VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA"

Transcript

1 3/7 GENERALIZZAZIONI E SVILUPPI 11/12 1 VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA Forma unificata dei risultati già ottenuti I risultati ottenuti nei fascicoli 3/3, 3/5 e 3/6 sulle grandezze posizione, momento lineare ed energia di una particella possono essere posti in una forma unificata che in seguito assumeremo valida per qualsiasi grandezza fisica di qualsiasi sistema. Alla grandezza fisica G corrisponde un operatore autoaggiunto Ĝ Le equazioni agli autovalori di Ĝ per le parti discreta e continua dello spettro siano rispettivamente (1) Ĝ x w nm = g n x w nm, Ĝ x w ga = g x w ga. Allora le autofunzioni x w nm e x w ga, che assumiamo normalizzate iodo che sia (2) w n m w nm = δ nn δ mm, w g a w ga = δ(g g ) δ(a a ), rappresentano gli stati, rispettivamente propri e impropri, in cui la grandezza G ha un valore definito, tale valore essendo il corrispondente autovalore. Considerata la funzione d onda normalizzata in senso proprio ψ(x) = x ψ, il suo sviluppo sulle autofunzioni x w nm e x w ga di Ĝ sia (3) x ψ = c nm x w nm + nm dg da c(g, a) x w ga = w nm ψ x w nm + dg da w ga ψ x w ga. nm Allora la distribuzione dei valori di G quando il sistema è nello stato x ψ è (4) ϱ G (g) = δ(g g n) cnm 2 + da c(g, a) 2 = δ(g g n) w nm ψ 2 + da w ga ψ. 2 I risultati possibili di una misurazione della grandezza G sono gli autovalori di Ĝ e se la grandezza viene misurata il sistema essendo nello stato x ψ la distribuzione di probabilità di ottenere i diversi valori possibili è la distribuzione ϱ G (g) dei valori di G. Nota L indice di degenerazione delle autofunzioni dello spettro continuo può anche essere discreto, nel qual caso l equazione (4) si modifica iodo ovvio.

2 3/7 GENERALIZZAZIONI E SVILUPPI 11/12 2 Sinteticamente, usando il termine vettore di stato al posto di funzione d onda e sottintendendo le condizioni di normalizzazione, possiamo enunciare la seguente regola interpretativa: 1 a ogni grandezza fisica corrisponde un operatore autoaggiunto i cui autovettori rappresentano gli stati in cui la grandezza ha un valore definito e i cui autovalori sono i corrispondenti valori della grandezza; 2 per uno stato generale i moduli quadrati dei coefficienti dello sviluppo del vettore di stato sugli autovettori, sommati o integrati sugli eventuali indici di degenerazione, danno la distribuzione dei valori della grandezza in quello stato ovvero, se la grandezza viene misurata, la distribuzione di probabilità dei risultati.

3 3/7 GENERALIZZAZIONI E SVILUPPI 11/12 3 Valori medi e scarti medi La distribuzione ϱ G (g) dei valori g di una grandezza G è individuata in generale da infiniti parametri. Due parametri descrivono le caratteristiche più grosse della distribuzione. Essi sono, in ordine di importanza, il valore medio (o valore di aspettazione) della quantità e il suo scarto quadratico medio G = dg ϱ G (g) g G 2 = (G G) 2 = dg ϱ G (g) ( g G ) 2. Ieccanica quantistica, riscrivendo l espressione (4) della distribuzione ϱ G (g) come ϱ G (g) = δ(g g n) ψ w nm w nm ψ + da ψ w ga w ga ψ, si ottiene G = dg δ(g g n) ψ w nm w nm ψ g + dg da ψ w ga w ga ψ g = ψ w nm w nm ψ g n + dg da ψ w ga w ga ψ g nm e, poiché infine Ĝ = g n w nm w nm + dg g da w ga w ga, (5) G = ψ Ĝ ψ. Analogamente si ottiene (6) G 2 = ψ (Ĝ G)2 ψ. Nota La notazione più usata per lo scarto quadratico medio è ( G) 2.

4 3/7 GENERALIZZAZIONI E SVILUPPI 11/12 4 DISTRIBUZIONI CONGIUNTE E GRANDEZZE COMPATIBILI Abbiamo constatato che le funzioni d onda u x (x) = x x = δ (3) (x x) sono autofunzioni simultanee delle tre componenti ˆx, ŷ, ẑ dell operatore posizione ˆx; esse costituiscono un sistema ortonormale completo. Analogamente le funzioni d onda v p (x) = x p = 1/(2πħ) 3/2 exp ( (i/ħ) p x ) sono autofunzioni simultanee delle tre componenti ˆp x, ˆp y, ˆp z dell operatore momento lineare ˆp; esse pure costituiscono un sistema ortonormale completo. Tali proprietà del sistema delle autofunzioni degli operatori associati alle due grandezze sono essenziali sia per svolgere le argomentazioni contenute nei fascicoli 3/3 e 3/5, sia per porre le due distribuzioni ϱ(x) e ϱ p (p) nella forma unificata (4). D altra parte, come è ovvio, le due distribuzioni ϱ(x) e ϱ p (p) non sono altro che le distribuzioni congiunte, rispettivamente, dei valori x, y, z delle tre componenti della posizione e dei valori p x, p y, p z delle tre componenti del momento lineare. In realtà già sappiamo quale è la condizione (necessaria e sufficiente) affinché due o più operatori autoaggiunti possiedano un sistema completo di autofunzioni simultanee: la condizione è che gli operatori commutino a coppie; il sistema completo di autofunzioni simultanee può poi essere sempre scelto ortonormale. E infatti sia i tre operatori ˆx, ŷ, ẑ, sia i tre operatori ˆp x, ˆp y, ˆp z, separatamente, commutano a coppie. Nota Nel caso di una grandezza a più componenti come la posizione o il momento lineare, se interessa la distribuzione dei valori di una sola componente, diciamo la componente x, essa è evidentemente data da Osserviamo che, ϱ (g G x x) = dg y dg z w gx g y g z ψ 2. se le autofunzioni x w g = x w gx g y g z sono interpretate come autofunzioni del solo Ĝx, g y e g z svolgono la funzione di indici di degenerazione. Le considerazioni che precedono inducono alla seguente generalizzazione della regola interpretativa già enunciata.

