spazio-tmpo dgli lttroni fra G 2 P si ottrranno, in luogo di rtt, parabol rivolt vrso il basso 23-3

4 Supponndo ch il potnzial acclrator dgli lttroni applicato fra catodo G 1 sia V 0 qullo modulator sistnt fra G 1 G 2 sia V sinωt 0 (la ragion dl sgno ngativo si vdrà fra poco), la vlocità u di uscita dgli lttroni da G 2 dipnd dal potnzial total: V 0 V sin ωt 0 = V 0 (1 α sinωt 0 ) (2324) Qusta vlocità allora è data da: u = u 0 1 α sinωt0 u 0 (1 α 2 sinωt 0 ) (2325) ssndo u 0 la vlocitá dgli lttroni in assnza di tnsion modulatric Ovviamnt la massima distanza di pntrazion dll lttron dipnd da u Pr trovarla imponiamo u xmax = 0 ottnndo: u = m 0 (t t 0) (2326) Ricavando (t t 0 ) dalla (2326) sostitundolo nlla (2323) si ottin: ossia: x max = 1 2 x max = 1 2 m 0 m 0 u 2 (2327) u 2 0(1 α sinωt 0 ) (2328) Si noti ch il tmpo t 0 ch compar in sin ωt 0 corrispond all istant in cui l lttron considrato attravrsa la mzzaria fra G 1 G 2 (s la distanza d fra l du grigli è sufficintmnt piccola, t 0 si può ritnr coincidnt con l istant di uscita dgli lttroni di G 2 ) può ssr considrato com la variabil indipndnt La figura rapprsnta un smpio di diagramma spazio-tmpo ch illustra chiaramnt il fnomno di raggruppamnto pr i sgunti paramtri: V = 2000 V, V p = 500 V = 1 Si puó provar ch al variar di V p la posizion di raggruppamnti si sposta sull ass dll asciss; bisogna, com vdrmo nl prossimo paragrafo, trovar il giusto valor di V p pr ottimizzar la cssion di nrgia Una important ossrvazion è la sgunt: il raggruppamnto avvin intorno a qugli lttroni ch attravrsano la coppia di grigli nll istant in cui il potnzial modulator passa pr lo zro mntr diminuisc, contrariamnt a quanto succd nl lystron a du coppi di grigli nl qual i pacchtti si formano attorno agli lttroni ch attravrsano la coppia di grigli modulatrici quando il potnzial passa pr lo zro mntr aumnta Ciò succd prchè qugli lttroni ch ntrano nl campo ritardator fra G 2 P con maggior vlocità pntrano più profondamnt impigano un tmpo più lungo pr ritornar fra l du grigli i consgunza gli lttroni più lnti ritornranno prima potranno raggiungr qulli più vloci 23-4

5 Ecco prchè s si vuol assumr com istant di partnza (t 0 = 0) qullo in cui la tnsion v fra G 2 G 1 passa pr zro mntr diminuisc, occorr usar nll sprssion di v il sgno mno, cioé si pon: v = V sin ωt 0 (2329) Programma Matlab pr il grafico dl diagramma di Applgat pr il lystron rflx REFLEXm dlt(gt (0, childrn )); alfa=02; V0=2000; VP=500; =1; =1-7; q=16-19; m0=911-31; u0=sqrt((2*q*v0)/m0); x0max=(1/2)*(m0/q)*(/(v0+vp))*u0*u0; axs( Position,[ ]) for tau0=-4-7:005-7:9-7 tau=-4-7:01-7:9-7; x1=u0*(1-(alfa/2)*sin(2*pi/*tau0))*(tau-tau0); x2=(05*q/m0)*((v0+vp)/)*(tau-tau0)ˆ2; x=x1-x2; hold on plot(tau,x) xlabl ( t ) ylabl ( x ) titl ( iagramma di Applgat pr il lystron rflx ) axis ([-1-7,4-7, 0, 15]) nd axs( Position,[ ]) tau0=-1-7:01-7:4-7; y=-sin(2*pi/*tau0); plot(tau0,y) axis ([-1-7,4-7, -1, 1]) xlabl ( t 0 ) grid on txt(12-7,-3, fig232-2 ) titl ( nsion applicata normalizzata (sin2\pi\tau 0) ) 23-5

6 100 iagramma di Applgat pr il lystron rflx 075 x t/10 7 (s) 1 nsion applicata normalizzata (sin2π t 0 ) V V t 0 /10 7 (s) fig

7 233 - Condizioni di massima utilizzazion dll nrgia di pacchtti di lttroni x n = 3 t 1 = 3 4 n = 2 n = V 2 3 t fig233-1 Pr ottnr ch i pacchtti di lttroni cdano nrgia alla cavità connssa alla coppia di grigli, occorr ovviamnt ch il campo sistnt fra qust sia tal da opporsi al moto dgli lttroni ch, lungo il viaggio di ritorno, attravrsranno raggruppati G 2 G 1 ; occorr cioè ch G 2 sia positiva risptto a G 1 L nrgia cduta alla cavità sarà massima quando sarà massimo l fftto frnant cioè quando il pacchtto attravrsa la coppia di grigli nl momnto in cui la tnsion fra G 2 G 1 è massima Affinchè si vrifichi tal condizion, com risulta dalla figura occorr ch la durata t n dll traittori sia ugual ad un numro intro mno un quarto di priodo, cioè: 23-7

