Intuizioni e considerazioni sulla meccanica quantistica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Intuizioni e considerazioni sulla meccanica quantistica"

Transcript

1 Intuizioni e considerazioni sulla meccanica quantistica Come estendere i concetti di fisica classica alle sorprendenti proprietà del mondo quantistico

2 Modello di Bohr Se assumiamo che l elettrone sia un onda allora: k = 2π λ Δk = 2π Δx p = h λ = 2π h 2π λ = ħk Δp = 2πħ Δx Diffrazione Huygens Modello ondulatorio di Schrödinger Traiettoria esatta a distanza r n dal nucleo, l energia è esattamente E n (x,v) esattamente determinabili Schrödinger: gli elettroni legati sono onde stazionarie di materia. La presenza elettronica è diffusa (come nebbia ) su un profilo spaziale detto funzione d onda Y (=orbitale atomico). Questa funzione d onda, che è una funzione in generale complessa (e iθ = cosθ + isinθ), determina la probabilità di trovare l elettrone in un punto, oppure in un guscio sferico, e pure si usa per determinare il valore medio («di aspettazione») di una grandezza fisica qualsiasi (posizione, energia, carica, velocità, impulso, momento angolare ecc.) per l elettrone in quello specifico orbitale: ogni misura però sarà diversa, con certo un grado di incertezza/indeterminazione: Densità di probabilità: P r = Ψ n Ψ n P V = V Ψ n Ψ n dv V 1 ovvero prob. 100% di trovare l elettrone Probabilità in un guscio sferico di raggio r: P r 4πr 2 dr = Ψ n 4πr 2 Ψ n dr Valor medio (media pesata) di una certa grandezza: Q = QP(r)dr Ψ n QΨ n dr (valore di aspettazione )

3 Modello di Bohr Se assumiamo che l elettrone sia un onda allora: k = 2π λ Δk = 2π Δx p = h λ = 2π h 2π λ = ħk Δp = 2πħ Δx Diffrazione Huygens Modello ondulatorio di Schrödinger Traiettoria esatta a distanza r n dal nucleo, l energia è esattamente E n (x,v) esattamente determinabili Schrödinger: gli elettroni legati sono onde stazionarie di materia. La presenza elettronica è diffusa (come nebbia ) su un profilo spaziale detto funzione d onda Y (=orbitale atomico). Questa funzione d onda, che è una funzione in generale complessa (e iθ = cosθ + isinθ), determina la probabilità di trovare l elettrone in un punto, oppure in un guscio sferico, e pure si usa per determinare il valore medio («di aspettazione») di una grandezza fisica qualsiasi (posizione, energia, carica, velocità, impulso, momento angolare ecc.) per l elettrone in quello specifico orbitale: ogni misura però sarà diversa, con certo un grado di incertezza/indeterminazione: Densità di probabilità: P r = Ψ n Ψ n P V = V Ψ n Ψ n dv V 1 ovvero prob. 100% di trovare l elettrone Probabilità in un guscio sferico di raggio r: P r 4πr 2 dr = Ψ n 4πr 2 Ψ n dr Valor medio (media pesata) di una certa grandezza: Q = QP(r)dr Ψ n QΨ n dr (valore di aspettazione )

4 Orbitali elettronici

5 Orbitali elettronici

6 Introduzione all equazione di Schrödinger Osserviamo dunque che: Gli orbitali atomici sono funzioni d onda, cioè profili spaziali di una oscillazione elettronica stazionaria, e in quanto tali descritti da funzioni complesse; Gli orbitali atomici a n diverso sono distribuzioni di carica elettronica indipendenti l una dall altra, cioè senza sovrapposizioni («nebbie non compenetrate») e idealmente in numero infinito (escludendo la ionizzazione può essere considerato a fini speculativi anche l orbitale 500s ecc.); La indipendenza degli orbitali può essere assimilata all indipendenza dei versori cartesiani in geometria analitica, e quindi gli orbitali, ovvero le funzioni d onda, posso essere trattate come dei vettori ; La indipendenza o la possibile parziale o totale sovrapposizione degli orbitali (funzioni d onda) può essere descritta da un prodotto scalare tra queste funzioni d onda (come fossero vettori), che essendo funzioni complesse, è dato da: P mn = Ψ m Ψ n = Ψ m Ψ n Notazione di Dirac bra-c-ket 0 = න Ψ m Ψ n dv = ቐp 1 ortogonali, indipendenti sovrapposti del p% totalmente sovrapposti (m=n coincide con la densità di probabilità, vedi slide 1)

7 Introduzione all equazione di Schrödinger Poiché gli orbitali sono trattati come vettori, le grandezze fisiche misurabili (energia, carica, momento angolare, ecc.) sono trattate come matrici che si applicano a questi vettori L applicazione di una matrice a un vettore rappresenta artificialmente la misura di una certa grandezza fisica su un orbitale La matrice è la rappresentazione della grandezza fisica, per cui è come se la grandezza fisica agisse da operatore ( misuratore ) L operatore però, per effettuare la misura (cioè agire sul vettore) in realtà opera delle derivate, che dipendono dalla natura fisica della grandezza associate all operatore Vediamo dunque come intuire quali derivate sono da associare fisicamente alle operazioni «misura dell energia» e «misura della quantità di moto»

8 Introduzione all equazione di Schrödinger Un onda che varia nel tempo può essere vista come Ψ = Ψ 0 e iωt t e iωt = iωe iωt t = iω ω = i t E = hν ħω = iħ t E energia, quando è un operatore, è chiamata Hamiltoniano, H L operatore energia ha lo scopo di misurare il valore dell energia E E n un un certo stato (orbitale) Ψ n : per farlo, effettua una derivata rispetto al tempo: HΨ n = iħ t Ψ n HΨ n = E n Ψ n misuratore misura Deduciamo allora che: Ψ n = Ψ 0 e ie n ħ t ω = E n ħ

