Definizioni. la Trasformata Zeta è definita come la seguente serie di potenze (o serie di Laurent)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Definizioni. la Trasformata Zeta è definita come la seguente serie di potenze (o serie di Laurent)"

Transcript

1 Deo L trsort et rreset l cotrorte dscret dell trsort d Llce el cso coto, che cosete d rsolvere eqo lle deree ler tldo selc olo lerche. Dl to d vst strettete tetco dt seqe d er {(} detcete ll er vlor etv dell vrle teorle dscret: (,, l Trsort et è det coe l seete sere d otee (o sere d Lret [ ] ( ( ell vrle coless. I qto sere d er coless ( è ess stess coless. L trsort et cosete d re seqe d er oe dell vrle coless DE. L seqe {(} è dett seqe eertrce d ( eoe d covere L vltoe d ( to qlss, coè l s e, ò essere t o t. L see de vlor d er ql l e d ( è t è cht reoe d covere, etre l set oosto è dett reoe d dvere d ( l esste d ( è let ll esste d leo vlore dell vrle er c l sere recedete è t I tl cso s estede l s deoe ttt l eleet del o Attrsoroe d π ( ( Co terle tto s crcoere chs d cetro e ro to Qest orl è solo teorc! I reltà s so tecche d ttrsoroe eo colcte ATTEIOE: t se rere: ossoo coteere error

2 Clcolo delle Prcl Trsorte Ilso,,3, δ Alcho l deoe { } δ δ eoe d covere: vlore d Grdo,,,,3 η Alcdo l deoe otteo: { } η η Dressoe: sere eoetrc troct d - rchè Qd se cco qesto stesso dscorso, osso ottere η Posso dre che { } η η η Qest sere covere se >, e rtcolre { } η sdo l deoe otteo: { } D c { } Metto evde - { } 3 cco che q sere troct d ATTEIOE: t se rere: ossoo coteere error

3 ( ( 3 ( 3 ( ( ( ( ( ( 3.. Pertto ( { ( } ( Se >: { ( } ( ( > ( Seqe eoetrc L seqe se d er let llo stdo d sste ler dscret è l seqe eoetrc:,,.. (,,3, Dove ò essere qlss ero ssto C L trsort et d tle seqe è: ( Per vltre qest so t,cosdero l esressoe troct d ter d (: (. Chrete er, qest covere s (. ( ò essere vst coe so eoetrc troct che er l dettà: ( rchè ( Pertto: ( S ot che l solo tere che dede d è: ( S - scrtto or olre: θ e Allor θ ( e, vedoe qd l coorteto. Pertto, er vlor d tl che <, l ero colesso - tederà ero. ATTEIOE: t se rere: ossoo coteere error 3

4 Proretà dell Trsort D seto soo dostrte le rcl roretà dell trsort Lertà So ( e ( de sccesso e e de er rel, llor: { } { } { } trdo S ovvero l seqe sostt vt d stt d teo Allor { } { } tt { } { }.B. Per seqee o ooltere ( c ( er < l teore del rtrdo dvet Atco ovvero l seqe sostt detro d stt d teo. S { } Q occorre re tteoe che qdo trslo detro, l eleet r d o ossoo essere cosdert dll trsort, vreo tt: { } Moltlcho er { } ( ( τ τ τ τ τ τ Posso cor scrvere Prodotto er l esoele { } ˆ Itt { } ˆ ATTEIOE: t se rere: ossoo coteere error 4

5 Dervt { } d d ˆ Itt { } ( d d d d ˆ Teore del Vlore Ile > tt > > Teore del Vlore le Se l te esste llor > Seqe Perodc Soo s erodc d erodo T e deo,,., T { } T ˆ Per dostrrlo cco l trsort { } T T T T T T ˆ ˆ ˆ Covoloe Dte de seqee ltere, s desce l loro covoloe, * * cco l trsort d qest cos { } ( ( ( ( { } { } { } { } Otteo qd che { } { } } { * *.B. Il tto che l sotor d covoloe el doo dell trsort s trsor selce rodotto è roretà olto ortte che s vedrà qdo s rlerà de sste ATTEIOE: t se rere: ossoo coteere error 5

6 teodscret. ATTEIOE: t se rere: ossoo coteere error 6

7 Attrsort et Esstoo dvers od er re le trsorte. Q vedreo lo svlo d Hevsde. L de è l seete: S scoosoe rtt selc d oe role S ttrsor oo de tt selc (che coe vedreo corrsode ttrsorte otevol Pol selc Dto oe role ( ( ( D( ( Se o c soo er osso decoorre coe ( ( Dove l resdo è: ( ( Itt così decooedo ossoo ll e scrvere ( ( ( ( Se c soo er vece s : ( ( L ttrsort dvet ( ( Pol coless e cot ( ( Qesto retr el cso recedete del clcolo e resde, tt s ottee λ λ D solto l s rscrve coe λ λ e[ λ] λ Co e rel Le ttrsorte che s so soo ATTEIOE: t se rere: ossoo coteere error 7

8 s ( θ s θ cos( θ ( cos( θ cos θ cos( θ Cso ol ltl ( h h h ( ( (. S ò decoorre coe r h h ( h ( h Dove l resdo s clcol coe h ( h h! d d h h h h h [( ( ] Le ttrorte qesto cso soo ( ( ( ( Dove s rcord che l coecete ole è:! (!! ATTEIOE: t se rere: ossoo coteere error 8