5 3/7 GENERALIZZAZIONI E SVILUPPI 11/12 5 Siano A e B due grandezze fisiche tali che i corrispondenti operatori autoaggiunti  e ˆB commutino (il discorso che segue può immediatamente essere generalizzato a un sistema di tre o più grandezze tale che i corrispondenti operatori commutino a due a due). Scritte le equazioni agli autovalori di  e ˆB nella forma  w ijd = a i w ijd, ˆB w ijd = b j w ijd, (dove gli indici i, j, d o taluni di essi possono essere in tutto o in parte continui, nel quale caso i corrispondenti autovettori sono impropri) gli autovettori comuni w ijd costituiscono un set completo che può sempre essere scelto ortonormale. Allora le proposizioni 1 e 2 della regola interpretativa precedentemente enunciata possono essere generalizzate nel modo seguente: 1 gli autovettori comuni di  e ˆB rappresentano gli stati in cui A e B hanno entrambe valori definiti e le corrispondenti coppie di autovalori sono i valori delle due grandezze in tali stati; 2 per uno stato generale i moduli quadrati dei coefficienti dello sviluppo del vettore di stato sugli autovettori comuni, sommati sugli eventuali indici di degenerazione, costituiscono la distribuzione congiunta dei valori delle due grandezze in quello stato. Formalmente il sistema delle due (o n) grandezze può essere assimilato a un unica grandezza i cui valori siano costituiti da coppie (o n uple) di valori. Questa considerazione, unita a quanto già assunto circa la misurazione delle componenti della posizione e del momento lineare, spinge ad assumere che le due grandezze possano essere misurate simultaneamente, e quindi a completare la nuova proposizione 2 nel modo seguente: 2 per uno stato generale i moduli quadrati dei coefficienti dello sviluppo del vettore di stato sugli autovettori comuni, sommati sugli eventuali indici di degenerazione, costituiscono la distribuzione dei valori congiunti delle due grandezze in quello stato ovvero, se le due grandezze vengono misurate, la distribuzione di probabilità delle coppie di valori. Un sistema di grandezze del tipo descritto si dice sistema di grandezze compatibili. Il sistema degli operatori mutuamente commutanti che rappresentano le grandezze compatibili può essere esauriente (cioè il problema agli autovalori simultaneo non presenta degenerazione) oppure no.

6 3/7 GENERALIZZAZIONI E SVILUPPI 11/12 6 GRANDEZZE NON COMPATIBILI Abbiamo assunto che due (o più) grandezze compatibili possiedano, per un qualsiasi stato, una distribuzione di valori congiunta e inoltre che esse possano essere misurate simultaneamente. Se gli operatori corrispondenti alle grandezze considerate non commutano esse non sono compatibili e non si può definire una distribuzione congiunta dei loro valori. In particolare, non esiste una distribuzione congiunta di x e p. Le grandezze non compatibili, inoltre, non possono essere misurate simultaneamente. Quest ultima proposizione va intesa nel senso che esse non possono essere misurate simultaneamente con precisione arbitraria, senza escludere che esse possano essere misurate simultaneamente iodo approssimato. Ad esempio può avvenire che per due grandezze rappresentate da operatori non commutanti si possano introdurre due operatori che le rappresentano iodo approssimato e che, al contrario degli operatori che le rappresentano esattamente, commutano. Se le due grandezze in questione sono due componenti omonime della posizione e del momento lineare, le relazioni di incertezza suggeriscono che il prodotto xi pi delle corrispondenti approssimazioni debba essere almeno dell ordine di ħ.

7 3/7 GENERALIZZAZIONI E SVILUPPI 11/12 7 COSTANTI DEL MOTO Ieccanica classica una variabile dinamica è una costante del moto se il suo valore rimane costante nel tempo per qualunque condizione iniziale del sistema. Ieccanica quantistica una grandezza G è una costante del moto se la sua distribuzione di valori ϱ G (g) rimane costante nel tempo per qualunque soluzione ψ t dell equazione di Schrödinger. Se l operatore Ĝ che rappresenta G e l operatore hamiltoniano Ĥ non dipendono dal tempo G è una costante del moto se e solo se Ĝ e Ĥ commutano. Infatti (con riferimento per semplicità di scrittura al caso di soli spettri discreti) se Ĝ e Ĥ commutano essi hanno un sistema completo di autovettori comuni w nlm che soddisfano le equazioni Ĝ w nlm = g n w nlm, Ĥ w nlm = ħ ω l w nlm. Allora qualunque soluzione ψ t dell equazione di Schrödinger si può scrivere ψ t = nlm c nlm(0) exp( i ω l t) w nlm e per essa risulta ϱ G (g) = n δ(g g n) lm c nlm(0) exp( i ω l t) 2 = n δ(g g n) lm c nlm(0) 2. Viceversa, se ϱ G (g) non dipende dal tempo, anche il suo valore medio ψ t Ĝ ψ t non dipende dal tempo e quindi 0 = d ( ) ( ) d d dt ψ t Ĝ ψ t = ψ t Ĝ dt ψ t + dt ψ t Ĝ ψt e per l arbitrarietà di ψ t risulta [ Ĝ, Ĥ] = 0. = 1 iħ ψ t ĜĤ ψ t 1 iħ ψ t ĤĜ ψ t = 1 iħ ψ t [ Ĝ, Ĥ] ψ t Analogamente a quanto avviene ieccanica classica per la soluzione delle equazioni del moto, l individuazione, ieccanica quantistica, di una costante del moto (o di un sistema di costanti del moto mutuamente compatibili) il cui problema agli autovalori si sappia risolvere implica un progresso nella soluzione del problema agli autovalori dell operatore hamiltoniano. Infatti la soluzione del problema agli autovalori dell operatore hamiltoniano può allora essere ridotto alla soluzione del medesimo problema negli autospazi della costante del moto (o del sistema di costanti del moto compatibili).

VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA

VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA 3/7 GENERALIZZAZIONI E SVILUPPI 09/10 1 VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA Forma unificata dei risultati già ottenuti I risultati ottenuti nei fascicoli 3/3, 3/5 e 3/6 sulle grandezze

Dettagli

11/1 PRINCIPI GENERALI DELLA MECCANICA QUANTISTICA 08/09 1 STATI E GRANDEZZE

11/1 PRINCIPI GENERALI DELLA MECCANICA QUANTISTICA 08/09 1 STATI E GRANDEZZE 11/1 PRINCIPI GENERALI DELLA MECCANICA QUANTISTICA 08/09 1 STATI E GRANDEZZE Principio S: stati di un sistema fisico A ogni sistema fisico S è associato un opportuno spazio di Hilbert H S. Se il sistema

Dettagli

PROPRIETÀ GENERALI. L equazione di Schrödinger, per una particella che si muove in un campo di forze corrispondente all energia potenziale V (x, t),

PROPRIETÀ GENERALI. L equazione di Schrödinger, per una particella che si muove in un campo di forze corrispondente all energia potenziale V (x, t), 1/3 STUDIO PRELIMINARE DELL EQUAZIONE DI SCHRÖDINGER 10/11 1 PROPRIETÀ GENERALI L equazione di Schrödinger, per una particella che si muove in un campo di forze corrispondente all energia potenziale V

Dettagli

11/3 IRRIDUCIBILITÀ NELLO SPAZIO DI HILBERT 10/11 1 IRRIDUCIBILITÀ

11/3 IRRIDUCIBILITÀ NELLO SPAZIO DI HILBERT 10/11 1 IRRIDUCIBILITÀ 11/3 IRRIDUCIBILITÀ NELLO SPAZIO DI HILBERT 10/11 1 IRRIDUCIBILITÀ Sistemi irriducibili di operatori in uno spazio di Hilbert Un insieme o sistema di operatori {A, B,...} in uno spazio di Hilbert H si

Dettagli

SOTTOSPAZI INVARIANTI

SOTTOSPAZI INVARIANTI 2/2 OPERATORI NEGLI SPAZI DI HILBERT FINITODIMENSIONALI 08/09 1 SOTTOSPAZI INVARIANTI Riduzione di un operatore a un sottospazio Se A è un qualunque operatore lineare, H un sottospazio di H e P il proiettore

Dettagli

Fisica Moderna: Corso di Laurea Scienze dei Materiali Prova scritta: 16/06/2017

Fisica Moderna: Corso di Laurea Scienze dei Materiali Prova scritta: 16/06/2017 Fisica Moderna: Corso di aurea Scienze dei Materiali Prova scritta: 16/6/17 Problema 1 Una particella di spin 1/ è soggetta ad un campo magnetico uniforme B = B ẑ diretto lungo l asse delle z. operatore

Dettagli

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica Esercizi di Fisica Matematica 3, anno 014-015, parte di meccanica hamiltoniana e quantistica Dario Bambusi 09.06.015 Abstract Gli esercizi dei compiti saranno varianti dei seguenti esercizi. Nei compiti

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 007-008 () Sia dato un sistema che può trovarsi in tre stati esclusivi,, 3, e si supponga che esso si trovi nello stato

Dettagli

PROBLEMA AGLI AUTOVALORI DI UN OPERATORE LINEARE

PROBLEMA AGLI AUTOVALORI DI UN OPERATORE LINEARE 2/2 OPERATORI NEGLI SPAZI DI HILBERT FINITODIMENSIONALI 11/12 1 PROBLEMA AGLI AUTOVALORI DI UN OPERATORE LINEARE Esistenza di almeno una coppia autovalore autovettore Sia L un operatore lineare nello spazio

Dettagli

λ : autovalore di ĵ 2, H λ : corrispondente autospazio di ĵ 2.

λ : autovalore di ĵ 2, H λ : corrispondente autospazio di ĵ 2. 6/ TEORIA GENERALE DEL MOMENTO ANGOLARE 9/ TEORIA GENERALE DEL MOMENTO ANGOLARE In un qualsiasi spazio di Hilbert H, siano ĵ x ĵ, ĵ y ĵ 2 e ĵ z ĵ 3 tre operatori autoaggiunti con il significato di componenti

Dettagli

OSCILLATORE ARMONICO UNIDIMENSIONALE. Consideriamo una particella sottoposta a una forza armonica di costante mω 2.

OSCILLATORE ARMONICO UNIDIMENSIONALE. Consideriamo una particella sottoposta a una forza armonica di costante mω 2. 4/7 OSCILLATORE ARMONICO 09/10 1 OSCILLATORE ARMONICO UNIDIMENSIONALE Lo spazio di Hilbert e l operatore hamiltoniano Consideriamo una particella sottoposta a una forza armonica di costante mω 2. Nello

Dettagli

Metalli come gas di elettroni liberi

Metalli come gas di elettroni liberi Metalli come gas di elettroni liberi I metalli sono caratterizzati da elevata conducibilità elettrica e termica. La conducibilità elettrica in particolare (o il suo inverso, la resistività) è una delle

Dettagli

L equazione di Schrödinger

L equazione di Schrödinger 1 Forma dell equazione L equazione di Schrödinger Postulato - ψ r, t 0 ) definisce completamente lo stato dinamico del sistema al tempo t 0. L equazione che regola l evoluzione di ψ r, t) deve essere:

Dettagli

DIFFUSIONE DA UN POTENZIALE CENTRALE. 1 exp(i k x) + f

DIFFUSIONE DA UN POTENZIALE CENTRALE. 1 exp(i k x) + f 7/4 URTO SU UN POTENZIALE CENTRALE 0/ DIFFUSIONE DA UN POTENZIALE CENTRALE Nel caso di diffusione da un potenziale centrale V x) = V r), l ampiezza di diffusione f Ω) = f x) che specifica la dipendenza

Dettagli

1 Il paradosso del gatto di Schrödinger

1 Il paradosso del gatto di Schrödinger 1 Il paradosso del gatto di Schrödinger by extrabyte Abstract. Una descrizione del paradosso del gatto di Schrödinger 1.1 Introduzione Riportiamo velocemente i postulati della Meccanica Quantistica 1.