9 Introduzione all equazione di Schrödinger Un onda che varia nello spazio può essere vista come Ψ = Ψ 0 e ikx x eikx = ike ikx k = p = ħk iħ x p2 2m ħ2 2m 2 x 2 i x = i x Operatore Impulso/Quantità di moto Operatore Energia = Hamiltoniano HΨ n = p2 2m + V Ψ n ħ2 2m 2 x 2 + V Ψ n Orbitale (funzione d onda, o autostato) ħ2 2 Ψ n 2m x 2 + VΨ n = iħ Ψ n t Equazione di Schrödinger (onde di materia) richiama l equazione di D Alembert per le onde elettromagnetiche

10 Seconda parte

11 Conservazione in t e commutazione con H Dati due operatori A e B, rappresentati dalle matrici seguenti, il loro prodotto può essere: AB = BA = a b c d e f g h e f g h = ae + bg af + bh ce + dg cf + dh a b c d = ea + fc eb + fd ga + hc gb + hd In generale il prodotto tra due matrici (operatori) dipende dall ordine di apparizione e cioè non è commutativo! Commutativo: bere birra e mangiare un salatino (si possono scambiare) Non Commutativo: bere birra e buttare il boccale (non scambiabili) AB BA AB BA 0 AB BA =: A, B commutatore tra A e B Ma se A e B sono rappresentati da matrici diagonali, allora commutano sempre (esempio: porre b=c=f=g=0 nell esempio di sopra). Quando due operatori commutano, cioè quando A, B = 0, significa che è possibile trovare una base (cioè un insieme completo di versori cioè autofunzioni, cioè autostati) in cui le matrici che li descrivono sono diagonali. Dal punto di vista fisico, ciò vuol dire che le due grandezze fisiche possono essere misurate simultaneamente, la «lettura» di una grandezza non influenza la «lettura» dell altra grandezza (non altera il sistema, non "mescola" gli stati).

12 Conservazione in t e commutazione con H Ma perché vogliamo matrici diagonali? Se una matrice è diagonale, applicata ad un vettore (versore) fornisce un valore speciale associato sempre e solo a quello specifico vettore: si parla di autovalore ed autovettore: a b 0 = a 1 0 Prima Dopo la misura a 0 0 b 0 1 = b 0 1 Una matrice non diagonale cambia lo stato ( ruota il vettore) e perciò non può caratterizzare uno stato fisico determinato (l atto della misura cambia la realtà, mescola gli stati, ruota il vettore): a c Prima Dopo la misura c b 1 0 = a c Prima della misura Dopo la misura (=quello che vedo con la misura) In questo modo ogni elemento della diagonale della matrice è un valore specifico (autovalore) dello specifico vettore (autovettore, autofunzione o autostato). Non è un valore «medio», perché ad ogni misurazione su un autostato verrà sempre fuori quel valore esatto. Per cui, negli autostati, il valore di aspettazione diventa autovalore, valore privo di incertezza (dev. standard s=0), e la misura non soffre più di indeterminazione perché non «mescola» più gli stati letti. Nota: se la matrice che rappresenta H non è diagonale, applicata a quegli stati non fornisce il valore energetico specifico del sistema. Bisogna diagonalizzarla, ottenendo così autostati e autovalori (che saranno diversi dagli stati e dai valori di partenza).

13 Conservazione in t e commutazione con H L Hamiltoniano è l operatore energia, che contiene tutte le informazioni sull energia E n di qualsiasi livello energetico atomico n (autostato) Ψ n a prescindere dal fatto che sia occupato da un elettrone o no: HΨ n = E n Ψ n H è l operatore che «misura» l energia di un livello atomico e fornisce la «lettura» E n. Secondo il modello semplificato di Bohr, E n =-13.7eV/n 2, e n è il numero quantico principale (energetico). Dunque, se consideriamo per autostati indipendenti gli orbitali atomici dell atomo di idrogeno, l Hamiltoniano è rappresentato da una matrice diagonale: HΨ n = E E E E n Ψ 1s Ψ 2s2p Ψ 3s3p3d Ψ n Idealmente, ci sono infiniti possibili livelli energetici (matematicamente, escludo la ionizzazione e l elettrone potrebbe stare sul livello millesimo e più), cioè in pratica stiamo considerando uno «spazio» infinito-dimensionale (ogni livello ha il suo «versore indipendente», infiniti livelli implicano infiniti versori (o autostati, o autofunzioni complesse). Uno spazio del genere è detto spazio di Hilbert (ma è uno spazio virtuale, matematico).

14 Conservazione in t e commutazione con H Gli autostati atomici sono in realtà gli orbitali, e sono descritti da funzioni complesse (cioè con parte reale e parte immaginaria) perché si tratta di onde (seni, coseni e combinazioni varie): cosθ = eiθ + e iθ sinθ = eiθ e iθ e iθ = cosθ + isinθ 2 2i Per calcolare il prodotto scalare bisogna considerare il complesso coniugato (mettere i al posto di ogni i): e iθ e iθ Ψ n Ψ n Ψ n ൻΨ n ket bra Hamiltoniano: H H + H avendo solo elementi reali (=senza parti immaginarie) Il valore (non autovalore) assunto da un generico operatore in un generico stato (non autostato) si chiama valore di aspettazione (per distinguerlo dall autovalore, che è specifico di uno specifico stato): Q = න Ψ n Q Ψ n dr Ψ Q Ψ Vedi slide 8 d Q dt = t Ψ Q Ψ + Ψ t Q Ψ + Ψ Q t Ψ = Ψ H + iħ Q Ψ + Ψ t Q Ψ + Ψ Q H iħ Ψ = = Ψ i ħ H+ Q Ψ + Ψ Q Ψ i Ψ QH Ψ t ħ =i Ψ H, Q Ψ + Ψ Q Ψ = Ψ i H, Q + Q Ψ ħ t ħ t Se non c è esplicita dipendenza temporale allora Q = 0. In questo caso: t d Q Ψ H, Q Ψ = 0 H, Q = 0 cioè se e solo se Q commuta con H. Allora Q si conserva nel tempo. dt = i ħ