8 t n = ( n 1 ) 4 (2331) In figura sono disgnat l traittori dgli lttroni ch passano fra l grigli nll istant t 0 = 0 cioè quando la tnsion modulatric è nulla dcrscnt (attorno a tali lttroni si formano i pacchtti lttronici) pr n = 1, n = 2, d n = 3 Un lttron ch nl viaggio di andata attravrsi la coppia di grigli nll istant t 0, ritorna ad attravrsarl in snso opposto nll istant t dato dalla somma di t 0 più il tmpo t x impigato durant il viaggio; qust ultimo tmpo si ricava a partir dalla rlazion (2323) ch riscriviamo x = ut 1 2 m 0 t2 imponndo x = 0 si ottin: t x = 2 m 0 u = 2 m 0 ( u 0 1 α ) 2 sinωt 0 (2332) S si vuol ch pr t 0 = 0 gli lttroni, attorno ai quali si formano i pacchtti, riattravrsino l grigli nll istant in cui la tnsion fra ss è massima occorr porr t 0 = 0 nlla (2332) uguagliar la stssa con la (2331): t n = 2 m 0 ( u 0 = n 1 ) (2333) 4 Pr rndr soddisfatta qust ultima rlazion occorr rgolar convnintmnt V 0 (ch agisc su u 0 ) /o V p Anch in qusto caso com nl caso di un lystron a du cavità si puó riportar in un grafico il tmpo t in funzion di t 0 (o τ in funzion di τ 0 ) Si ha: ossia, ponndo: t x = 2 m 0 ( u 0 1 α ) 2 sinωt 0 t x0 = 2 m 0 u 0 = tmpo mdio di viaggio o tmpo di raggruppamnto }{{} t x = t x0 (1 α 2 sinωt 0 ) = tmpo di viaggio }{{} (2334) (2335) 23-8

9 Il tmpo total t a partir dall istant zro è allora: t = t 0 + t x = t 0 + t x0 (1 α 2 sinωt 0 ) (2336) La tangnt alla curva si ottin drivando la (2336) ottnndo dov si è posto dt dt 0 = 1 πα t x0 cos ωt 0 = 1 cos ωt 0 (2337) = πα t x0 = paramtro di raggruppamnto Allorchè la drivata ha valor nullo vuol dir ch lttroni, ch passano fra l grigli in istanti divrsi ntro un crto intrvallo, ritornano fra ss nllo stsso istant formando così un addnsamnto toricamnt infinito Ponndo dt dt 0 = 0 pr t 0 = 0 si ha = 1, pr < 1 si ottin nllo stsso istant un massimo non infinito; pr > 1 si ottngono du massimi infiniti: uno di ssi prcd, l altro sgu l istant t x0 Pr quanto riguarda la corrnt, si puó dimostrar ch la corrnt I 1, ch nl viaggio di ritorno dgli lttroni riattravrsa la coppia di grigli, rifrita alla corrnt mdia I 0, è data da: I 1 = 2I 0 J 1 () (2338) in cui: I 0 = corrnt mdia dl fascio lttronico di ritorno }{{} = πα t x0 α = V V 0 = πt x0 = ( π n 1 ) (2339) 4 J 1 () = funzion di Bssl di prima spci, ordin 1 argomnto }{{} 23-9

10 234 - Ammttnza propria dl fascio lttronico La fas dlla corrnt I 1 risptto alla tnsion V dipnd dal tmpo mdio di viaggio t x0 S tal intrvallo di tmpo soddisfa la condizion vista sopra, la I 1 risulta in opposizion di fas con V S invc t x0 t n in gnral I 1 si potrà scrivr sotto la forma: ) I 1 = 2I 0 J 1 () (sinωt x0 + icos ωt x0 (2341) si ossrvi infatti ch pr t x0 = t n = cos ωt x0 = 0 Il rapporto ( n 1 ) si ha sinωt x0 = 1 (opposizion di fas) 4 Y 1 = I 1 (2342) V si può chiamar ammttnza propria dl fascio lttronico sulla frqunza fondamntal di accordo dlla cavità Poichè dalla (2339) si ha: V = αv 0 = π t x0 V 0 sostitundo nlla (2342) risulta: Ponndo: Y 1 = I 1 V = 2π I 0 t x0 V 0 J 1 () ( ) sinωt x0 + icos ωt x0 (2343) G 0 = I 0 V 0 = 1 R 0 = conduttanza statica dl fascio lttronico (2344) Θ x0 = 2π t x0 = durata mdia dl viaggio dgli lttroni in radianti ch chiamrmo angolo di transito mdio (2345) si ha: ch si può scrivr: dov: J 1 () ( ) Y 1 = Θ x0 G 0 sinθ x0 + icos Θ x0 G 1 = Θ x0 G 0 J 1 () B 1 = Θ x0 G 0 J 1 () (2346) Y 1 = G 1 + ib 1 (2347) x0 dinamica dl fascio sin Θ { conduttanza cos Θ x0 dinamica dl fascio { suscttanza (2348) (2349)