9 Eserc relotv Eserco Clcolre l trsort del seete sele e lcre l teore del vlore le Soloe Qesto è sele d erodo 3 L trsort d sol teroe del sele è E qd l trsort del sele colessvo dvet T Teore del vlor le: Eserc relotv Eserco Dt de sel re l covoloe d qest de sel Soloe cco l trsort de de sel. Il ro lo osso vedere coe r tr eo r tr trslt d de tà d teo L secod è rdo trslt d o ( L loro covoloe dvet rodotto el doo ( ( { } r r ATTEIOE: t se rere: ossoo coteere error 9

10 Eserc relotv Eserco 3 Dto rdo re l covoloe co sele l c trsort è G ( l teore del vlor le e ttrsorre Soloe G( ( (.9. ( 5 Teore del vlor le: (. 8 ( (.5 (.5.5 Attrsoro (.9 ( (.5 (.5.9 (. 8 ( ( (.8.8 Ovvero ttrsordo (.8.8(.5.9.5, lcre ATTEIOE: t se rere: ossoo coteere error

11 Soloe eqoe lle deree trdo C s chede dto sste or d rtrdo e dto resso ooltero e delle codo l,,,,, qle s l sct (t del sste d dto resso oto. Alcho l teore del rtrdo er sccesso o ooltere ( ( ( ( Ovvero ( ( D c Il ro tere rede oe d rsost ort (dede solo dl oreto e l secodo d rsost ler del sste (dede solo dlle codo l., ATTEIOE: t se rere: ossoo coteere error

12 Soloe eqoe lle deree Atco Ovvero ( Dove. Se lcho l trsort er l teore dell tco otteo ( ( ( Ovvero or cott D c oldo osso scrvere: ( ( A qesto to otterreo l sct S ot coe l sct è dvdle de rt. r che è l rsost ort del sste, e secod che dede d r e co d resso e sct rsettvete. S ot che se r co dell sct e r dell resso, o è ossle clcolre vocete l rsost del sste..b. I vlor o soo codo l soo r co dell sct, che coredoo s l cotrto delle codo l che l cotrto de r ( (,,, co dell resso! ATTEIOE: t se rere: ossoo coteere error

13 Eseo S dto sste dco esresso ell seete or (.3(.( (.5( Clcolre l rsost l rdo er codo l lle (.3. ( (.5 ( D c (.5 (.3. ( ( (.(. A qesto to o l rdo.5 (.5 (.(. (.(.( E scooo rtt selc l seete ( (.5 ( 3 (.(.( (. (. ( D c (.5 (.5 (.5... (.(.(. (.( (.3(.9.8 (.5 (.5 (.5 ( (.(.(. (.( (.(. (.(.8 (.5 ( q.4. (.(.( (.(. (.9(.8 A qesto to: ( { ( } 3 (. (. 3 ( (. (. ( Eseo S l sste (.3( ( Co codo l ( 3, se e clcol l sct ll r (.3 (.3( ( D c Il eo evoloe ler è ( ( ( l.9. 3 Il eo evoloe ort è (.3.3 ( d d (. 4 (.3 ( (. 4 (.9 (. 3 ATTEIOE: t se rere: ossoo coteere error 3

14 Avreo qd ( ( ( ( ( ( (.3 ( 3r( ( ( ( Eseo 3 l Clcolre rsost l rdo ( (.5 ( S cosder or: ( 3 (.5( (.5 (.5 ( (.5.5 (.5(.5 ( (.5 (.5 (.5.4. ( (.5( ( ( 3 (.5 (.5 ( (.5 (.5 π π ( (.5 (.5 (.5 e (.5 e 3 3 D c π π π π 3 3 ( (.5 e e (.5 e[ ] cos I[ ] s ATTEIOE: t se rere: ossoo coteere error 4

Approssimazione di dati e funzioni: generalità

Approssimazione di dati e funzioni: generalità Arossmzoe d dt e uzo: geertà Probem: rossmzoe d u uzoe : ot g { } vor che uzoe ssume e ut { } s vuoe otteere u rresetzoe tc de uzoe u tervo [b] geere coteete g { }; esressoe tc de è ot m comct er e oerzo

Dettagli

Diagrammi di Bode. (versione del ) Funzioni di trasferimento

Diagrammi di Bode.  (versione del ) Funzioni di trasferimento Dgr d Bode www.de.g.uo.t/er/tr/ddtt.ht veroe del 5-- Fuo d trfereto Le fuo d trfereto f.d.t de rut ler teo vrt oo fuo rol oè rort tr due olo oeffet rel dell vrle Per evtre d trttre eltete quttà gre, trodue

Dettagli

Approssimazione di dati e funzioni: generalità

Approssimazione di dati e funzioni: generalità Arossmzoe d dt e uzo: geertà Proem: rossmzoe d u uzoe : ot g { } vor che uzoe ssume e ut { } s vuoe otteere u rresetzoe tc de uzoe u tervo [] geere coteete g { }; esressoe tc de è ot m comct er e oerzo

Dettagli

Lezione 8. Risultanti e discriminanti.