15 Conservazione in t e commutazione con H Per caratterizzare qualcosa in modo stabile nel tempo, mi servono grandezza conservate nel tempo, costanti del moto. Inoltre, un eventuale grandezza costante nel tempo, ad esempio chiamiamola L, deve poter essere misurate simultaneamente con l energia, così posso dire che il livello n ha E=E n e contemporaneamente L=L n, ovvero che tutti gli E n e L n (per tutti gli n) si riferiscono solo ed esclusivamente stesso identico insieme di autofunzioni (base). LH H Ψ n = E n Ψ n L Ψ n = L n Ψ n Ψ n = L E n Ψ n = E n L Ψ n = E n L n Ψ n = HL Ψ n LH HL Ψ n = 0 Gli operatori L ed H, avendo la stessa base (=insieme completo di orbitali, cioè funzioni d onda ortonormali), allora commutano. Una grandezza che commuta con l Hamiltoniano è costante nel tempo (conservata). E siccome commuta con L Hamiltoniano, è rappresentata da una matrice diagonale e quindi ha valori specifici (autovalori) per specifici vettori (autostati). Si dimostra che il momento angolare è conservato nel tempo, e quindi è un buon osservabile da usare per caratterizzare i sottolivelli atomici: l=0, 1, 2, 3 ecc. corrispondono agli orbitali s, p, d, f, ecc.

16 FINE

Comune ordine di riempimento degli orbitali di un atomo

Comune ordine di riempimento degli orbitali di un atomo Comune ordine di riempimento degli orbitali di un atomo Le energie relative sono diverse per differenti elementi ma si possono notare le seguenti caratteristiche: (1) La maggior differenza di energia si

Dettagli

Stati Coerenti. Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana. p = i d.

Stati Coerenti. Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana. p = i d. 1 Stati Coerenti Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana H = 1 m p + 1 m ω x (1) Per semplicitá introduciamo gli operatori autoaggiunti adimensionali

Dettagli

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1 Chimica Fisica - Chimica e Tecnologia Farmaceutiche Lezione n. 19 L equazione di Schrodinger L atomo di idrogeno Orbitali atomici 02/03/2008 Antonino Polimeno 1 Dai modelli primitivi alla meccanica quantistica

Dettagli

VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA

VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA 3/7 GENERALIZZAZIONI E SVILUPPI 11/12 1 VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA Forma unificata dei risultati già ottenuti I risultati ottenuti nei fascicoli 3/3, 3/5 e 3/6 sulle grandezze

Dettagli

Generalità delle onde elettromagnetiche

Generalità delle onde elettromagnetiche Generalità delle onde elettromagnetiche Ampiezza massima: E max (B max ) Lunghezza d onda: (m) E max (B max ) Periodo: (s) Frequenza: = 1 (s-1 ) Numero d onda: = 1 (m-1 ) = v Velocità della luce nel vuoto

Dettagli

Teoria Atomica Moderna. Chimica generale ed Inorganica: Chimica Generale. sorgenti di emissione di luce. E = hν. νλ = c. E = mc 2

Teoria Atomica Moderna. Chimica generale ed Inorganica: Chimica Generale. sorgenti di emissione di luce. E = hν. νλ = c. E = mc 2 sorgenti di emissione di luce E = hν νλ = c E = mc 2 FIGURA 9-9 Spettro atomico, o a righe, dell elio Spettri Atomici: emissione, assorbimento FIGURA 9-10 La serie di Balmer per gli atomi di idrogeno

Dettagli

Meccanica quantistica (5)

Meccanica quantistica (5) Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (

Dettagli

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica Esercizi di Fisica Matematica 3, anno 014-015, parte di meccanica hamiltoniana e quantistica Dario Bambusi 09.06.015 Abstract Gli esercizi dei compiti saranno varianti dei seguenti esercizi. Nei compiti

Dettagli

VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA

VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA 3/7 GENERALIZZAZIONI E SVILUPPI 09/10 1 VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA Forma unificata dei risultati già ottenuti I risultati ottenuti nei fascicoli 3/3, 3/5 e 3/6 sulle grandezze

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 007-008 () Sia dato un sistema che può trovarsi in tre stati esclusivi,, 3, e si supponga che esso si trovi nello stato

Dettagli

Elettronica dello Stato Solido Lezione 5: L equazione di. Daniele Ielmini DEI Politecnico di Milano

Elettronica dello Stato Solido Lezione 5: L equazione di. Daniele Ielmini DEI Politecnico di Milano Elettronica dello Stato Solido Lezione 5: L equazione di Schrödinger Daniele Ielmini DEI Politecnico di Milano ielmini@elet.polimi.it Outline Argomenti qualitativi per dedurre l equazione di Schrödinger

Dettagli

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein)

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein) L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA POSTULATO DI DE BROGLIÈ Se alla luce, che è un fenomeno ondulatorio, sono associate anche le caratteristiche corpuscolari della materia

Dettagli

raggio atomico: raggio del nucleo: cm cm

raggio atomico: raggio del nucleo: cm cm raggio atomico: raggio del nucleo: 10 10 8 1 cm cm Modello di Rutherford: contrasto con la fisica classica perché prima o poi l elettrone avrebbe dovuto cadere sul nucleo irradiando Energia. Le leggi valide

Dettagli

Trasformata di Fourier

Trasformata di Fourier Trasformata di Fourier Operazione matematica per convertire una funzione di una certa variabile (es. t) in una funzione di un altra variabile (es. w) qualora le variabili siano legate dall esponenziale

Dettagli

Elementi di struttura della materia

Elementi di struttura della materia Elementi di struttura della materia Luigi Sangaletti Università Cattolica del Sacro Cuore Dipartimento di Matematica e Fisica a.a. 2004-2005 Quantizzazione delle energie Tracciare ed identificare i primi

Dettagli

Problemi di Meccanica Quantistica. Capitolo IX. Spin. a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi

Problemi di Meccanica Quantistica. Capitolo IX. Spin. a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi Problemi di Meccanica Quantistica Capitolo IX Spin a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi http://people.na.infn.it/%7epq-qp Problema IX.1 Un sistema consiste di due particelle distinguibili

Dettagli

Compito di recupero del giorno 27/11/2015

Compito di recupero del giorno 27/11/2015 Compito di recupero del giorno 27/11/2015 Esercizio n. 1 Una particella di massa m e spin 1/2 si muove in due dimensioni nel piano xy ed è soggetta alla seguente Hamiltoniana: H = 1 2m (p2 x + p 2 y) +

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. PRIMA PARTE anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. PRIMA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA PRIMA PARTE anno accademico 015-016 (1) Si consideri una particella che può colpire uno schermo diviso in tre zone, indicate dai ket 1,, 3, e si supponga

Dettagli

Metodo variazionale e applicazione all atomo di elio

Metodo variazionale e applicazione all atomo di elio Metodo variazionale e applicazione all atomo di elio Descrizione del metodo Il metodo detto variazionale è un metodo approssimato che si usa per ottenere una stima dell energia dello stato fondamentale

Dettagli

GLI ORBITALI ATOMICI

GLI ORBITALI ATOMICI GLI ORBITALI ATOMICI Orbitali atomici e loro rappresentazione Le funzioni d onda Ψ n che derivano dalla risoluzione dell equazione d onda e descrivono il moto degli elettroni nell atomo si dicono orbitali

Dettagli

Struttura Elettronica degli Atomi Meccanica quantistica

Struttura Elettronica degli Atomi Meccanica quantistica Prof. A. Martinelli Struttura Elettronica degli Atomi Meccanica quantistica Dipartimento di Farmacia 1 Il comportamento ondulatorio della materia 2 1 Il comportamento ondulatorio della materia La diffrazione

Dettagli

LA STRUTTURA DEGLI ATOMI GLI SPETTRI ATOMICI DI EMISSIONE

LA STRUTTURA DEGLI ATOMI GLI SPETTRI ATOMICI DI EMISSIONE LA STRUTTURA DEGLI ATOMI GLI SPETTRI ATOMICI DI EMISSIONE LA RADIAZIONE ELETTROMAGNETICA LA RADIAZIONE ELETTROMAGNETICA LA RADIAZIONE ELETTROMAGNETICA LO SPETTRO ELETTROMAGNETICO LA QUANTIZZAZIONE DELL

Dettagli

I POSTULATI DELLA MECCANICA QUANTISTICA

I POSTULATI DELLA MECCANICA QUANTISTICA 68 I POSTULATI DELLA MECCANICA QUANTISTICA Si intende per postulato una assunzione da accettarsi a priori e non contraddetta dall esperienza. I postulati trovano la loro unica giustificazione nella loro

Dettagli

fondamentali Fisica Classica

fondamentali Fisica Classica della Riassunto: presente opera. opera le è richiesto indicazioni il permesso dagli scritto esperimenti dell autore (E. Silva) fondamentali SQ Fisica Classica Punto materiale. Principi della dinamica.

Dettagli

1D, rappresentazione delle coordinate. Funzione normalizzata. Densità di probabilità. Osservabile F(X) Valore medio

1D, rappresentazione delle coordinate. Funzione normalizzata. Densità di probabilità. Osservabile F(X) Valore medio Stato quantistico Funzione d onda 1D, rappresentazione delle coordinate + ( x) dx 1 Densità di probabilità Funzione normalizzata Osservabile F(X) Valore medio Osservabili Operatori lineari hermitiani sullo

Dettagli

Programma della I parte

Programma della I parte Programma della I parte Cenni alla meccanica quantistica: il modello dell atomo Dall atomo ai cristalli: statistica di Fermi-Dirac, il modello a bande di energia, popolazione delle bande, livello di Fermi

Dettagli

Introduzione al corso. Cenni storici ed evidenze sperimentali determinanti lo sviluppo della fisica atomica come la conosciamo ora...

Introduzione al corso. Cenni storici ed evidenze sperimentali determinanti lo sviluppo della fisica atomica come la conosciamo ora... Introduzione al corso Cenni storici ed evidenze sperimentali determinanti lo sviluppo della fisica atomica come la conosciamo ora... Legge di Boyle (1662)-> La pressione di un gas cresce quando decresce

Dettagli

- Dati sperimentali: interazione luce / materia spettri caratteristici

- Dati sperimentali: interazione luce / materia spettri caratteristici - Thomson: evidenza sperimentale per elettrone misura e/m e - Millikan: misura la carica dell elettrone e ne ricava la massa e = 1,60 x 10-19 C - Rutherford: stima le dimensioni atomiche struttura vuota

Dettagli

Effetto Zeeman. p q c A) 2. i h ψ t. = Hψ (2)

Effetto Zeeman. p q c A) 2. i h ψ t. = Hψ (2) Effetto Zeeman Effetto Zeeman normale La hamiltoniana di una particella in presenza di un campo elettromagnetico, descritto dal potenziale vettore A e dal potenziale scalare Φ é H = 2M e l euazione di

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 2011-2012 Si consideri un sistema che può trovarsi in uno di tre stati esclusivi 1, 2, 3, e si supponga che esso si trovi

Dettagli

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1 Effetto Stark Studiamo l equazione di Schrödinger per l atomo di idrogeno in presenza di un campo elettrico costante e diretto lungo l asse z, E = E k. La hamiltoniana di Schrödinger per l atomo di idrogeno

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA MECCANICA QUANTISTICA anno accademico 2012-2013 (1) Per un sistema n-dimensionale si scrivano: (a) gli elementi di matrice dell operatore posizione x

Dettagli

Capitolo 5. La fisica quantistica in un quadro formale. 5.1 Funzione d onda e spazi di Hilbert

Capitolo 5. La fisica quantistica in un quadro formale. 5.1 Funzione d onda e spazi di Hilbert Capitolo 5 La fisica quantistica in un quadro formale Non vi era evidenza che la topologia naturale degli spazi hilbertiani consentisse di render conto dell apparizione dell atto libero; non era neppure