11 G 1 /G Ohmica positiva Conduttanza dinamica dl fascio V p dcrscnt Ohmica positiva Ohmica positiva 3 6 t 1 =3/4 (n=1) Ohmica ngativa t 2 =7/4 (n=2) (n=3) t 3 =11/4 Ohmica ngativa t x0 / fig234-1a B 1 /G Capacitiva Suscttanza dinamica dl fascio Capacitiva Capacitiva 3 Induttiva 6 Induttiva t x0 / fig234-1b Induttiva L figur 234-1a 234-1b (pr = 0) mttono in vidnza ch l ammttnza Y 1 dl fascio lttronico assum, al variar di t x0 (cioè dlla tnsion acclratric V 0 di qulla ritardatric V p ) altrnativamnt natura capacitiva, ohmica, induttiva ohmica ngativa Qust ultima natura significa ovviamnt ch il tubo è in grado di compnsar l nrgia dissipata da un circuito strno, quando la compnsazion è complta, cioè quando la conduttanza ngativa dl fascio è suprior a qulla positiva (di prdita) dl 23-11

12 circuito strno, il sistma ntra in rgim di oscillazioni spontan cioè divin gnrator B 1 /G Spiral dll ammttnza dl fascio 11/4 n=3 7/4 n=2 3/4 n=1 3/2 V p dcrsc /2 G 1 /G 0 fig234-2 all figur si vd ch i massimi di conduttanza ngativa si ottngono ngli istanti 3 4,7 4,11 ch in tali istanti risulta: 4 n t G 1 G π = π = π = 864 Qusti calcoli sono stati sguiti pr = 0 Prciò, s pr smpio un sistma risonant (cavità) connsso fra l du grigli di un lystron rflx ha una conduttanza positiva di prdita G = 4G 0, il sistma non può oscillar s il tmpo mdio di transito è pari a 3 prchè in tali condizioni la conduttanza 4 ngativa G 1 = 236G 0 non risc a suprar qulla G dl sistma risonant; s invc, rgolando l tnsioni V 0 V p, si fa in modo ch il tmpo di transito sia dll ordin di 7 4, il lystron oscillrà prchè G 1 = 55G 0 supra G = 4G 0 In gnral possiamo dir ch la condizion di prsistnza è carattrizzata non solo dall annullamnto dlla conduttanza total ma anch dall annullamnto dlla suscttanza 23-12

13 total (risonanza), cioè: G + G 1 = 0 ; B + B 1 = 0 = Y + Y 1 = 0 (23410) dov: G, B, Y sono rlativ al circuito risonant, mntr G 1, B 1, Y 1 al fascio lttronico dl lystron Fin dl Cap

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1. Studiamo la funzion q ( = at, ssndo a b costanti rali con a >. Il dominio dlla funzion è tutto R la funzion è ovunqu continua. Il grafico dlla funzion non

Dettagli

Ingegneria dei Sistemi Elettrici_3c (ultima modifica 22/03/2010)

Ingegneria dei Sistemi Elettrici_3c (ultima modifica 22/03/2010) Inggnria di Sistmi Elttrici_3c (ultima modifica /03/00) Enrgia Forz lttrostatich P F + + Il lavoro richisto nl vuoto pr portar una carica lntamnt, (prché possano ritnrsi trascurabili sia l nrgia cintica

Dettagli

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima modifica 17/10/2017) Energia e Forze elettrostatiche R 12 F Q 2

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima modifica 17/10/2017) Energia e Forze elettrostatiche R 12 F Q 2 + ELETTOMAGNETISMO APPLICATO ALL'INGEGNEIA ELETTICA ED ENEGETICA_B (ultima modifica 7/0/07) Enrgia Forz lttrostatich F Una carica positiva posta in un punto P a distanza da una carica positiva fissa ch

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag. Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. atg Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag.9 ln

Dettagli

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl )

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl ) Spttro roto-vibrazional di HCl (H 5 Cl, H 7 Cl ) SCOPO: Misurar l nrgi dll transizioni vibro-rotazionali dll acido cloridrico gassoso utilizzar qust nrgi pr calcolar alcuni paramtri molcolari spttroscopici.

Dettagli

Calore Specifico

Calore Specifico 6.08 - Calor Spcifico 6.08.a) Lgg Fondamntal dlla Trmologia Un modo pr far aumntar la Tmpratura di un Corpo è qullo di cdr ad sso dl Calor, pr smpio mttndolo in Contatto Trmico con un Corpo a Tmpratura

Dettagli

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni:

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI VALENTINA CASARINO Esrcizi pr il corso di Analisi Matmatica (Inggnria Gstional, dll Innovazion dl Prodotto, Mccanica Mccatronica, Univrsità dgli studi di Padova)

Dettagli

Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica

Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica srcitaion Francsca pollonio Dipartimnto Inggnria lttronica -mail: () t cos( ω t ϕ) ampia pulsaion Vttori complssi Data una granda scalar (t) variabil cosinusoidalmnt nl tmpo fas i può sprimr (t) com sgu:

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del NOME:... MATRICOLA:.... Corso di Laura in Fisica, A.A. 00/0 Calcolo, Esam scritto dl 3.0.0 Data la funzion f(x = x +x, a dtrminar il dominio (massimal di f ; b trovar tutti gli asintoti di f ; c trovar

Dettagli

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata CURVE DI PROBABILITÀ PLUVIOMETRICA L curv di probabilità pluviomtrica sprimono la rlazion fra l altzz di prcipitazion h la loro durata t, pr un assgnato valor dl priodo di ritorno T. Tal rlazion vin spsso

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Facciamo riferimento al piano di Nyquist, nel quale rappresentiamo la G(jω) come: = (2)

Facciamo riferimento al piano di Nyquist, nel quale rappresentiamo la G(jω) come: = (2) # LUOHI E CARTE NELLA SINTESI PER TENTATIVI IN ω # Rifrimnto: A.Frrant, A.Lpschy, U.Viaro Introduzion ai Controlli Automatici. Editric UTET, Cap. 9. Prima dll ra di PC la sintsi pr tntativi nl dominio

Dettagli

dove A è una costante caratteristica dello specifico metallo e k è la costante di Boltzmann.

dove A è una costante caratteristica dello specifico metallo e k è la costante di Boltzmann. ) Il riscaldamnto dl filo comporta la cssion di nrgia al rticolo cristallino quindi agli lttroni dgli orbitali più strni; s l nrgia acquisita dagli lttroni risulta suprior all nrgia di lgam (Vi, do Vi

Dettagli

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015 L soluzioni dlla prova scritta di Matmatica dl Fbbraio 5. Sia data la funzion a. Trova il dominio di f f b. Scrivi, splicitamnt pr stso non sono sufficinti disgnini, quali sono gli intrvalli in cui f è

Dettagli

DIODO SCHOTTKY. Si tratta del più semplice dispositivo unipolare, in cui cioè la corrente è legata esclusivamente ai portatori maggioritari.

DIODO SCHOTTKY. Si tratta del più semplice dispositivo unipolare, in cui cioè la corrente è legata esclusivamente ai portatori maggioritari. OO SCHOTTKY Si tratta dl più smplic dispositivo unipolar, in cui cioè la corrnt è lgata sclusivamnt ai portatori maggioritari. livllo dl vuoto q q s E Fm q m E Fs E Fm q( m -) q( m - s )= bi E Fs prima

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 24/25 2 gnnaio 25 TESTO E SOLUZIONE Esrcizio In rifrimnto allo schma a blocchi in figura. s3 r y 2 s2 s y K Domanda.. Dtrminar una ralizzazion in quazioni

Dettagli

Potenziale ed energia potenziale y

Potenziale ed energia potenziale y Potnzial d nrgia potnzial ) Siano dat du carich puntiformi positiv Q =Q Q =9Q, dispost sullo stsso ass rispttivamnt ad una distanza 3 dal punto (vdi figura). a) il lavoro ncssario pr portar una carica

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste Infinitsimi dtto infinitsimo una qualsiasi quantita tndnt a zro quando una opportuna variabil tnd ad assumr un dtrminato valor dati du infinitsimi α β α β non sono paragonabili tra loro s il lim β α non

Dettagli

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max 16-1 Copyright 009 Th McGraw-Hill Companis srl RISOLUZIONI CAP. 16 16.1 Nl flusso laminar compltamnt sviluppato all intrno di un tubo circolar vin misurata la vlocità a r R/. Si dv dtrminar la vlocità

Dettagli

Forza d interesse e scindibilità. Benedetto Matarazzo

Forza d interesse e scindibilità. Benedetto Matarazzo orza d intrss scindibilità Bndtto Matarazzo Corso di Matmatica inanziaria Rgimi finanziari Oprazioni finanziari Intrss Sconto Equivalnz finanziari Rgim dll intrss smplic Rgim dll intrss composto Rgim dll

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzion di problmi a) f rapprsnta un fascio di funzioni omografich, al variar dl paramtro a in R, s si vrifica la condizion: a$ (- a) +! 0 " a!! S a!! il grafico rapprsnta iprboli quilatr di asintoti

Dettagli

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE Ni paragrafi prcdnti abbiamo dtrminato, pr l vari quazioni diffrnziali saminat, l soluzioni di quilibrio dl modllo. In qusto paragrafo,

Dettagli

FUNZIONI. Dominio: il dominio di una funzione è l insieme delle x in cui una funzione è definita.

FUNZIONI. Dominio: il dominio di una funzione è l insieme delle x in cui una funzione è definita. FUNZIONI Dominio: il dominio di una funzion è l insim dll in cui una funzion è dfinita. Funzioni Fratt: una funzion si dic fratta quando compar la al dnominator Pr calcolar il dominio di una funzion fratta

Dettagli

Poiché l argomento del logaritmo naturale è una quantità sempre positiva, basta imporre che l argomento dell arcoseno sia compreso tra 1 ed 1, cioè:

Poiché l argomento del logaritmo naturale è una quantità sempre positiva, basta imporre che l argomento dell arcoseno sia compreso tra 1 ed 1, cioè: 78 ( ) Funzion 6: f( ) arcsnln + (funzion trascndnt) CAMPO DI ESISTENZA Poiché l argomnto dl logaritmo natural è una quantità smpr positiva, basta imporr ch l argomnto dll arcosno sia comprso tra d, cioè:

Dettagli

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità.