Dettagli

MECCANICA QUANTISTICA. Corso di laurea in fisica PROGRAMMA DEL CORSO E PROGRAMMA D ESAME. Anno accademico 2011/2012

MECCANICA QUANTISTICA. Corso di laurea in fisica PROGRAMMA DEL CORSO E PROGRAMMA D ESAME. Anno accademico 2011/2012 MECCANICA QUANTISTICA Corso di laurea in fisica PROGRAMMA DEL CORSO E PROGRAMMA D ESAME Anno accademico 2011/2012 Argomenti facenti parte del programma d esame. Argomenti facenti parte del programma d

Dettagli

DIFFUSIONE DA UN POTENZIALE CENTRALE. 1 exp(i k x) + f

DIFFUSIONE DA UN POTENZIALE CENTRALE. 1 exp(i k x) + f 7/4 URTO SU UN POTENZIALE CENTRALE /2 DIFFUSIONE DA UN POTENZIALE CENTRALE Nel caso di diffusione da un potenziale centrale V x) = V r), l ampiezza di diffusione f Ω) = f x) che specifica la dipendenza

Dettagli

ESAME SCRITTO DI FISICA MODERNA. 22 giugno Traccia di soluzione

ESAME SCRITTO DI FISICA MODERNA. 22 giugno Traccia di soluzione ESAME SCRITTO DI FISICA MODERNA giugno 08 Traccia di soluzione ) Ponendo α = /σ ), il valore medio della posizione è + ψ ˆx ψ = dx ψ ˆx x x ψ = dx ψ x)xψx) = α + dx x e αx x 0), ) e con un semplice cambio

Dettagli

VETTORI. Finora abbiamo considerato uno spazio di Hilbert H con elementi f, g,... tra i quali è definito un prodotto scalare indicato con il simbolo,.

VETTORI. Finora abbiamo considerato uno spazio di Hilbert H con elementi f, g,... tra i quali è definito un prodotto scalare indicato con il simbolo,. 2/6 NOTAZIONE DI DIRAC 11/12 1 VETTORI Finora abbiamo considerato uno spazio di Hilbert H con elementi f, g,... tra i quali è definito un prodotto scalare indicato con il simbolo,. È possibile costruire

Dettagli

I POSTULATI DELLA MECCANICA QUANTISTICA

I POSTULATI DELLA MECCANICA QUANTISTICA 68 I POSTULATI DELLA MECCANICA QUANTISTICA Si intende per postulato una assunzione da accettarsi a priori e non contraddetta dall esperienza. I postulati trovano la loro unica giustificazione nella loro

Dettagli

Metodo variazionale e applicazione all atomo di elio

Metodo variazionale e applicazione all atomo di elio Metodo variazionale e applicazione all atomo di elio Descrizione del metodo Il metodo detto variazionale è un metodo approssimato che si usa per ottenere una stima dell energia dello stato fondamentale

Dettagli

Esercizi di Fisica Matematica 3, anno

Esercizi di Fisica Matematica 3, anno Esercizi di Fisica Matematica 3, anno 01-013 Dario Bambusi, Andrea Carati 5.06.013 Abstract Tra i seguenti esercizi verranno scelti gli esercizi dell esame di Fisica Matematica 3. 1 Meccanica Hamiltoniana

Dettagli

Intuizioni e considerazioni sulla meccanica quantistica

Intuizioni e considerazioni sulla meccanica quantistica Intuizioni e considerazioni sulla meccanica quantistica Come estendere i concetti di fisica classica alle sorprendenti proprietà del mondo quantistico Modello di Bohr Se assumiamo che l elettrone sia un

Dettagli

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3)

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3) L atomo di idrogeno Il problema dell atomo di idrogeno é un problema esattamente risolubili ed i suoi risultati possono essere estesi agli atomi idrogenoidi, in cui solo c é solo un elettrone sottoposto

Dettagli

DIFFUSIONE DA UN BERSAGLIO DI MASSA FINITA bozza 0/ DIFFUSIONE DA UN BERSAGLIO DI MASSA FINITA L esperimento Un fascio composto di un grande numero di particelle proiettile di tipo incide su un bersaglio

Dettagli

5.2 Sistemi ONC in L 2

5.2 Sistemi ONC in L 2 5.2 Sistemi ONC in L 2 Passiamo ora a considerare alcuni esempi di spazi L 2 e di relativi sistemi ONC al loro interno. Le funzioni trigonometriche Il sistema delle funzioni esponenziali { e ikx 2π },

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 2013-2014 (1) Si consideri un sistema che può trovarsi in uno di tre stati esclusivi 1, 2, 3, e si supponga che esso si

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. PRIMA PARTE anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. PRIMA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA PRIMA PARTE anno accademico 015-016 (1) Si consideri una particella che può colpire uno schermo diviso in tre zone, indicate dai ket 1,, 3, e si supponga

Dettagli

Stati Coerenti. Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana. p = i d.

Stati Coerenti. Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana. p = i d. 1 Stati Coerenti Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana H = 1 m p + 1 m ω x (1) Per semplicitá introduciamo gli operatori autoaggiunti adimensionali

Dettagli

3. Si descrivano lo schema di Schroedinger e lo schema di Heisenberg per rappresentare l evoluzione temporale di un sistema quantistico.

3. Si descrivano lo schema di Schroedinger e lo schema di Heisenberg per rappresentare l evoluzione temporale di un sistema quantistico. 1 Fisica Matematica Avanzata, 11 9 2009 [ ] 1. Sia A = 1 i 1 2 la matrice che rappresenta una osservabile A di i 1 un sistema quantistico nello spazio di Hilbert H = C 2. a) Trovare la risoluzione dell

Dettagli

Capitolo 5. La fisica quantistica in un quadro formale. 5.1 Funzione d onda e spazi di Hilbert

Capitolo 5. La fisica quantistica in un quadro formale. 5.1 Funzione d onda e spazi di Hilbert Capitolo 5 La fisica quantistica in un quadro formale Non vi era evidenza che la topologia naturale degli spazi hilbertiani consentisse di render conto dell apparizione dell atto libero; non era neppure

Dettagli

Equazioni differenziali - Applicazioni

Equazioni differenziali - Applicazioni Equazioni differenziali - Applicazioni Antonino Polimeno Università degli Studi di Padova Equazione di Schrödinger 1D - 1 Equazione di Schrödinger i ψ(x, t) = Ĥ ψ(x, t) t al tempo t = 0 la funzione è definita

Dettagli

SISTEMI A SIMMETRIA CENTRALE

SISTEMI A SIMMETRIA CENTRALE 5/3 SISTEMI A SIMMETRIA CENTRALE 11/12 1 SISTEMI A SIMMETRIA CENTRALE Una particella che si muove in un campo di forze centrale è descritta da un operatore hamiltoniano del tipo 1 Ĥ = 1 2m ˆp2 +V ˆr =