Dettagli

MECCANICA QUANTISTICA. Corso di laurea in fisica PROGRAMMA DEL CORSO E PROGRAMMA D ESAME. Anno accademico 2011/2012

MECCANICA QUANTISTICA. Corso di laurea in fisica PROGRAMMA DEL CORSO E PROGRAMMA D ESAME. Anno accademico 2011/2012 MECCANICA QUANTISTICA Corso di laurea in fisica PROGRAMMA DEL CORSO E PROGRAMMA D ESAME Anno accademico 2011/2012 Argomenti facenti parte del programma d esame. Argomenti facenti parte del programma d

Dettagli

L atomo di idrogeno. R. Dovesi, M. De La Pierre, C. Murace. Chimica Fisica II. Corso di Laurea in Chimica A.A. 2012/2013

L atomo di idrogeno. R. Dovesi, M. De La Pierre, C. Murace. Chimica Fisica II. Corso di Laurea in Chimica A.A. 2012/2013 L atomo di idrogeno R. Dovesi, M. De La Pierre, C. Murace Corso di Laurea in Chimica A.A. 2012/2013 Chimica Fisica II Modello per l atomo di idrogeno Modello: protone fisso nell origine ed elettrone in

Dettagli

Compito Scritto Meccanica Quantistica, 30/01/2018

Compito Scritto Meccanica Quantistica, 30/01/2018 Compito Scritto Meccanica Quantistica, 30/01/2018 Esercizio 1. Si considerino due particelle indistinguibili, A e B, di spin 1/2, soggette alla Hamiltoniana H = H 0 (p A, r A )+H 0 (p B, r B )+ h L zs

Dettagli

Laurea Magistrale di INGEGNERIA ELETTRONICA (LM-29) a.a , I semestre! Programma del corso di FISICA SUPERIORE! Docente: MAURO PAPINUTTO!

Laurea Magistrale di INGEGNERIA ELETTRONICA (LM-29) a.a , I semestre! Programma del corso di FISICA SUPERIORE! Docente: MAURO PAPINUTTO! Laurea Magistrale di INGEGNERIA ELETTRONICA (LM-29) a.a. 2013-14, I semestre Programma del corso di FISICA SUPERIORE Docente: MAURO PAPINUTTO Dipartimento di Fisica Phone: +39 06 4991 4376 Universita`

Dettagli

Elettronica dello Stato Solido Lezione 5: L equazione di Schrödinger. Daniele Ielmini DEI Politecnico di Milano

Elettronica dello Stato Solido Lezione 5: L equazione di Schrödinger. Daniele Ielmini DEI Politecnico di Milano Elettronica dello Stato Solido Lezione 5: L equazione di Schrödinger Daniele Ielmini DEI Politecnico di Milano ielmini@elet.polimi.it D. Ielmini Elettronica dello Stato Solido 05 Outline Argomenti qualitativi

Dettagli

La Teoria dell Atomo di Bohr Modello di Bohr dell atomo di idrogeno:

La Teoria dell Atomo di Bohr Modello di Bohr dell atomo di idrogeno: La Teoria dell Atomo di Bohr Modello di Bohr dell atomo di idrogeno: Vedi documento Atomo di Bohr.pdf sul materiale didattico per la derivazione di queste equazioni Livelli Energetici dell Atomo di Idrogeno

Dettagli

FISICA QUANTISTICA I (2018/19)

FISICA QUANTISTICA I (2018/19) FISICA QUANTISTICA I (2018/19) Scopo del corso Lo studente dovrebbe apprendere alla fine di questo corso i contenuti fondamentali della meccanica quantistica e imparare ad applicarli a semplici esempi,

Dettagli

Modelli atomici Modello atomico di Rutheford Per t s d u i diare la t s rutt ttura t a omica Ruth th f or (

Modelli atomici Modello atomico di Rutheford Per t s d u i diare la t s rutt ttura t a omica Ruth th f or ( Modello atomico di Rutheford Per studiare la struttura tt atomica Rutherford (1871-1937) 1937) nel 1910 bombardòb una lamina d oro con particelle a (cioè atomi di elio) Rutherford suppose che gli atomi

Dettagli

Oscillatore armonico in più dimensioni

Oscillatore armonico in più dimensioni Oscillatore armonico in più dimensioni 1 Oscillatore in D dimensioni La teoria dell oscillatore armonico si può generalizzare facilmente da una a più dimensioni. Infatti la hamiltoniana di un oscillatore

Dettagli

FISICA QUANTISTICA I (2016/17)

FISICA QUANTISTICA I (2016/17) FISICA QUANTISTICA I (2016/17) Scopo del corso Lo studente dovrebbe apprendere alla fine di questo corso i contenuti fondamentali della meccanica quantistica e imparare ad applicarli a semplici esempi,

Dettagli

Appello di Meccanica Quantistica I

Appello di Meccanica Quantistica I Appello di Meccanica Quantistica I Facoltà di Scienze M.F.N. Università degli Studi di Pisa gennaio 007 (A.A. 06/07) Tempo a disposizione: 3 ore. Problemi e per il recupero Compitino I; problemi e 3 per

Dettagli

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 1 (2015/16)

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 1 (2015/16) FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 1 (2015/16) Scopo del corso Lo studente dovrebbe apprendere alla fine di questo corso i contenuti fondamentali della meccanica quantistica e imparare ad applicarli

Dettagli

Metalli come gas di elettroni liberi

Metalli come gas di elettroni liberi Metalli come gas di elettroni liberi I metalli sono caratterizzati da elevata conducibilità elettrica e termica. La conducibilità elettrica in particolare (o il suo inverso, la resistività) è una delle

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. SECONDA PARTE anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. SECONDA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA SECONDA PARTE anno accademico 2016-2017 (1) Per un sistema meccanico n-dimensionale scrivere: (a) gli elementi di matrice dello operatore posizione x

Dettagli

3. Si descrivano lo schema di Schroedinger e lo schema di Heisenberg per rappresentare l evoluzione temporale di un sistema quantistico.