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità. 6-0 6- I critri di rsistnza (o tori dlla rottura) dfiniscono un lgam tra lo stato tnsional la sua pricolosità. Ogni stato tnsional può ssr rapprsntato da una funzion scalar dll tnsioni principali ch può

Dettagli

Soluzioni delle Esercitazioni XI 10-14/12/2018. A. Funzioni di 2 variabili Insiemi di esistenza

Soluzioni delle Esercitazioni XI 10-14/12/2018. A. Funzioni di 2 variabili Insiemi di esistenza Soluzioni dll Esrcitazioni XI 0-4//08 A. Funzioni di variabili Insimi di sistnza Si tratta di porr la (o l) condizioni pr cui risulta dfinita la funzion f.. La funzion è f(, ) = ln( +). L unica condizion

Dettagli

Condensatori e dielettrici

Condensatori e dielettrici La fibrillazion è una contrazion disordinata dl muscolo cardiaco. Un fort shock lttrico può ripristinar la normal contrazion. Pr usto è ncssario applicar al muscolo una corrnt di A pr un tmpo di ms. L

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria. Corso di Elettrotecnica Scritto del 15 giugno 2001

Università degli Studi di Bergamo Facoltà di Ingegneria. Corso di Elettrotecnica Scritto del 15 giugno 2001 Univrsità dgli Studi di Brgamo Facoltà di nggnria Corso di lttrotcnica Scritto dl 5 giugno Soluzion a cura di: Balada Marco srcizio. La prima cosa da far è analizzar il circuito trovar l possibili smplificazioni,

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie 4/11/015 Equazioni diffrnziali ordinari Equazioni diffrnziali ordinari Equazioni diffrnziali dl 1 ordin a variabili sparabili, Equazioni diffrnziali linari dl 1 ordin Equazioni diffrnziali dl 1 ordin non

Dettagli

Analisi di Fourier e campionamento a

Analisi di Fourier e campionamento a Analisi di Fourir campionamnto a 6.0 Introduzion Quando si studiano squnz di input discrt nl tmpo, la toria dl trattamnto di sgnali discrti nl tmpo, è una toria a s stant ch non ncssita di rifrimnti dirtti

Dettagli

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2.

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2. 7 LEZIOE 7 Esrcizio 7 Trovar la soluzion dll sgunti quazioni diffrnziali di Brnoulli, ciascuna con condizion inizial y) = La prima quazion è y x) =yx) y x) Si può dividr pr il trmin di grado più alto in

Dettagli

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor

Dettagli

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI Corso di Laura in Inggnria Elttronica NLISI E TRSMISSIONE DEI SEGNLI Soluzioni prova scritta dl /6/ Esrcizio Si considrino i du sgnali x ( t) = sinc( t / T) x( t) = sinc( t / T ) i) Si trovi l sprssion

Dettagli

Enrico Borghi EFFETTO ZEEMAN

Enrico Borghi EFFETTO ZEEMAN Enrico Borghi EFFETTO ZEEMN È noto col nom di fftto Zman (Pitr Zman, 1896) il fnomno pr cui l righ dllo spttro di un atomo sottoposto a un campo magntico B si scindono in un crto numro di componnti la

Dettagli

Esercizi sugli studi di funzione

Esercizi sugli studi di funzione Esrcizi sugli studi di funzion Studiar l andamnto tracciar il grafico dll sgunti funzioni di : (a) ; (b) 4 3 + ; (c) cos sin ; (d) 3 ; () log 3 ; (f) arctg + ; (g) ( + ) log ; (h) sin ; (i) tg ; (j) +

Dettagli

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA Corso di laura in Scinz intrnazionali diplomatich corso di OLITICA ECONOMICA SAVERIA CAELLARI Curva di offrta aggrgata di brv priodo; quilibrio domanda offrta aggrgata nl brv nl lungo priodo Aspttativ

Dettagli

Sistemi trifase. Parte 1. (versione del ) Sistemi trifase

Sistemi trifase. Parte 1.   (versione del ) Sistemi trifase Sistmi trifas Part www.di.ing.unibo.it/prs/mastri/didattica.htm (vrsion dl 5--08) Sistmi trifas l trasporto la distribuzion di nrgia lttrica avvngono in prvalnza pr mzzo di lin trifas Un sistma trifas

Dettagli

Distribuzione gaussiana

Distribuzione gaussiana Appunti di Misur Elttric Distribuion gaussiana Funion dnsità di probabilità di Gauss... Calcolo dlla distribuion cumulativa pr una variabil di Gauss... Funion dnsità di probabilità congiunta...6 Funion

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

POTENZE NECESSARIE E DISPONIBILI

POTENZE NECESSARIE E DISPONIBILI POTENZE NECESSARIE E DISPONIBILI In qusto capitolo ci proponiamo di dtrminar l curv dll potnz ncssari pr l vari condizioni di volo. Tali curv dipndranno da divrsi fattori com il pso dl vlivolo, la quota,

Dettagli

Esame di Fisica 2. Corso Interateneo di Ing. Informatica e Biomedica 22/07/2011

Esame di Fisica 2. Corso Interateneo di Ing. Informatica e Biomedica 22/07/2011 sam i Fisica orso ntratno i ng. nformatica Biomica 7 Problma Sia ato un filo conuttor tituito a u lunghi fili rttilini raccorati a un tratto smicircolar i raggio, com rapprsntato in figura. l filo è prcorso

Dettagli

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità.