Dettagli

FISICA QUANTISTICA I PROVA SCRITTA DEL 20/9/ Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale

FISICA QUANTISTICA I PROVA SCRITTA DEL 20/9/ Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale FISICA QUANTISTICA I PROVA SCRITTA DEL 0/9/013 1. Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale V (x) = V 0 θ(x) αδ(x), V 0, α > 0, (1) con la funzione a gradino

Dettagli

Esame scritto di fisica moderna

Esame scritto di fisica moderna Esame scritto di fisica moderna Traccia di soluzione 4 luglio 01 Esercizio 1. hamiltoniana data è quella di una buca di potenziale infinita, le cui autofunzioni sono date da due famiglie, dispari ψ n x

Dettagli

I esonero di Meccanica Quantistica 22/2/2006 A.A Proff. G. Martinelli, A. Pugliese

I esonero di Meccanica Quantistica 22/2/2006 A.A Proff. G. Martinelli, A. Pugliese I esonero di Meccanica Quantistica //006 A.A. 005 006 Proff. G. Martinelli, A. Pugliese Esercizio n. Una particella di spin / e massa m è vincolata a muoversi su una sfera di raggio R. Al tempo t =0 lo

Dettagli

PRIMA PARTE anno accademico

PRIMA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA PRIMA PARTE anno accademico 017-018 (1) Si consideri una particella che può colpire uno schermo in cui sono praticate tre fenditure, indicate dai ket

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 2011-2012 Si consideri un sistema che può trovarsi in uno di tre stati esclusivi 1, 2, 3, e si supponga che esso si trovi

Dettagli

REGISTRO DELLE LEZIONI - ESERCITAZIONI - SEMINARI

REGISTRO DELLE LEZIONI - ESERCITAZIONI - SEMINARI U N I V E R S I T À D E G L I S T U D I D I P A V I A REGISTRO DELLE LEZIONI - ESERCITAZIONI - SEMINARI del Prof. A l b e r t o R i m i n i Insegnamento di Meccanica quantistica (c. m. 502003, 12 CFU)

Dettagli

Esercizio III Data una particella di massa m in due dimensioni soggetta a un potenziale armonico

Esercizio III Data una particella di massa m in due dimensioni soggetta a un potenziale armonico Tema d esame di Elementi di MQ. Prova I Dato il potenziale monodimensionale V (x) = 2 γδ(x), con γ positivo, trovare l energia dello stato fondamentale la probabilità che una particella nello stato fondamentale

Dettagli

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1 Chimica Fisica - Chimica e Tecnologia Farmaceutiche Lezione n. 19 L equazione di Schrodinger L atomo di idrogeno Orbitali atomici 02/03/2008 Antonino Polimeno 1 Dai modelli primitivi alla meccanica quantistica

Dettagli

OPERAZIONI SU SPAZI DI HILBERT. Nel seguito introdurremo i concetti di prodotto diretto e somma diretta di due spazi di Hilbert.

OPERAZIONI SU SPAZI DI HILBERT. Nel seguito introdurremo i concetti di prodotto diretto e somma diretta di due spazi di Hilbert. 2/7 OPERAZIONI SU SPAZI DI HILBERT 11/12 1 OPERAZIONI SU SPAZI DI HILBERT Dati due spazi di Hilbert H (1) e H (2) si possono definire su di essi operazioni il cui risultato è un nuovo spazio di Hilbert

Dettagli

Corso di Laurea in Chimica e Tecnologie Chimiche - A.A Chimica Fisica II. Esame scritto del 25 Febbraio P = i.

Corso di Laurea in Chimica e Tecnologie Chimiche - A.A Chimica Fisica II. Esame scritto del 25 Febbraio P = i. 1 Corso di Laurea in Chimica e Tecnologie Chimiche - A.A. 212-213 Chimica Fisica II Esame scritto del 25 Febbraio 213 Quesiti d esame: 1. Definire gli operatori componente del momento cinetico P x e del

Dettagli

Compito di recupero del giorno 27/11/2015

Compito di recupero del giorno 27/11/2015 Compito di recupero del giorno 27/11/2015 Esercizio n. 1 Una particella di massa m e spin 1/2 si muove in due dimensioni nel piano xy ed è soggetta alla seguente Hamiltoniana: H = 1 2m (p2 x + p 2 y) +

Dettagli

La struttura elettronica degli atomi

La struttura elettronica degli atomi 1 In unità atomiche: a 0 me 0,59A unità di lunghezza e H 7, ev a H=Hartree unità di energia L energia dell atomo di idrogeno nello stato fondamentale espresso in unità atomiche è: 4 0 me 1 e 1 E H 13,

Dettagli

PARTICELLE IDENTICHE. Per caratteristiche fisiche di una particella intendiamo le sue proprietà fisiche permanenti (quali massa, carica, spin,... ).

PARTICELLE IDENTICHE. Per caratteristiche fisiche di una particella intendiamo le sue proprietà fisiche permanenti (quali massa, carica, spin,... ). 11/4 PARTICELLE IDENTICHE bozza 07/08 1 PARTICELLE IDENTICHE Particelle che abbiano le stesse caratteristiche fisiche sono identiche. Per caratteristiche fisiche di una particella intendiamo le sue proprietà

Dettagli

Momento angolare. l = i h ( x ) li = i h ε ijk x j x k. Calcoliamo le relazioni di commutazione tra due componenti del momento angolare

Momento angolare. l = i h ( x ) li = i h ε ijk x j x k. Calcoliamo le relazioni di commutazione tra due componenti del momento angolare 1 Momento angolare. Il momento della quantitá di moto (momento angolare) é definito in fisica classica dal vettore (nel seguito usiamo la convenzione che gli indici ripetuti vanno intesi sommati) l = x

Dettagli

Applicazioni alla meccanica quantistica Oscillatore armonico quantistico

Applicazioni alla meccanica quantistica Oscillatore armonico quantistico Applicazioni alla meccanica quantistica Oscillatore armonico quantistico Considero l equazione di Schrödinger per gli autovalori Ĥψ = Eψ e prendo un s.o.n.c. di funzioni u j (x). ψ si potrà esprimere come

Dettagli

Oscillatore armonico in più dimensioni

Oscillatore armonico in più dimensioni Oscillatore armonico in più dimensioni 1 Oscillatore in D dimensioni La teoria dell oscillatore armonico si può generalizzare facilmente da una a più dimensioni. Infatti la hamiltoniana di un oscillatore

Dettagli

PARTICELLE IDENTICHE. Per caratteristiche fisiche di una particella intendiamo le sue proprietà fisiche permanenti (quali massa, carica, spin,... ).

PARTICELLE IDENTICHE. Per caratteristiche fisiche di una particella intendiamo le sue proprietà fisiche permanenti (quali massa, carica, spin,... ). 11/5 PARTICELLE IDENTICHE bozza 07/08 1 PARTICELLE IDENTICHE Particelle che abbiano le stesse caratteristiche fisiche sono identiche. Per caratteristiche fisiche di una particella intendiamo le sue proprietà

Dettagli

LA MECCANICA BOHMIANA. È stata proposta come versione deterministica della meccanica quantistica.

LA MECCANICA BOHMIANA. È stata proposta come versione deterministica della meccanica quantistica. 4 LA MECCANICA BOHMIANA 08/09 1 LA MECCANICA BOHMIANA La meccanica di Bohm non è stata elaborata in relazione al problema della misurazione. È stata proposta come versione deterministica della meccanica

Dettagli

Problemi di Meccanica Quantistica. Capitolo IX. Spin. a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi

Problemi di Meccanica Quantistica. Capitolo IX. Spin. a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi Problemi di Meccanica Quantistica Capitolo IX Spin a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi http://people.na.infn.it/%7epq-qp Problema IX.1 Un sistema consiste di due particelle distinguibili

Dettagli

TEORIA PERTURBATIVA DELL EVOLUZIONE TEMPORALE (TEORIA DELLE PERTURBAZIONI DIPENDENTE DAL TEMPO) U(t) = V (t)w (t)

TEORIA PERTURBATIVA DELL EVOLUZIONE TEMPORALE (TEORIA DELLE PERTURBAZIONI DIPENDENTE DAL TEMPO) U(t) = V (t)w (t) 3/3 TEORIA PERTURBATIVA DELL EVOLUZIONE TEMPORALE bozza 6/7 TEORIA PERTURBATIVA DELL EVOLUZIONE TEMPORALE TEORIA DELLE PERTURBAZIONI DIPENDENTE DAL TEMPO Calcolo approssimato dell operatore di evoluzione

Dettagli

I fondamenti della meccanica quantistica

I fondamenti della meccanica quantistica I fondamenti della meccanica quantistica 1. Il principio di indeterminazione Il principio di indeterminazione, formulato da Heisenberg nel 1927, può essere considerato come il principio fondamentale della

Dettagli

Applicazioni lineari e diagonalizzazione

Applicazioni lineari e diagonalizzazione Autovalori e autovettori Matrici associate a applicazioni lineari Endomorfismi semplici e matrici diagonalizzabili Prodotti scalari e Teorema Spettrale nel caso generale 2 2006 Politecnico di Torino 1

Dettagli

Esame Scritto di Meccanica Quantistica Traccia di soluzione

Esame Scritto di Meccanica Quantistica Traccia di soluzione Esame Scritto di Meccanica Quantistica Traccia di soluzione 7 Giugno 7. Per esprimere la hamiltoniana data H = P 4m + p m + mω X + x ) in termini di x e x si esegue il cambiamento di coordinate ) X = x

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA MECCANICA QUANTISTICA anno accademico 2012-2013 (1) Per un sistema n-dimensionale si scrivano: (a) gli elementi di matrice dell operatore posizione x

Dettagli

CORSO DI STRUTTURA DELLA MATERIA Basi di algebra lineare e di meccanica quantistica

CORSO DI STRUTTURA DELLA MATERIA Basi di algebra lineare e di meccanica quantistica CORSO DI STRUTTURA DELLA MATERIA Basi di algebra lineare e di meccanica quantistica Leonardo Castellani Dipartimento di Scienze e Innovazione Tecnologica Università del Piemonte Orientale, e INFN, Sezione

Dettagli

LO STATO NELLE TEORIE FISICHE

LO STATO NELLE TEORIE FISICHE 2 IL PROBLEMA DELLA MISURAZIONE QUANTISTICA 11/12 1 LO STATO NELLE TEORIE FISICHE Nell ambito di una data teoria fisica lo stato di un sistema è la rappresentazione matematica più esauriente, ammessa dalla

Dettagli

Fondamenti di Meccanica Quantistica (Prof. Tarantelli)

Fondamenti di Meccanica Quantistica (Prof. Tarantelli) Fondamenti di Meccanica Quantistica (Prof. Tarantelli) 1 MOTO LINEARE E L OSCILLATORE ARMONICO 2 EQUAZIONE DI SCHRODINGER Equazione di Schrödinger: descrive il comportamento di un insieme di particelle:

Dettagli

PARTICELLA LIBERA IN UNA DIMENSIONE. L equazione di Schrödinger per una particella libera in una dimensione è. t (x) = 2m t.

PARTICELLA LIBERA IN UNA DIMENSIONE. L equazione di Schrödinger per una particella libera in una dimensione è. t (x) = 2m t. 4/ PARTICELLA LIBERA 09/0 PARTICELLA LIBERA IN UNA DIMENSIONE L equazione i Schröinger per una particella libera in una imensione è ) i ħ t ψ ˆp t x) = m ψ t x). Poiché Ĥ ) i πħ) exp / ħ px = p m ) i πħ)

Dettagli

L atomo di idrogeno. R. Dovesi, M. De La Pierre, C. Murace. Chimica Fisica II. Corso di Laurea in Chimica A.A. 2012/2013

L atomo di idrogeno. R. Dovesi, M. De La Pierre, C. Murace. Chimica Fisica II. Corso di Laurea in Chimica A.A. 2012/2013 L atomo di idrogeno R. Dovesi, M. De La Pierre, C. Murace Corso di Laurea in Chimica A.A. 2012/2013 Chimica Fisica II Modello per l atomo di idrogeno Modello: protone fisso nell origine ed elettrone in