3. Si descrivano lo schema di Schroedinger e lo schema di Heisenberg per rappresentare l evoluzione temporale di un sistema quantistico. 1 Fisica Matematica Avanzata, 11 9 2009 [ ] 1. Sia A = 1 i 1 2 la matrice che rappresenta una osservabile A di i 1 un sistema quantistico nello spazio di Hilbert H = C 2. a) Trovare la risoluzione dell

Dettagli

Lezioni di Meccanica Quantistica

Lezioni di Meccanica Quantistica Luigi E. Picasso Lezioni di Meccanica Quantistica seconda edizione Edizioni ETS www.edizioniets.com Copyright 2015 EDIZIONI ETS Piazza Carrara, 16-19, I-56126 Pisa info@edizioniets.com www.edizioniets.com

Dettagli

H = H 0 + V. { V ti t t f 0 altrove

H = H 0 + V. { V ti t t f 0 altrove Esercizio 1 (Regola d oro di Fermi Determinare la probabilità di transizione per unità di tempo da uno stato a ad uno stato b al primo ordine perturbativo di un sistema per cui si suppone di aver risolto

Dettagli

ESERCIZI DI MECCANICA QUANTISTICA. a cura di Stefano Patrì - a.a

ESERCIZI DI MECCANICA QUANTISTICA. a cura di Stefano Patrì - a.a ESERCIZI DI MECCANICA QUANTISTICA a cura di Stefano Patrì - a.a. - Esercizio Un oscillatore armonico in dimensione con massa m e pulsazione ω si trova in uno stato iniziale ψ, tale che: una misura dell

Dettagli

L equazione di Schrödinger

L equazione di Schrödinger 1 Forma dell equazione L equazione di Schrödinger Postulato - ψ r, t 0 ) definisce completamente lo stato dinamico del sistema al tempo t 0. L equazione che regola l evoluzione di ψ r, t) deve essere:

Dettagli

Quantum Computing. Esercizi. Esercizio 1.1 Mostra che lo stato di un qubit può essere espresso nella forma

Quantum Computing. Esercizi. Esercizio 1.1 Mostra che lo stato di un qubit può essere espresso nella forma Quantum Computing Esercizi 1 Qubit Esercizio 1.1 Mostra che lo stato di un qubit può essere espresso nella forma ψ = e iγ ( cos(θ/) 0 + e iφ sin(θ/) 1 ), dove γ, θ e φ sono numeri reali. Il fattore di

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 2013-2014 (1) Si consideri un sistema che può trovarsi in uno di tre stati esclusivi 1, 2, 3, e si supponga che esso si

Dettagli

13. Meccanica Quantistica

13. Meccanica Quantistica 13. Meccanica Quantistica Come descrivere gli atomi e le molecole? Esempio: l atomo di idrogeno Moto dell elettrone rispetto al nucleo (protone) supposto immobile u z r ( t) Energia = Energia cinetica

Dettagli

FISICA QUANTISTICA I PROVA SCRITTA DEL 20/9/ Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale

FISICA QUANTISTICA I PROVA SCRITTA DEL 20/9/ Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale FISICA QUANTISTICA I PROVA SCRITTA DEL 0/9/013 1. Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale V (x) = V 0 θ(x) αδ(x), V 0, α > 0, (1) con la funzione a gradino

Dettagli

Fisica Moderna: Corso di Laurea Scienze dei Materiali Prova scritta: 16/06/2017

Fisica Moderna: Corso di Laurea Scienze dei Materiali Prova scritta: 16/06/2017 Fisica Moderna: Corso di aurea Scienze dei Materiali Prova scritta: 16/6/17 Problema 1 Una particella di spin 1/ è soggetta ad un campo magnetico uniforme B = B ẑ diretto lungo l asse delle z. operatore

Dettagli

PROPRIETÀ GENERALI. L equazione di Schrödinger, per una particella che si muove in un campo di forze corrispondente all energia potenziale V (x, t),

PROPRIETÀ GENERALI. L equazione di Schrödinger, per una particella che si muove in un campo di forze corrispondente all energia potenziale V (x, t), 1/3 STUDIO PRELIMINARE DELL EQUAZIONE DI SCHRÖDINGER 10/11 1 PROPRIETÀ GENERALI L equazione di Schrödinger, per una particella che si muove in un campo di forze corrispondente all energia potenziale V

Dettagli

Fondamenti di Meccanica Quantistica (Prof. Tarantelli)

Fondamenti di Meccanica Quantistica (Prof. Tarantelli) Fondamenti di Meccanica Quantistica (Prof. Tarantelli) 1 MOTO LINEARE E L OSCILLATORE ARMONICO 2 EQUAZIONE DI SCHRODINGER Equazione di Schrödinger: descrive il comportamento di un insieme di particelle:

Dettagli

Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton)

Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton) Atomi 16 Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton) 17 Teoria atomica di Dalton Si basa sui seguenti postulati: 1. La materia è formata

Dettagli

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 1 (2012/13)

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 1 (2012/13) FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 1 (01/13) Scopo del corso Lo studente dovrebbe apprendere alla fine di questo corso i contenuti fondamentali della meccanica quantistica e imparare ad applicarli

Dettagli

Le molecole ed il legame chimico

Le molecole ed il legame chimico La meccanica quantistica è in grado di determinare esattamente i livelli energetici dell atomo di idrogeno e con tecniche matematiche più complesse è anche in grado di descrivere l atomo di elio trovando

Dettagli

mvr = n h e 2 r = m v 2 e m r v = La configurazione elettronica r = e 2 m v 2 (1) Quantizzazione del momento angolare (2) 4 πε.

mvr = n h e 2 r = m v 2 e m r v = La configurazione elettronica r = e 2 m v 2 (1) Quantizzazione del momento angolare (2) 4 πε. La configurazione elettronica Modello atomico di Bohr-Sommerfeld (1913) Legge fondamentale della meccanica classica F = m a. F Coulomb = 1 4 πε. q q ' F r centrifuga = m v r ε =8.85*10-1 Fm-1 (costante