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità. 6-0 6- I critri di rsistnza (o tori dlla rottura) dfiniscono un lgam tra lo stato tnsional la sua pricolosità. Ogni stato tnsional può ssr rapprsntato da una funzion scalar dll tnsioni principali ch può

Dettagli

f x è pari, simmetrica rispetto all asse y, come da

f x è pari, simmetrica rispetto all asse y, come da Esam di Stato 7 Problma Confrontiamo alcun proprità dlla funzion con l informazioni dducibili dal grafico: f f quindi figura f, compatibil con il grafico Imponiamo ch f a Notiamo ch f è pari, simmtrica

Dettagli

Esercizi riguardanti l integrazione

Esercizi riguardanti l integrazione Esrizi riguardanti l intgrazion. Trovar una primitiva dlla funzion f. Calolar il sgunt intgral indfinito d. Trovar una primitiva dlla funzion f. Tra tutt l primitiv dlla funzion f os sn, dtrminar qulla

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018 Univrsità di Pisa - Corso di Laura in Informatica Analisi Matmatica A Pisa, fbbraio 08 omanda A C log + 0 + = C omanda La funzion f : 0, + R dfinita da f = + A ha minimo ma non ha massimo è itata ma non

Dettagli

Approfondimenti. Rinaldo Rui. ultima revisione: 6 settembre Secondo Principio della Termodinamica

Approfondimenti. Rinaldo Rui. ultima revisione: 6 settembre Secondo Principio della Termodinamica Approfondimnti Rinaldo Rui ultima rvision: 6 sttmbr 2019 3 Scondo Principio dlla rmodinamica 3.5 Lzion #13 3.5.2 Enrgia Intrna d Entropia di Sistmi Idrostatici Abbiamo sinora visto ch un sistma idrostatico

Dettagli

I Bonus di Fisica Nucleare e Subnucleare 1 - AA 2018/2019

I Bonus di Fisica Nucleare e Subnucleare 1 - AA 2018/2019 I Bonus di Fisica uclar Subnuclar 1 - AA 018/019 17 April 019 OME E COGOME: CAALE: 1 Un acclrator di lttroni positroni di 10 GV di nrgia ciascuno, i cui impulsi sono dirtti lungo l ass z nl sistma di rifrimnto

Dettagli

EQUAZIONI DIFFERENZIALI. Saper integrare equazioni differenziali del primo ordine lineari e a variabili separabili.

EQUAZIONI DIFFERENZIALI. Saper integrare equazioni differenziali del primo ordine lineari e a variabili separabili. EQUAZIONI DIFFERENZIALI OBIETTIVI MINIMI Sapr riconoscr classificar l quazioni diffrnziali. Sapr intgrar quazioni diffrnziali dl primo ordin linari a variabili sparabili. Sapr intgrar quazioni diffrnziali

Dettagli

Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ).

Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ). Soluzioni Data la unzion a trova il dominio di b indica quali sono gli intrvalli in cui risulta positiva qulli in cui risulta ngativa c dtrmina l vntuali intrszioni con gli assi d studia il comportamnto

Dettagli

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla Esam di Stato 8 sssion suppltiva Problma La condizion richista è soddisfatta quando il primo massimo dlla curva, di ascissa, si trova sulla bisttric dl primo quadrant, pr cui (tutt l misur linari sono

Dettagli

Analisi Matematica I Soluzioni tutorato 8

Analisi Matematica I Soluzioni tutorato 8 Corso di laura in Fisica - Anno Accadmico 7/8 Analisi Matmatica I Soluzioni tutorato 8 A cura di David Macra Esrcizio (i) abbiamo ch R( i) I( i), quindi inoltr,dividndo pr il modulo i (R( i)) + (I( i))

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

Il transistor bipolare a giunzione (bjt( bjt) Dispositivi elettronici. npn bjt (bipolar junction transistor) pnp bjt (bipolar junction transistor)

Il transistor bipolare a giunzione (bjt( bjt) Dispositivi elettronici. npn bjt (bipolar junction transistor) pnp bjt (bipolar junction transistor) Sommario Dispositivi lttronici l transistor bipolar a giunzion (bjt( bjt) l transistor bipolar a giunzion (bjt) com è fatto un bjt principi di funzionamnto (giunzion a bas corta) fftto transistor (

Dettagli

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE Indic 1. Funzioni implicit 1. Ottimizzazion vincolata. Esrcizi 4.1. Funzioni implicit 4.. Ottimizzazion vincolata 6 1. Funzioni implicit Ricordiamo ch s

Dettagli

I Compitino di Fisica Generale II di Ingegneria CIVILE 7 MAGGIO 2011.

I Compitino di Fisica Generale II di Ingegneria CIVILE 7 MAGGIO 2011. I ompitino di Fisica Gnral II di Inggnria IVILE 7 MAGGIO. Esrcizio : Una carica lttrica = µ è distribuita uniformmnt su un arco di circonfrnza di raggio = cm ch sottnd un angolo = 6 risptto al cntro dlla

Dettagli

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi Nom, Cognom... Matricola... ANALISI MATMATICA PROA SCRITTA CORSO DI LAURA IN INGGNRIA MCCANICA A.A. 7/8 Libri, appunti calcolatrici non ammssi Prima part - Lo studnt scriva solo la risposta, dirttamnt

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

Esempi domande. PIL nominale nell'anno t *100 PIL reale nell'anno t. Dalla definizione di deflatore discende che è vera anche la d)

Esempi domande. PIL nominale nell'anno t *100 PIL reale nell'anno t. Dalla definizione di deflatore discende che è vera anche la d) Esmpi domand A) S il cofficint di risrva obbligatoria è dl 5% allora il moltiplicator montario a) è pari a b) è pari a 3 c) è pari a 4 d) è pari a 5 ) nssuna l prcdnti RISOSTA: nlla formulazion più smplic

Dettagli

Antenne e Telerilevamento. Esonero I ESONERO ( )

Antenne e Telerilevamento. Esonero I ESONERO ( ) I ESONERO (28.6.21) ESERCIZIO 1 (15 punti) Si considri un sistma ricvnt oprant alla frqunza di 13 GHz, composto da un antnna a parabola a polarizzazion linar con un rapporto fuoco-diamtro f/d=.3, illuminata

Dettagli

ESERCIZI AGGIUNTIVI - MODELLO OA - DA

ESERCIZI AGGIUNTIVI - MODELLO OA - DA ESERCIZIO n. 1 ESERCIZI AGGIUNTIVI - MODELLO OA - DA Considrat un conomia carattrizzata dall sgunti quazioni: DA: OA: 15 M 2 ˆ.5( ) Suppont ch l conomia si trovi, al tmpo, in una situazion di quilibrio

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 29 giugno 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 29 giugno 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 9 giugno 01 1) Un blocco di massa m 500g vin tirato mdiant una fun lungo un piano inclinato di 60, scabro, si muov con acclrazion costant pari

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 09 aprile 2018 (prof. M. Bisceglia) Traccia A. x 2x

Matematica per l Economia (A-K) e Matematica Generale 09 aprile 2018 (prof. M. Bisceglia) Traccia A. x 2x Matmatica pr l Economia (A-K) Matmatica Gnral 9 april (pro. M. Biscglia) Traccia A. Dtrminar s possibil un punto di approssimaion con un rror dll quaion nll intrvallo.. Data la union.. Studiar la union

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014 Matmatica Statistica - Scinz Ambintali Esam 4 Fbbraio 014 Esrcizio 1 - Part A Supponiamo di conoscr l misur a, b c di tr grandzz con la sgunt incrtzza: 1.15 < a < 1.19 10.03 < b < 10.0 7.13 < c < 7.1 Quali

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a.

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a. Disquazioni di I grado La forma gnral di una disquazion di primo grado è la sgunt: a + b > o a + b < con a b numri rali. La soluzion dlla disquazion si ottin dai sgunti passaggi: a + b > a > b > < b s

Dettagli

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006 Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Trza part Com visto nll parti prcdnti pr potr dscrivr una curva data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: ) Dtrminar l insim di sistnza

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1 Matmatica pr l Economia (A-K) Matmatica Gnral gnnaio 8 (pro. Biscglia) Traccia F. Dtrminar, s possibil, un punto di approssimazion con un rror, dll quazion 5, nll intrvallo,.. Calcolar, s possibil, il

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9.

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9. Qusito 8. orso di ln 8 + ) ln + )) Analisi Matmatica I inggnria, lttr: KAA-MAZ docnt:. allgari Prova simulata n. A.A. 8- Ottobr 8. Introduzion Qui di sguito ho riportato tsti, svolgimnti dlla simulazion

Dettagli

Appunti di Statistica

Appunti di Statistica Appunti di Statistica Appunti dall lzioni Nicola Vanllo 27 dicmbr 2018 2 Capitolo 1 Variabili Alatori Discrt 1.1 Variabil alatoria di Brnoulli Una variabil alatoria di Brnoulli, può assumr du valori, dnominati

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2 Politcnico di Milano Inggnria Industrial Analisi Gomtria Esrcizi sull curv. Si considri la curva x t + t : y 6 + 4t t t t R. z t t (a) Stabilir s la curva piana. (b) Stabilir s la curva smplic. (c) Stabilir

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

ELETTROSTATICA. NB: in tutti gli esercizi che seguono, anziché la. costante k 0 si utilizza. 1 4πε

ELETTROSTATICA. NB: in tutti gli esercizi che seguono, anziché la. costante k 0 si utilizza. 1 4πε ELETTOSTATICA NB: in tutti gli srcizi ch sguono, anziché la costant k si utilizza 4πε ) In ciascun vrtic di un triangolo quilatro il cui lato è lungo 5 cm, è posta una carica puntiform q +,7 µc. Dtrminar

Dettagli

Teoria microscopica della conduzione elettrica. Indice

Teoria microscopica della conduzione elettrica. Indice Toria microscopica dlla conduzion lttrica Indic 1. Un modllo microscopico dlla conduzion lttrica 1.1 Modllo classico dlla conduzion 1. Intrprtazion classica di v m di 1.3 Difficoltà dll intrprtazion classica.

Dettagli

Le soluzioni della prova scritta di Matematica del 9 Giugno 2015

Le soluzioni della prova scritta di Matematica del 9 Giugno 2015 L soluzioni dlla prova scritta di Matmatica dl 9 Giugno. Sia data la unzion a. Trova il dominio di b. Scrivi, splicitamnt pr stso non sono suicinti disgnini, quali sono gli intrvalli in cui è positiva

Dettagli

Criteri basati sullo stato di deformazione!massima deformazione normale (Poncelet-de St. Venant-Grashof)

Criteri basati sullo stato di deformazione!massima deformazione normale (Poncelet-de St. Venant-Grashof) Critri dirttamnt basati sullo stato di tnsion!massima tnsion normal (Ranin-Lamé-Navir)!Massima tnsion tangnzial (Trsca-Gust)!Curva dlla rsistnza intrinsca (Coulomb-Mohr)!Massima tnsion tangnzial ottadral

Dettagli

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico Misurazion dl valor mdio di una tnsion tramit l uso di un voltmtro numrico La zion si conduc slzionando la funzion dc dllo strumnto collgando i trminali dllo strumnto al gnrator sotto zion: tnndo conto

Dettagli

PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 31 GENNAIO 2018 CORREZIONE

PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 31 GENNAIO 2018 CORREZIONE PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 7/8 GENNAIO 8 CORREZIONE SE AVETE FATTO IL COMPITO A SOSTITUITE a ; COMPITO B a ; COMPITO C a 5; COMPITO D a 4; Esrcizio,

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

x ( sin x " ha una unica soluzione x " 0. 0,0

x ( sin x  ha una unica soluzione x  0. 0,0 PROBLEMA ESAME DI STATO CORSO DI ORDINAMENTO ANNO 8-9 ) L ara richista è la diffrnza dll ara dl sttor circolar qulla dl triangolo AOB, cioè S r ( r sin " r & ( sin ) Posto r= si ha S$ % " & ( sin$ % '.

Dettagli

Applicazioni dell integrazione matematica

Applicazioni dell integrazione matematica Applicazioni dll intgrazion matmatica calcolo dlla biodisponibilità di un farmaco Prof. Carlo Albrini Indic Indic 1 Elnco dll figur 1 1 Prliminari 1 Intrprtazion matmatica dl problma 3 Elnco dll figur

Dettagli

ANALISI MATEMATICA I CALCOLO DIFFERENZIALE / ESERCIZI PROPOSTI

ANALISI MATEMATICA I CALCOLO DIFFERENZIALE / ESERCIZI PROPOSTI ANALISI MATEMATICA I CALCOLO DIFFERENZIALE / ESERCIZI PROPOSTI L astrisco contrassgna gli srcizi più difficili.. Calcolar la drivata dll sgunti funzioni (drivabili in tutti i punti dl loro dominio): a)

Dettagli

11 Funzioni iperboliche

11 Funzioni iperboliche 11 Funzioni iprbolich 11.1 L funzioni iprbolich: dfinizioni grafici L funzioni iprbolich sono particolari combinazioni di di. Hanno numros applicazioni nl campo dll inggnria si prsntano in modo dl tutto

Dettagli

OPERATORI DIFFERENZIALI IN COORDINATE POLARI. Indice 1. Gradiente in coordinate polari 1 2. Laplaciano in coordinate polari 3 3.

OPERATORI DIFFERENZIALI IN COORDINATE POLARI. Indice 1. Gradiente in coordinate polari 1 2. Laplaciano in coordinate polari 3 3. OPERATORI DIFFERENZIALI IN COORDINATE POLARI Indic 1. Gradint in coordinat polari 1 2. Laplaciano in coordinat polari 3 3. Esrcizi 4 1. Gradint in coordinat polari Sia f una funzion di class C 1 dfinita

Dettagli

Le tranformazioni canoniche nella meccanica quantistica. P. Jordan a Gottinga

Le tranformazioni canoniche nella meccanica quantistica. P. Jordan a Gottinga L tranformazioni canonic nlla mccanica quantistica P. Jordan a Gottinga (ricvuto il 27 april 926) Vin data una dimostrazion d una congttura avanzata da Born, Hisnbrg dall autor, c la trasformazion canonica

Dettagli

Le coniche e la loro equazione comune

Le coniche e la loro equazione comune L conich la loro quazion comun L conich com ombra di una sra Una sra ch tocca il piano π nl punto F è illuminata da una sorgnt puntiorm S. Nl caso dlla igura l'ombra dll sra risulta una suprici dlimitata

Dettagli