Lezione 8. Risultanti e discriminanti. Lezoe 8 Prerequst: Rdc d polo Cp d spezzeto Lezoe 5 Rsultt e dscrt I quest sezoe studo crter eettv per stlre qudo due polo coecet u cpo ho rdc cou S F u cpo Proposzoe 8 I polo o ull, ] ho u rdce coue u

Dettagli

Integrazione numerica

Integrazione numerica Itegrzoe uerc (/5 Prole: Clcolre l seguete tegrle Itegrzoe uerc ( d co e costt rel e ( uzoe cotu. (cotu Itegrzoe uerc (/5 Itegrzoe uerc (/5 No sepre è possle trovre or esplct l prtv. Ache el cso cu l s

Dettagli

Sistemi lineari di m equazioni in n incognite

Sistemi lineari di m equazioni in n incognite Sste ler d equo ogte U sste lere d equo ogte è u srttur del geere seguete: ove s tede he l-pl X* * * * è u soluoe del sste se sosttuedo l posto d rspettvete * * * s ottegoo ugugle. tre è dett tre oplet

Dettagli

Raccolta Formule e Dimostrazioni

Raccolta Formule e Dimostrazioni Rccolt Formule e Dmostrzo B. o uò essere usto durte l rov scrtt Med rtmetc K er dstruzo d frequez s h K K Med rmoc Mr er dstruzo d frequez s h: Mr Med geometrc g M K er dstruzo d frequez: g M K. Med qudrtc

Dettagli

VALORI MEDI (continua da Lezione 5)

VALORI MEDI (continua da Lezione 5) VALORI MEDI (cotu d Lezoe 5) Dott.ss Pol Vcrd 6. L ed rtetc è lere coè è vrte per trsforzo ler de dt. S u dstrbuzoe utr d ed A. Effettuo u trsforzoe lere delle osservzo coè b c d dove c e d soo due costt

Dettagli

( x) n x. 0 altrove = 1. f n. g n

( x) n x. 0 altrove = 1. f n. g n co : L sm d Co l o d Vl. Ism d Co: Cosdo [ ] sddvdo l sm l cossco C [ /] U [/ ] o d ovo l oo oo C [ /9] U [/9 /] U [/ 7/9] U [8/9 ] Io l ocdmo s h ch: C C C */ C 4*/9 C / L sm d Co: I o d Vl: C C chso

Dettagli

Generalmente, nelle strutture a telaio le masse vengono schematizzate come concentrate in

Generalmente, nelle strutture a telaio le masse vengono schematizzate come concentrate in . SISEI A EAIO Geelee, elle se elo le sse veoo shezze oe oee eo o d. Peo el veoo sd oe se o eo o d d d lbeà. D o ole s s l deozoe ssle delle se. Cosdeo elo soeo d eeo sse d oze: ell oes d ol sose e d ooeo

Dettagli

Integrazione numerica

Integrazione numerica Cludo Esttco cludo.esttco@usur.t Itegrzoe umerc Itegrzoe Numerc Itegrzoe umerc Formule d qudrtur. Grdo d esttezz. 3 Metodo de coecet determt. 4 Formule d Newto-Cotes semplc. Formule d Newto-Cotes composte.

Dettagli

Algebra. c d. 1. Operazioni con le potenze. 2. Operazioni con le frazioni. 3. Identità notevoli. (somma algebrica tra frazioni)

Algebra. c d. 1. Operazioni con le potenze. 2. Operazioni con le frazioni. 3. Identità notevoli. (somma algebrica tra frazioni) ler. Oerzioi o le oteze m m m m : m / m m m, m / m. Oerzioi o le rzioi d d somm leri tr rzioi d rodotto tr rzioi d d d : rorto tr rzioi d otez di u rzioe 3. Idetità otevoli. 3 3, 3 3 3, 3 3 3 3,, 4 4 3

Dettagli

Esercizio 1. La matrice di controllabilità è: Studiare la controllabilità del sistema in figura le cui matrici A, b e c sono qui riportate.

Esercizio 1. La matrice di controllabilità è: Studiare la controllabilità del sistema in figura le cui matrici A, b e c sono qui riportate. Gstvo Blfort Esr d otrollltà Ossrvltà Esro tdr l otrollltà dl sst fgr l tr, soo q rportt. (t) (t) Gstvo Blfort Esr d otrollltà Ossrvltà tr d otrollltà è: d, posto = +, s h dt l sst è dq opltt otrolll Gstvo

Dettagli

Corso di Matematica - Algebra. Algebra

Corso di Matematica - Algebra. Algebra Corso d Mtemtc - Alger Alger Oerzo Algerche Tell de Seg Proretà Algerche delle Oerzo Somm e d Prodotto tr Numer Assoctvtà dell dvsoe Uguglze Pssgg lgerc Regole memoche Prodotto croce Rduzoe Fttor Rduzoe

Dettagli

Approssimazione di dati e funzioni

Approssimazione di dati e funzioni Arossmzoe d dt e uzo Arossmzoe d dt e uzo: geerltà Problem: rossmzoe d u uzoe : ot gl { } vlor che l uzoe ssume e ut { } s vuole otteere u rresetzoe ltc dell uzoe u tervllo b geere coteete gl { }; l esressoe

Dettagli

Derivazione numerica. Derivazione numerica (II) Derivazione numerica (III) Introduzione al calcolo numerico

Derivazione numerica. Derivazione numerica (II) Derivazione numerica (III) Introduzione al calcolo numerico F. Amroso/E. Vrc Corso d ormtc A.A. -5 troduzoe l clcolo umerco Dervzoe terzoe Soluzoe d equzo F. Amroso/E. Vrc Corso d ormtc A.A. -5 Dervzoe umerc l clcolo dell dervt d u uzoe u puto mplc u processo l

Dettagli

Formule di Integrazione Numerica

Formule di Integrazione Numerica Formule d Itegrzoe Numerc Itegrzoe umerc: geerltà Prolem: vlutre l tegrle deto: I d F F utlzzo opportue tecce umerce qudo: l prmtv d o e esprmle orm cus d esempo s/, ep- ; dcoltà el clcolre ltcmete l prmtv

Dettagli

Polinomi, disuguaglianze e induzione.