Dettagli

1. Scrivere l equazione di Schrödinger unidimensionale per una particella di massa m con energia potenziale V (x) = mω2

1. Scrivere l equazione di Schrödinger unidimensionale per una particella di massa m con energia potenziale V (x) = mω2 1 Teoria Una particella di massa m = 1 g e carica elettrica q = 1 c viene accelerata per un tratto pari a l = m da una differenza di potenziale pari av = 0 volt Determinare la lunghezza d onda di De Broglie

Dettagli

COMPORTAMENTO DUALISTICO della MATERIA

COMPORTAMENTO DUALISTICO della MATERIA COMPORTAMENTO DUALISTICO della MATERIA Come la luce anche la materia assume comportamento dualistico. Equazione di De Broglie: λ = h/mv Per oggetti macroscopici la lunghezza d onda è così piccola da non

Dettagli

TRASLAZIONI SPAZIALI. Capitolo Operatore di posizione e funzione d onda

TRASLAZIONI SPAZIALI. Capitolo Operatore di posizione e funzione d onda Capitolo 3 TRASLAZIONI SPAZIALI 3.1 Operatore di posizione e funzione d onda Supponiamo di effettuare delle misure di posizione di un sistema quantico preparato dalla sorgente S nello stato ψ >. Ripetendo

Dettagli

Esercizi di Fisica Matematica 3, anno

Esercizi di Fisica Matematica 3, anno Esercizi di Fisica Matematica 3, anno 01-013 Dario Bambusi, Andrea Carati 5.06.013 Abstract Tra i seguenti esercizi verranno scelti gli esercizi dell esame di Fisica Matematica 3. 1 Meccanica Hamiltoniana

Dettagli

Ma se dobbiamo trattare l elettrone come un onda occorre una funzione (che dobbiamo trovare) che ne descriva esaurientemente queste proprietà.

Ma se dobbiamo trattare l elettrone come un onda occorre una funzione (che dobbiamo trovare) che ne descriva esaurientemente queste proprietà. Ma se dobbiamo trattare l elettrone come un onda occorre una funzione (che dobbiamo trovare) che ne descriva esaurientemente queste proprietà. Nell atomo l energia associata ad un elettrone (trascurando

Dettagli

1 Il paradosso del gatto di Schrödinger

1 Il paradosso del gatto di Schrödinger 1 Il paradosso del gatto di Schrödinger by extrabyte Abstract. Una descrizione del paradosso del gatto di Schrödinger 1.1 Introduzione Riportiamo velocemente i postulati della Meccanica Quantistica 1.

Dettagli

Invarianze e leggi di conservazione: definizioni generali Teorema di Noether Invarianze e costanti del moto Traslazioni nello spazio Rotazioni nello

Invarianze e leggi di conservazione: definizioni generali Teorema di Noether Invarianze e costanti del moto Traslazioni nello spazio Rotazioni nello Invarianze e leggi di conservazione: definizioni generali Teorema di Noether Invarianze e costanti del moto Traslazioni nello spazio Rotazioni nello spazio. Il momento angolare. Lo spin Il gruppo SU(2)

Dettagli

Esploriamo la chimica

Esploriamo la chimica 1 Valitutti, Tifi, Gentile Esploriamo la chimica Seconda edizione di Chimica: molecole in movimento Capitolo 8 La struttura dell atomo 1. La doppia natura della luce 2. L atomo di Bohr 3. Il modello atomico

Dettagli

La struttura dell atomo

La struttura dell atomo La struttura dell atomo raggi catodici (elettroni) raggi canale (ioni positivi) Modello di Thomson Atomo come una piccola sfera omogenea carica di elettricità positiva, nella quale sono dispersi gli elettroni,

Dettagli

La struttura elettronica degli atomi

La struttura elettronica degli atomi 1 In unità atomiche: a 0 me 0,59A unità di lunghezza e H 7, ev a H=Hartree unità di energia L energia dell atomo di idrogeno nello stato fondamentale espresso in unità atomiche è: 4 0 me 1 e 1 E H 13,

Dettagli

Momento angolare. l = i h ( x ) li = i h ε ijk x j x k. Calcoliamo le relazioni di commutazione tra due componenti del momento angolare

Momento angolare. l = i h ( x ) li = i h ε ijk x j x k. Calcoliamo le relazioni di commutazione tra due componenti del momento angolare 1 Momento angolare. Il momento della quantitá di moto (momento angolare) é definito in fisica classica dal vettore (nel seguito usiamo la convenzione che gli indici ripetuti vanno intesi sommati) l = x

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA MECCANICA QUANTISTICA anno accademico 2014-2015 (1) Per un sistema meccanico n-dimensionale si scrivano: (a) gli elementi di matrice dell operatore posizione

Dettagli

LA STRUTTURA DEGLI ATOMI GLI SPETTRI ATOMICI DI EMISSIONE

LA STRUTTURA DEGLI ATOMI GLI SPETTRI ATOMICI DI EMISSIONE LA STRUTTURA DEGLI ATOMI GLI SPETTRI ATOMICI DI EMISSIONE LA RADIAZIONE ELETTROMAGNETICA LA RADIAZIONE ELETTROMAGNETICA LA RADIAZIONE ELETTROMAGNETICA LO SPETTRO ELETTROMAGNETICO LA QUANTIZZAZIONE DELL

Dettagli

I Numeri Complessi. Un numero si definisce complesso se ha una parte reale e una immaginaria. G* A ib 1 2 A 2 B 2

I Numeri Complessi. Un numero si definisce complesso se ha una parte reale e una immaginaria. G* A ib 1 2 A 2 B 2 I Numeri Complessi 50 Un numero si definisce complesso se ha una parte reale e una immaginaria G A ib i 1 Per ogni numero complesso esiste il suo coniugato G* G* AiB Il modulo di un numero complesso è