Dettagli

Il Teorema Spettrale. 0.1 Applicazioni lineari simmetriche ed hermitiane

Il Teorema Spettrale. 0.1 Applicazioni lineari simmetriche ed hermitiane 0.1. APPLICAZIONI LINEARI SIMMETRICHE ED HERMITIANE 1 Il Teorema Spettrale In questa nota vogliamo esaminare la dimostrazione del Teorema Spettrale e studiare le sue conseguenze per quanto riguarda i prodotti

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA MECCANICA QUANTISTICA anno accademico 2014-2015 (1) Per un sistema meccanico n-dimensionale si scrivano: (a) gli elementi di matrice dell operatore posizione

Dettagli

1D, rappresentazione delle coordinate. Funzione normalizzata. Densità di probabilità. Osservabile F(X) Valore medio

1D, rappresentazione delle coordinate. Funzione normalizzata. Densità di probabilità. Osservabile F(X) Valore medio Stato quantistico Funzione d onda 1D, rappresentazione delle coordinate + ( x) dx 1 Densità di probabilità Funzione normalizzata Osservabile F(X) Valore medio Osservabili Operatori lineari hermitiani sullo

Dettagli

Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi.

Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi. 1 Esercizi 1.1 Spazi vettoriali Studiare gli insiemi definiti di seguito, e verificare quali sono spazi vettoriali e quali no. Per quelli che non lo sono, dire quali assiomi sono violati. x 1, x 2, x 3

Dettagli

Funzione d onda dello stato fondamentale (trascurando l interazione elettrone-elettrone)

Funzione d onda dello stato fondamentale (trascurando l interazione elettrone-elettrone) -e -e +2e ATOMO DI ELIO. Considero il nucleo fisso (sistema di riferimento del centro di massa, circa coincidente col nucleo). I due elettroni vanno trattati come indistinguibili. -e -e +2e SENZA il termine

Dettagli

Effetto Zeeman. p q c A) 2. i h ψ t. = Hψ (2)

Effetto Zeeman. p q c A) 2. i h ψ t. = Hψ (2) Effetto Zeeman Effetto Zeeman normale La hamiltoniana di una particella in presenza di un campo elettromagnetico, descritto dal potenziale vettore A e dal potenziale scalare Φ é H = 2M e l euazione di

Dettagli

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1 Effetto Stark Studiamo l equazione di Schrödinger per l atomo di idrogeno in presenza di un campo elettrico costante e diretto lungo l asse z, E = E k. La hamiltoniana di Schrödinger per l atomo di idrogeno

Dettagli

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà Prof. Adolfo Santini - Dinamica delle Strutture 1 Vibrazioni libere non smorzate 1/6 Le equazioni del moto di un sistema

Dettagli

Teoria delle Perturbazioni (aspetti elementari)

Teoria delle Perturbazioni (aspetti elementari) Teoria delle Perturbazioni (aspetti elementari) Corso MMMQ UNIMI (G. Gaeta, a.a. 2018/19) 3 Novembre 2018 Questa breve dispensa discute gli aspetti più elementari della teoria delle perturbazioni in Meccanica

Dettagli

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 8. I decadimenti γ

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 8. I decadimenti γ Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 8 I decadimenti γ Decadimenti γ (Cenni da cap. 9 del Krane) I decadimenti γ consistono nel passaggio di un nucleo da uno stato eccitato

Dettagli

METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 4 DICEMBRE 2018

METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 4 DICEMBRE 2018 METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 4 DICEMBRE 18 Si risolvano cortesemente i seguenti problemi, sapendo che verranno valutati: 1 la correttezza del risultato ottenuto e della procedura utilizzata;

Dettagli

BUCA DI POTENZIALE RETTANGOLARE

BUCA DI POTENZIALE RETTANGOLARE 4/3 POTENZIALI RETTANGOLARI 09/10 1 BUCA DI POTENZIALE RETTANGOLARE La buca di potenziale unidimensionale rettangolare è definita da (1) V (x) = { V0, per x < b (V 0 > 0), 4/3 POTENZIALI RETTANGOLARI bozza

Dettagli

Esperimentazioni di Fisica 1. Prova in itinere del 12 giugno 2018

Esperimentazioni di Fisica 1. Prova in itinere del 12 giugno 2018 Esperimentazioni di Fisica 1 Prova in itinere del 1 giugno 018 Esp-1 Prova in Itinere n. - - Page of 6 1/06/018 1. (1 Punti) Quesito L incertezza da associare alle misurazioni eseguite con un certo strumento

Dettagli

Punti di massimo o di minimo per funzioni di n variabili reali

Punti di massimo o di minimo per funzioni di n variabili reali Punti di massimo o di minimo per funzioni di n variabili reali Dati f : A R n R ed X 0 A, X 0 si dice : punto di minimo assoluto se X A, f ( x ) f ( X 0 ) punto di massimo assoluto se X A, f ( x ) f (

Dettagli

Calcolo variazionale. Calcolo variazionale.

Calcolo variazionale. Calcolo variazionale. antonino.polimeno@unipd.it Indice Perchè, quando e come Il calcolo variazionale: basi Equazioni di Eulero Bolle di sapone Equazioni di Hamilton Equazioni di Hartree-Fock G.M. Ewing, Calculus of Variations

Dettagli

EH. Equazioni di Hamilton

EH. Equazioni di Hamilton EH. Equazioni di Hamilton Iniziamo questo capitolo con un osservazione di carattere preliminare. Consideriamo, per esempio, un sistema differenziale costituito da N equazioni ciascuna del secondo ordine,

Dettagli

ESERCIZI DI MECCANICA QUANTISTICA. a cura di Stefano Patrì - a.a

ESERCIZI DI MECCANICA QUANTISTICA. a cura di Stefano Patrì - a.a ESERCIZI DI MECCANICA QUANTISTICA a cura di Stefano Patrì - a.a. - Esercizio Un oscillatore armonico in dimensione con massa m e pulsazione ω si trova in uno stato iniziale ψ, tale che: una misura dell

Dettagli

0.1 Forme quadratiche

0.1 Forme quadratiche 0.1. FORME QUADRATICHE 1 0.1 Forme quadratiche In questa sezione possiamo applicare il Teorema degli Assi Principali per giustificare alcune fatti che sono stati utilizzati nella riduzione a forma canonica

Dettagli

8.1 Problema della diffusione in meccanica quantistica

8.1 Problema della diffusione in meccanica quantistica 8.1 Problema della diffusione in meccanica quantistica Prima di procedere oltre nello studio dell interazione puntuale, in questo paragrafo vogliamo dare un breve cenno alle nozioni di base della teoria

Dettagli

Conducibilità elettrica nei metalli, teoria classica di Drude

Conducibilità elettrica nei metalli, teoria classica di Drude Conducibilità elettrica nei metalli, teoria classica di Drude Gli elettroni in un metallo sono particelle classiche, libere di muoversi Sotto un campo elettrico E, gli elettroni sono accelerati da una

Dettagli

Prova scritta di Meccanica Quantistica II COMPITO 1

Prova scritta di Meccanica Quantistica II COMPITO 1 Prova scritta di Meccanica Quantistica II Corso di Laurea in Fisica 3 APRILE 008 COMPITO 1 < S z >= 0, S z = h. Suggerimento : calcolare < S z > e < S z > su un ket generico, sviluppato b) La dinamica

Dettagli

CMP-II Equazioni di Hartree-Fock

CMP-II Equazioni di Hartree-Fock CMP-II Equazioni di Hartree-Fock Dipartimento di Fisica, UniTS 9 marzo 019 1 Equazioni di Hartree-Fock 1.1 Funzioni d onda a singolo determinante di Slater (Fermioni) Consideriamo un Hamiltoniana di Fermioni

Dettagli

fondamentali Fisica Classica

fondamentali Fisica Classica della Riassunto: presente opera. opera le è richiesto indicazioni il permesso dagli scritto esperimenti dell autore (E. Silva) fondamentali SQ Fisica Classica Punto materiale. Principi della dinamica.

Dettagli

Le molecole ed il legame chimico

Le molecole ed il legame chimico LA MOLECOLA DI IDROGENO X r A2 e 2 r A1 r 12 r B2 e 1 r B1 È il primo caso di molecola bielettronica da noi incontrato ed è la base per lo studio di ogni altra molecola. A R AB B Z Y Se si applica l approssimazione

Dettagli

Consideriamo un sistema composto da due particelle identiche. Due particelle sono identiche se hanno le stesse proprietà intrinseche (massa, carica,

Consideriamo un sistema composto da due particelle identiche. Due particelle sono identiche se hanno le stesse proprietà intrinseche (massa, carica, Consideriamo un sistema composto da due particelle identiche. Due particelle sono identiche se hanno le stesse proprietà intrinseche (massa, carica, spin, ). Esempi: due elettroni, due protoni, due neutroni,

Dettagli

Elettronica dello Stato Solido Lezione 5: L equazione di. Daniele Ielmini DEI Politecnico di Milano

Elettronica dello Stato Solido Lezione 5: L equazione di. Daniele Ielmini DEI Politecnico di Milano Elettronica dello Stato Solido Lezione 5: L equazione di Schrödinger Daniele Ielmini DEI Politecnico di Milano ielmini@elet.polimi.it Outline Argomenti qualitativi per dedurre l equazione di Schrödinger

Dettagli

Formalismo della Meccanica Quantistica

Formalismo della Meccanica Quantistica Formalismo della Meccanica Quantistica Le funzioni d onda devono appartenere allo spazio delle funzioni a quadrato sommabile, denotato con L 2 ψ L 2 = ψ( r) 2 d 3 r ψ < () Lo spazio delle funzioni a quadrato

Dettagli

Autovalori e autovettori

Autovalori e autovettori Autovalori e autovettori Se esiste un vettore x per cui Ax = λx x 0 Allora λ è un autovalore della matrice A corrispondente all autovettore x Gli autovalori sono soluzioni dell equazione secolare det(a

Dettagli

EQUAZIONE DI SCHRÖDINGER STAZIONARIA: Buche di Potenziale

EQUAZIONE DI SCHRÖDINGER STAZIONARIA: Buche di Potenziale Capitolo 6 EQUAZIONE DI SCHRÖDINGER STAZIONARIA: Buche di Potenziale Consideriamo lo studio di stati stazionari di sistemi elementari. Il sistema più semplice è quello di una particella libera, la cui

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari Siano X 1,, X n indeterminate Un equazione lineare (o di primo grado) nelle incognite X 1,, X n a coefficienti nel campo K è della forma a 1 X 1 + + a n X n = b, a i, b K,

Dettagli

Capitolo 10. La media pesata Calcolo della media pesata

Capitolo 10. La media pesata Calcolo della media pesata Capitolo 0 La media pesata Supponiamo che una stessa grandezza sia stata misurata da osservatori differenti (es. velocità della luce) in laboratori con strumenti e metodi di misura differenti: Laboratorio

Dettagli

LO STATO NELLE TEORIE FISICHE

LO STATO NELLE TEORIE FISICHE MECCANICA QUANTISTICA: MISURAZIONE E COMPLETEZZA Pavia 18/4/2012 1 LO STATO NELLE TEORIE FISICHE Nell ambito di una data teoria fisica lo stato di un sistema è la rappresentazione matematica più esauriente,

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA SECONDO ESONERO - 6 GIUGNO 7 Si risolvano cortesemente i seguenti problemi PRIMO PROBLEMA (PUNTEGGIO: 3/3) Facendo uso delle proprietà della matrici di Pauli, si calcoli

Dettagli

7.9 Il caso vincolato: vincoli di disuguaglianza

7.9 Il caso vincolato: vincoli di disuguaglianza 7.9 Il caso vincolato: vincoli di disuguaglianza Il problema con vincoli di disuguaglianza: g i (x) 0, i = 1,..., p, (51) o, in forma vettoriale: g(x) 0, può essere trattato basandosi largamente su quanto

Dettagli

ESERCIZI DI ALGEBRA LINEARE (D) A = A = A = R 2,2. D5 Dire come bisogna scegliere i parametri h e k affinché la

ESERCIZI DI ALGEBRA LINEARE (D) A = A = A = R 2,2. D5 Dire come bisogna scegliere i parametri h e k affinché la ESERCIZI DI ALGEBRA LINEARE (D) D1 Nello spazio vettoriale R 2,2 si consideri l insieme { V = X R 2,2 XA = AX, A = ( 1 1 1 2 )} delle matrici che commutano con A. Verifiare che V = L(I 2, A). Verificare

Dettagli