Polinomi, disuguaglianze e induzione. Allemeti Disid Mtemtic Geio 03 Poliomi, disuguglize e iduzioe. Qul è l mssim re di u rettgolo vete perimetro ugule 576? [Suggerimeto: utilizzre le medie e le loro disuguglize.] Svolgimeto. Predimo i cosiderzioe

Dettagli

LA PROPAGAZIONE DEGLI ERRORI:

LA PROPAGAZIONE DEGLI ERRORI: LA PROPAGAZIOE DEGLI ERRORI: Fio d or io visto coe deterire l errore di u grdezz isurt direttete. Spesso però cpit ce il vlore dell grdezz ce si vuole deterire o è isurile, deve essere ricvto prtire d

Dettagli

Laboratorio di Sperimentazione di Fisica CdL Matematica PARTE II. Dr. Riccardo Cerulli

Laboratorio di Sperimentazione di Fisica CdL Matematica PARTE II. Dr. Riccardo Cerulli Lortoro d Speretzoe d Fsc CdL Mtetc ART II Dr. Rccrdo Cerull http://users.lgs.f.t/~cerull/ddttc.htl Msur d u grdezz fsc: V-M 0 Icertezze ell sur Als sttstc de dt L sur è soggett feoe csul. L sgol sur è

Dettagli

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE ANALII DELLA REGREIONE L Al dell Regreoe rgurd lo tudo delle relzo etet r o pù crtter qutttv o vrl. L rcerc de legm etet r pù vrl poe come rcerc delle relzo uzol che pogoo come grdezz dpedete d u ere d

Dettagli

ma non sono uguali fra loro

ma non sono uguali fra loro Defiizioe U fuzioe f defiit i D (doiio) si dice cotiu i u puto c D se esiste i tle puto (è cioè possiile clcolre f (c)); se esiste, fiito, il ite dell fuzioe per che tede c e se il vlore del ite coicide

Dettagli

E definito prodotto di due cracoviani W V un cracoviano A il cui generico elemento vale

E definito prodotto di due cracoviani W V un cracoviano A il cui generico elemento vale Rsoluzoe de sstem ler co l metodo d Bchewcz U semplce e effcete metodo per rsolvere sstem d equzo ler è quello recetemete proposto d Bchewcz che cosete d rsolvere sstem geerc smmetrc e o smmetrc che sez

Dettagli

MATEMATICA FINANZIARIA 3. RENDITE

MATEMATICA FINANZIARIA 3. RENDITE MATEMATICA FINANZIAIA Prof. Adre Berrd 999 3. ENDITE Coro d Mtetc Fzr 999 d Adre Berrd Sezoe 3 ENDITA Operzoe fzr copot, crtterzzt d cdeze (,,...,,...,, rcuotere quelle cdeze,,...,,...,, t e d port d pgre

Dettagli

GAS IDEALI. Dell ossigeno, supposto gas ideale con k = 1.4 cost, evolve secondo un ciclo costituito dalle seguenti trasformazioni reversibili:

GAS IDEALI. Dell ossigeno, supposto gas ideale con k = 1.4 cost, evolve secondo un ciclo costituito dalle seguenti trasformazioni reversibili: Eserzo GAS IDEALI Dell osseo, sosto as deale o.4 ost, eole seodo lo osttto dalle seet trasorazo reersl: Coressoe sotera dallo stato ( 0.9 ar; 0.88 /) allo stato 2; trasorazoe soora da 2 a ( 2.5 ar); esasoe

Dettagli

DEFINIZIONE SUCCESSIONE NUMERICA Una successione numerica è una funzione che ha per dominio l insieme dei numeri naturali { 0;1;2;3;...

DEFINIZIONE SUCCESSIONE NUMERICA Una successione numerica è una funzione che ha per dominio l insieme dei numeri naturali { 0;1;2;3;... SUCCESSIONI DEFINIZIONE SUCCESSIONE NUMERICA U successioe ueric è u fuzioe che h per doiio l isiee dei ueri turli { 0;;;; } N o u suo sottoisiee e coe codoiio R, o u suo sottoisiee I vlori che ssue tle

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte

Dettagli

Variabili Aleatorie vettoriali

Variabili Aleatorie vettoriali Vrbl letore vettorl Vrbl letore vettorl Vrbl letore vettorl: Itroduzoe Vrbl letore dpedet Idc d poszoe per V vettorl rsorzo d V vettorl Idc d dspersoe: Moet Mtrce d Covrz Propzoe dell Covrz V.. VORILI

Dettagli

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte.

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte. CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE OBIETTIVI MINIMI: Sper idividure le fuzioi cotiue Sper pplicre i teorei sui iti Sper idividure le fore ideterite Sper clcolre seplici iti, i prticolre delle fuzioi

Dettagli

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE ANALII DELLA REGREIONE L Al dell Regreoe rgurd lo tudo delle relzo etet r o pù rtter qutttv o vrl. L rer de legm etet r pù vrl poe ome rer delle relzo uzol he pogoo Y ome grdezz dpedete d u ere d vrl dpedet

Dettagli

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000 Diesioeto di ssi di otore correte cotiu Si idividuio i pretri pricipli di u cchi correte cotiu eccitzioe idipedete i rdo di uovere u tr veloce ote che sio le seueti specifiche: Tesioe di lietzioe dell

Dettagli

( ) ( ) ( ) ( ) ( ) (x ) ( ) Medie. Valori intermedi. Numeri indici. Appunti di statistica. Media ponderata M Media quadratica Mq

( ) ( ) ( ) ( ) ( ) (x ) ( ) Medie. Valori intermedi. Numeri indici. Appunti di statistica. Media ponderata M Media quadratica Mq ed oder ed udrc ed eoerc ed roc A rulo lo( ed roc oeo cerle ed e Pro urle Secodo urle e od o dove e o dove Quà d Fcer Pre d Fcer Idc de vlor Pre d Pce Quà d Pce ede Vlor ered uer dc Quà d Lere Pre d Lere

Dettagli

Posizionamento degli autovalori nei sistemi completamente controllabili

Posizionamento degli autovalori nei sistemi completamente controllabili Gstvo Belfote Retozioe deli Stti ed Ossevtoe sitotico Posiziometo deli tovloi ei sistemi completmete cotollbili Si dto sistem: Sppoimo di costie l iesso come = K dove K è mtice di dimesioi oppote che scelimo

Dettagli

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR Tizin Rprlli 5/5/8 RICHIAMI DI TEORIA Proposizion.. Si f C ([, b]) g C ([, b]), llor f(x)g(x)dx = [F (x)g(x)] b F (x)g (x)dx. dov F (x) è un

Dettagli

Moto circolare uniformemente accelerato

Moto circolare uniformemente accelerato Moto circolre uniforeente ccelerto el M.C.U.A. il vettore velocità non h più il odulo cotnte, è preente invece un ccelerzione dett ccelerzione tngenzile che i ntiene cotnte. Ripenndo ll circonferenz tglit

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Itegrli i seso geerlizzto Pol Rubbioi Itegrzioe di fuzioi o itte Deizioe.. Dt f : [; b[! R cotiu ed ilitt i prossimit di b, ovvero tle che!b f () = + oppure!b f () =, ess si dice itegrbile i seso geerlizzto

Dettagli

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

2 C. Prati. Risposta all impulso di sistemi LTI e convoluzione

2 C. Prati. Risposta all impulso di sistemi LTI e convoluzione Segli e sisemi per le elecomiczioi /ed Cldio Pri Coprigh 00 he McGrw-Hill Compies srl C Pri Rispos ll implso di sisemi LI e covolzioe Esercizi di verific degli rgomei svoli el secodo cpiolo del eso Segli

Dettagli

Calcolo di autovalori

Calcolo di autovalori lcolo d utolor Dt l trce deterre l uero e ettore o ullo tl che l l utolore utoettore Esepo 9 9 b 8 b 8 b geerle o è ultplo d. Se però oero c soo due dreo lugo le qul fuo coe se fosse oltplcto per uo sclre.

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

EQUAZIONI ESPONENZIALI -- LOGARITMI

EQUAZIONI ESPONENZIALI -- LOGARITMI Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =

Dettagli

1. Vettori 3/02/2003 Infomazioni utili..

1. Vettori 3/02/2003 Infomazioni utili.. Fisic Geele L-A http://isht.df.io.it. Vettoi 3/0/003 Ifomioi tili.. dott. A. Coe iceimeto qdo: mecoledì 9.30.30, mde e-mil pe cofem. doe: Vi Ieio 46, Diptimeo di Fisic, st 68 e-mil: coe@o.if.it Docmetioe

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

Dove la suddivisione dell intervallo [a,b] è individuata dai punti

Dove la suddivisione dell intervallo [a,b] è individuata dai punti 04//205 Clcolo itegrle per fuzioi di u vriile Clcolo itegrle Itegrle defiito Si f:[,] R, limitt ξ ξ 2 ξ 3 ξ 4 ξ 5 0 = 2 3 4 5 = Costruimo l somm di Cuchy-Riem S f f Dove l suddivisioe dell itervllo [,]

Dettagli

8) Soluzioni diluite

8) Soluzioni diluite 8) Soluzo dlute Per solut sesso s usao le cocetrazo olar (olartà) c [ ]: (utà d sura: ol/ltro) V soluzoe Però le olartà o soo costat e sste chus a ressoe ssata: V soluzoe dede dalla teeratura! Per ovvare

Dettagli

AUTOR ITÀ PORT UA LE D I VE N E Z I A

AUTOR ITÀ PORT UA LE D I VE N E Z I A I «_,]; AUTOR ITÀ PORT UA LE IL PR ES ID EN TE D EL L 'A U TORI TA ' POR TUA L E D I ENEZ IA IS TO I l C o d i c e d e l l a N a v i g a z i o n e e d i l R e l a t i vo R e g o l a m e n t o d i e s e

Dettagli

L equazione del reticolo cristallino

L equazione del reticolo cristallino Chmc sc supror Modulo L quzo dl rtcolo crstllo Srgo Brutt Rchmo d mtmtc: l sr d ourr U quluqu uzo () può ssr rpprstt spso d Tylor purchè l uzo () s drzbl - volt : ( )!... Nl cso cu ()=g() s u uzo prodc

Dettagli

Algebra di Boole Forme normali P ed S

Algebra di Boole Forme normali P ed S Corso d Cloltor Elettro I A.A. 0-03 Alger d Boole Forme orml ed rof. Roerto Coo Uverstà degl tud d Npol Federo II Dprtmeto d Igeger Elettr e delle Teologe dell Iformzoe Corso d Lure Igeger Iformt (llev

Dettagli

Algebra di Boole Forme normali P ed S. Variabili e funzioni booleane

Algebra di Boole Forme normali P ed S. Variabili e funzioni booleane 3/03/0 Corso d Cloltor Elettro I A.A. 0-0 Alger d Boole Forme orml ed Lezoe 6 rof. Roerto Coo Uverstà degl tud d Npol Federo II Foltà d Igeger Corso d Lure Igeger Iformt (llev A-DA) Corso d Lure Igeger

Dettagli

REGRESSIONE LINEARE MULTIPLA

REGRESSIONE LINEARE MULTIPLA REGRESSIONE LINERE ULTIPL Itroduzoe Per u ù gevole lettur d questo ctolo s cosgl lo studo relre dell regressoe lere selce rgoeto trttto el Ctolo Iftt l regressoe lere ultl è u estesoe dell regressoe lere

Dettagli

Integrazione numerica

Integrazione numerica tegrzoe umer Formule d Newto-Cotes Trpez Smpso Puto medo Composte Formule d Guss Sere Morg Dprtmeto Mtemt Uverstà d Bolog tegrzoe umer PROBLEMA: S u uzoe det sull tervllo [,], d u soo ot vlor u seme to

Dettagli

L INTEGRALE DEFINITO b f (x) d x a 1

L INTEGRALE DEFINITO b f (x) d x a 1 L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio

Dettagli

Robotica industriale. Dinamica del robot. Prof. Paolo Rocco

Robotica industriale. Dinamica del robot. Prof. Paolo Rocco Robot utre D e robot Prof. Poo Roo (oo.roo@o.t) Euzo Lre Coero u te or r, e ozo e oretet e u oo erere er ezzo oorte eerzzte. Defo r e te eo uttà: L U eeo e U rettvete eer et e eer oteze e te. So o ξ e

Dettagli

Prova scritta di Materia Condensata del 14 Febbraio 2011

Prova scritta di Materia Condensata del 14 Febbraio 2011 Po ctt d Mt odt dl bbo 0 Pof. Polo l Pof. Mo zz czo S cod u ct d to blt dot lugo x, co o tcol =, Å. Utlzzdo l todo dl lg fot (tgt bdg) ltto c, co u b coot d u obtl d to x uo d to : ) - c l o lct dll g

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Integrzione su domini non itti Definizione.. Un funzione continu f : [, + [ R si dice integrbile in senso generlizzto (brevemente, G-integrbile) se esiste finito

Dettagli

CALCOLO NUMERICO. Francesca Mazzia. a.a. 2008/2009. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari

CALCOLO NUMERICO. Francesca Mazzia. a.a. 2008/2009. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari CALCOLO NUMERICO Frncesc Mzzi Diprtimento Interuniversitrio di Mtemtic Università di Bri.. 2008/2009 Integrzione () 29 mggio 2009 1 / 18 Integrzione Problem: pprossimre integrli definiti del tipo: f (x)dx,

Dettagli

c) equilibrio e stabilità

c) equilibrio e stabilità rede e redtori c) eqilirio e stilità Eqilirio: il movimeto, co igresso costte, è i grdo di rimere idefiitmete i cert codizioe (= ttte le vriili soo costti el temo = ttte le derivte soo lle). U sistem ò

Dettagli

Soluzione di sistemi lineari. Esistenza delle soluzioni. Quante soluzioni? 1 se singolare 0 o infinite se non singolare

Soluzione di sistemi lineari. Esistenza delle soluzioni. Quante soluzioni? 1 se singolare 0 o infinite se non singolare L (sistei) L (sistei) Soluzioe di sistei lieri Esistez delle soluzioi etodi per l soluzioe di sistei di equzioi lieri: Eliizioe di vriili etodo di Crer trice ivers Tipi di sistei: Sistei deteriti Sistei

Dettagli

Integrazione di funzioni

Integrazione di funzioni tegrzoe d uzo l prolem dell tegrzoe umerc d u uzoe cosste el clcolre l vlore dell tegrle deto d prtre d umeros vlor dell uzoe tegrd l clcolo umerco d u tegrle semplce v sotto l ome d qudrtur meccc quello

Dettagli

VARIABILI ALEATORIE (v.a.) DISCRETE

VARIABILI ALEATORIE (v.a.) DISCRETE Corso d Sttstc, Lure Ecoom Azedle, Uverstà C. Ctteo, Cstellz, 7 Ottobre 008. 008 R. D Agò VARIABILI ALEATORIE: SIMBOLOGIA, DEFINIIONI, PROPRIETA VARIABILI ALEATORIE (v.. DISCRETE pgg. -3 VARIABILI ALEATORIE

Dettagli

SENATO DELLA REPUBBLICA

SENATO DELLA REPUBBLICA SEATO DELLA REPBBLCA X LECSLATRA 236 Allegto AlS DSEGO D LEGGE presetto dl iistro del Tesoro (CARL) di cocerto col iistro del Bilcio e dell Progrmmzioe Ecoomic (CRO POCO) (V Stmpto Cmer 4923) pprovto dll

Dettagli

Sistemi lineari: generalità

Sistemi lineari: generalità Sstem ler: geerltà Prolem: rsolvere u sstem lere d grd dmeso N, I form comptt: A B M M M M A [ ] R vettore de coeffcet B [ ] R vettore de term ot [ ] R vettore delle cogte Sstem ler: soluzoe Teorem Rouché-pell):

Dettagli

MATEMATICA FINANZIARIA CAP. 14 20

MATEMATICA FINANZIARIA CAP. 14 20 MTEMTIC FINNZIRI CP. 42 pputi di estimo INTERESSE SEMPLICE Iteesse semplice I C M C ( ) = fzioe di o [] C M G F M M G L S O N D Motte semplice di te costti 2 3 M R R R... R [2] 2 2 2 2 Poiché l fomul è

Dettagli

Metodi diretti: generalità

Metodi diretti: generalità etod drett: geertà Soo st s trsforzoe de sste gerco ze o eqvete d strttr pù sepce. X ~ X ~ sozoe è ottet ero fto d pss ed ssez d error d rrotodeto s otterree sozoe estt. Soo ppct proe pcco e des. Effcez

Dettagli

Interpolazione e Approssimazione ai minimi quadrati

Interpolazione e Approssimazione ai minimi quadrati Cludio Ettico (cludio.ettico@uiubri.it) Iterpolzioe e Approizioe i iii qudrti Iterpolzioe e iii qudrti Iterpolzioe e pproizioe i iii qudrti ) L pproizioe di fuzioi: iterpolzioe e igliore pproizioe. ) Eitez

Dettagli

P O M P E. Per un impianto generico, il cui schema è rappresentato in figura, si adotta la seguente terminologia: H g è la PREVALENZA GEODETICA

P O M P E. Per un impianto generico, il cui schema è rappresentato in figura, si adotta la seguente terminologia: H g è la PREVALENZA GEODETICA O M E Sono cchine IDRULIE OERTRII. Loro coito è quello di trferire l eneri eccnic di cui dionono in eneri idrulic. Quete cchine cedono l fluido incoriiile che le ttrer eneri di reione e/o eneri cinetic.

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Anlisi Mtemtic II - CdL in Ingegneri Informtic ed Elettronic.. 6/7 Integrzione su domini non itti Definizione. Un funzione continu f : [, + [ R si dice integrbile

Dettagli

Metodi diretti: generalità

Metodi diretti: generalità etod drett: geertà Soo st s trsforzoe de sste gerco ze o eqvete d strttr pù sepce. X ~ X ~ sozoe è ottet ero fto d pss ed ssez d error d rrotodeto s otterree sozoe estt. Soo ppct proe pcco e des. Effcez

Dettagli

Metodo Monte Carlo per l integrazione

Metodo Monte Carlo per l integrazione Metodo Mote Crlo per l itegrzioe Richimo dei metodi di itegrzioe umeric b F d Appro. rettgolre b Δ b F k 0 k Δ Lezioi: prte quit Modelli umerici i Fisic Lezioi: prte quit Modelli umerici i Fisic Regole

Dettagli

ESERCITAZIONE PER LA QUARTA PROVA DELL' ESAME DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE CIVILE E AMBIENTALE Autore: Marina Roma

ESERCITAZIONE PER LA QUARTA PROVA DELL' ESAME DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE CIVILE E AMBIENTALE Autore: Marina Roma hp://svolgmeorcceesme.lervs.org/ ESECITAZIONE PE LA UATA POVA ELL' ESAME I STATO PE L'ABILITAZIONE ALLA POFESSIONE I INGEGNEE CIVILE E AMBIENTALE Auore: Mr om Il presee documeo rpor lo svolgmeo, pssggo

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di

dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di Quesiti ord 010 Pgi 1 di 5 Si p( ) u poliomio di grdo. Si dimostri che l su derivt esim è coefficiete è il coefficiete di ( p ) ( ) =! dove il 1 Si p( ) = + 1 +... + 0 Applicdo l regol di derivzioe delle

Dettagli

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: =

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: = LE SUCCESSIONI Si cosideri l seguete sequez di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fibocci. Ess rppreset il umero di coppie di coigli preseti ei primi mesi i u llevmeto! Si cosideri l sequez

Dettagli

( ) ( ) ( ) Equazioni non lineari: generalità

( ) ( ) ( ) Equazioni non lineari: generalità Equzo o ler: geerltà Prolem: rcvre le rdc o zer d u uzoe evetulmete o lere e/o trscedete coè trovre quel o que vlor tle che: Se l soluzoe o è esprmle orm chus l prolem può essere rsolto umercmete Molteplctà

Dettagli

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica Esercizi di Geometri - Foglio Corso di Lure in Mtemtic A. Sottospzi ffini. Esercizio A.1 Esempi e non-esempi di sottospzi ffini Determinre quli dei seguenti insiemi sono sottospzi ffini (precisndo di qule

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Daniela Lera A.A

Daniela Lera A.A Dniel Ler Università degli Studi di Cgliri Diprtimento di Mtemtic e Informtic A.A. 2016-2017 Formule Gussine Formule di qudrtur Gussine In tli formule l posizione dei nodi non è prefisst, come vviene in

Dettagli

Gerarchia degli infiniti e asintotici per successioni numeriche 1

Gerarchia degli infiniti e asintotici per successioni numeriche 1 Gerrchi degli ifiiti e sitotici per successioi umeriche Sio { } e { } due successioi ifiite Vogo stilire u gerrchi di tli successioi el seso di cofrotre, se possiile, le velocità co le quli le successioi

Dettagli

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere Doente: rof Dino Zri serittore: in lessio Bertò OLUZION PROBLMI Insenento i Fisi ell tosfer eon rov in itinere /3 Vlori elle ostnti Rio terrestre eio: 637 Rio solre eio: 7 5 Distnz ei terr-sole : 9 6 Vlore

Dettagli

Teoremi su correnti e tensioni

Teoremi su correnti e tensioni Teorem su corrent e tenson 1) ombnzone lnere efnzone: n un crcuto, ogn corrente e tensone è dt un combnzone lnere d genertor: V = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... I = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... oe

Dettagli

2 Sistemi di equazioni lineari.

2 Sistemi di equazioni lineari. Sistemi di equzioi lieri. efiizioe. Si dice equzioe liere elle icogite equzioe dell form () + +...+ = o che (') i= i i = ove,,..., R si chimo coefficieti e R termie oto.,,..., ogi efiizioe. Si dice soluzioe

Dettagli

Tutorato di analisi 1

Tutorato di analisi 1 Tutorto di nlisi 1 Alen Kushov Collegio Volt 1 / 8 Introduzione Integrzione ll Riemnn Integrle orientto Linerità dell integrle Teorem fondmentle del clcolo Regole di clcolo Integrli impropri 2 / 8 Integrzione

Dettagli

Algebra» Appunti» Logaritmi

Algebra» Appunti» Logaritmi MATEMATICA & FISICA E DINTORNI Psqule Spiezi Algebr» Apputi» Logriti TEOREMA Sio e b ueri reli co R + {} e b R +. Esiste, ed è uico, u uero k R: k b Il uero k è detto rito di b i bse e viee idicto co l

Dettagli

punto di accumulazione per X. Valgono le seguenti

punto di accumulazione per X. Valgono le seguenti 4 I LIMITI Si f : X R R u fuzioe rele di vribile rele. Si puto di ccumulzioe per X. Vlgoo le segueti DEFINIZIONI ( ε ( ε ε ( ε ε. ( ε { } lim f( = l R : > I I ' X I : f( l I I ' X

Dettagli

Problemi di Fisica. Principio conservazione momento angolare

Problemi di Fisica. Principio conservazione momento angolare www.lceoweb.t Prnc d Conserzone Problem d Fsc Prnco conserzone momento ngolre www.lceoweb.t Prnc d Conserzone TEORIA Per un coro untorme m che ruot su un crconerenz d rggo R con eloctà costnte, l momento

Dettagli

Confronto di varie tecniche di integrazione Numerica

Confronto di varie tecniche di integrazione Numerica Uverstà degl stud d Caglar Darteto d gegera Elettrca ed Elettroca Corso d Calcolo Nuerco Ao /5 Coroto d vare tecce d tegrazoe Nuerca Realzzata da: Alessadro Pa troduzoe Questa tesa è dvsa due art La ra

Dettagli

Scuole italiane all estero (Santiago del Cile) 2010 Quesiti QUESITO 1

Scuole italiane all estero (Santiago del Cile) 2010 Quesiti QUESITO 1 www.mtefili.it Scuole itlie ll estero (Stigo del Cile) 21 Quesiti QUESITO 1 Si f(x) = { x2 5, se x 3 x + 2, se x > 3 Si trovi: lim f(x) ; x 3 lim f(x) ; x 3 + lim f(x). x 3 lim f(x) = lim x 3 x 3 (x2 5)

Dettagli

Zeri e radici di equazioni non lineari e sistemi di equazioni non lineari

Zeri e radici di equazioni non lineari e sistemi di equazioni non lineari Zer e rdc d equzo o ler e sstem d equzo o ler Equzo o ler: geerltà Prolem: rcvre le rdc o zer d u uzoe evetulmete o lere e/o trscedete coè trovre quel o que vlor tle che: Se l soluzoe o è esprmle orm chus

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Calcolo I, a.a Esercizi dicembre ) Sia f : [a, b] R una funzione continua. Calcolare le derivate. d dx. 1 lim.

Calcolo I, a.a Esercizi dicembre ) Sia f : [a, b] R una funzione continua. Calcolare le derivate. d dx. 1 lim. Clcolo I,.. 5 6 Esercizi 8 dicembre 5 Si f : [, b] R u fuzioe coiu. Clcolre le derive d f( d, d b f( d, Iolre (usdo il Teorem di de l Hôpil clcolre il ie d f( d. Ricorddo che per il Teorem fodmele del

Dettagli

Usura di tipo adesivo su un albero di trasmissione. Effetti del fretting su un albero di trasmissione

Usura di tipo adesivo su un albero di trasmissione. Effetti del fretting su un albero di trasmissione Usur di tio desivo su un lbero di trsissione ffetti del fretting su un lbero di trsissione ffetti del itting su un ingrnggio Conttto con rotolento uro o ccognto d strisciento reltivo Conttto tr sfer e

Dettagli

Analisi Matematica per Bio-Informatici Esercitazione 13 a.a

Analisi Matematica per Bio-Informatici Esercitazione 13 a.a Anlisi Mtemtic per Bio-Informtici Esercitzione 3.. 27-28 Dott. Simone Zuccher 28 Febbrio 28 Not. Queste pgine potrebbero contenere degli errori: chi li trov è pregto di segnlrli ll utore (zuccher@sci.univr.it).

Dettagli

AM210: Esercizi 2. + e x sin x dx 6. x log 3 x 9. dx

AM210: Esercizi 2. + e x sin x dx 6. x log 3 x 9. dx Integrli impropri: esercizi AM: Esercizi Discutere l convergenz dei seguenti integrli ed eventulmente clcolrli. d. ( 3) 3 + + d 3. 3 + d 3. d 5. ( + ) 3 e sin d 6. e sin d 7. e cos d 8. d + log 3 9. d

Dettagli

Analisi Matematica Lezione 26, 25 novembre 2014 Integrale di Riemann

Analisi Matematica Lezione 26, 25 novembre 2014 Integrale di Riemann Dprtmento d Scenze Sttstche Anls Mtemtc Lezone 26, 25 novembre 2014 Integrle d Remnn prof. Dnele Rtell dnele.rtell@unbo.t 1/28? Teorem du Bos-Reymond e Drboux Condzone necessr e suffcente ffnché f R ([,

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE)

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) Mggi C. & Bccesci P. Soluzioe problem V Puto 1: T Clcolre l soluzioe stziori dell (1) euivle d imporre l

Dettagli

Università della Calabria

Università della Calabria Uverstà dell Clbr FACOLTA DI INGEGNERIA Corso d Lure Igeger Cvle CORSO DI IDROLOGIA N.O. Prof. Psqule Versce SCHEDA DIDATTICA N 0 ISOIETE E TOPOIETI A.A. 200- ISOIETE Il metodo delle soete, o lee d ugule

Dettagli