Dettagli

1 3 STRUTTURA ATOMICA

1 3 STRUTTURA ATOMICA 1 3 STRUTTURA ATOMICA COME SI SPIEGA LA STRUTTURA DELL ATOMO? Secondo il modello atomico di Rutherford e sulla base della fisica classica, gli elettroni dovrebbero collassare sul nucleo per effetto delle

Dettagli

PRIMA PARTE anno accademico

PRIMA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA PRIMA PARTE anno accademico 017-018 (1) Si consideri una particella che può colpire uno schermo in cui sono praticate tre fenditure, indicate dai ket

Dettagli

Programma della I parte

Programma della I parte Programma della I parte Cenni alla meccanica quantistica: il modello dell atomo Dall atomo ai cristalli: statistica di Fermi-Dirac il modello a bande di energia popolazione delle bande livello di Fermi

Dettagli

Particelle Subatomiche

Particelle Subatomiche GLI ATOMI Particelle Subatomiche ELEMENTI I diversi atomi sono caratterizzati da un diverso numero di protoni e neutroni; il numero di elettroni è sempre uguale al numero dei protoni (negli atomi neutri)

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE210 - Geometria 2 a.a Prima prova di esonero TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE210 - Geometria 2 a.a Prima prova di esonero TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE0 - Geometria a.a. 08-09 Prima prova di esonero TESTO E SOLUZIONI. Sia k 0 un numero reale. Sia V uno spazio vettoriale reale e sia e = {e,

Dettagli

Corso di Laurea in Chimica e Tecnologie Chimiche - A.A Chimica Fisica II. Esame scritto del 25 Febbraio P = i.

Corso di Laurea in Chimica e Tecnologie Chimiche - A.A Chimica Fisica II. Esame scritto del 25 Febbraio P = i. 1 Corso di Laurea in Chimica e Tecnologie Chimiche - A.A. 212-213 Chimica Fisica II Esame scritto del 25 Febbraio 213 Quesiti d esame: 1. Definire gli operatori componente del momento cinetico P x e del

Dettagli

La natura ondulatoria della materia

La natura ondulatoria della materia La natura ondulatoria della materia 1. Dualismo onda-particella 2. Principio di indeterminazione di Heisemberg 3. Struttura del nucleo XV - 0 Dualismo onda-particella Come la radiazione presenta una doppia

Dettagli

numeri quantici orbitale spin

numeri quantici orbitale spin La funzione d onda ψ definisce i diversi stati in cui può trovarsi l elettrone nell atomo. Nella sua espressione matematica, essa contiene tre numeri interi, chiamati numeri quantici, indicati con le lettere

Dettagli

Applicazioni alla meccanica quantistica Oscillatore armonico quantistico

Applicazioni alla meccanica quantistica Oscillatore armonico quantistico Applicazioni alla meccanica quantistica Oscillatore armonico quantistico Considero l equazione di Schrödinger per gli autovalori Ĥψ = Eψ e prendo un s.o.n.c. di funzioni u j (x). ψ si potrà esprimere come

Dettagli

Struttura atomica, configurazione elettronica e periodicità chimica

Struttura atomica, configurazione elettronica e periodicità chimica Struttura atomica, configurazione elettronica e periodicità chimica Dualismo onda-particella (V. de Broglie) Principio di indeterminazione (W. Heisenberg) Equazione di Shrodinger(1925) Modello quantomeccanico

Dettagli

Particella in un campo elettromagnetico

Particella in un campo elettromagnetico Particella in un campo elettromagnetico Vogliamo descrivere dal punto di vista quantistico una particella carica posta in un campo elettromagnetico. Momento di una particella Dal punto di vista classico

Dettagli

SECONDA PARTE anno accademico

SECONDA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA SECONDA PARTE anno accademico 2018-2019 (1) Per un sistema meccanico d-dimensionale determinare: (a) gli elementi di matrice dell operatore posizione

Dettagli

Modello atomico ad orbitali e numeri quantici

Modello atomico ad orbitali e numeri quantici Modello atomico ad orbitali e numeri quantici Il modello atomico di Bohr permette di scrivere correttamente la configurazione elettronica di un atomo ma ha dei limiti che sono stati superati con l introduzione

Dettagli

Capitolo 8 La struttura dell atomo

Capitolo 8 La struttura dell atomo Capitolo 8 La struttura dell atomo 1. La doppia natura della luce 2. La «luce» degli atomi 3. L atomo di Bohr 4. La doppia natura dell elettrone 5. L elettrone e la meccanica quantistica 6. L equazione

Dettagli

Esercitazioni di Meccanica Quantistica I

Esercitazioni di Meccanica Quantistica I Esercitazioni di Meccanica Quantistica I Sistema a due stati Consideriamo come esempio di sistema a due stati l ammoniaca. La struttura del composto è tetraedrico : alla sommità di una piramide con base

Dettagli

Università degli Studi di Perugia - Corso di Laurea Triennale in Fisica. Corso di. Meccanica Quantistica. Prof. Gianluca Grignani.

Università degli Studi di Perugia - Corso di Laurea Triennale in Fisica. Corso di. Meccanica Quantistica. Prof. Gianluca Grignani. Università degli Studi di Perugia - Corso di Laurea Triennale in Fisica Corso di Prof. Gianluca Grignani Problem Set 6 Problema Si consideri un oscillatore armonico isotropo bidimensionale con Hamiltoniana

Dettagli

1.3 L effetto tunnel (trattazione semplificata)

1.3 L effetto tunnel (trattazione semplificata) 1.3 L effetto tunnel (trattazione semplificata) Se la parete di energia potenziale non ha altezza infinita e E < V, la funzione d onda non va rapidamente a zero all interno della parete stessa. Di conseguenza,

Dettagli

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 8. I decadimenti γ

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 8. I decadimenti γ Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 8 I decadimenti γ Decadimenti γ (Cenni da cap. 9 del Krane) I decadimenti γ consistono nel passaggio di un nucleo da uno stato eccitato

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli