Trasformate e sistemi lineari

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Trasformate e sistemi lineari"

Transcript

1 Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod poa Impulva Calcolo dell uca noo l ngreo (ved Marro par.. a.3,.5, C., C.3) (ved Vell-Peernella par. II. a II.4, III. a III.3) Auomaca OMA TE Sefano Panzer-

2 Meod d calcolo baa ulla Traformaa d Laplace S poono operare delle raformazon u egnal nel domno del empo (o dello pazo) n modo da: meere n evdenza le caraerche perodche o peudoperodche del egnale (domno della frequenza); faclare alcune operazon maemache, qual l negrazone o la dervazone, rendendole puramene algebrche. Formalmene la Traformaa d Laplace F() d una funzone f() è l negrale: f() L[ f()] f() e d = = con = σ + jω ( f ( ) =, < ) * hp ecnche: f() ommable z : è deermnao e fno F() = :e[] e[ ] β. S β = aca d convergenza Auomaca OMA TE Sefano Panzer-

3 Una Traformaa Fondamenale f()= S T e p > p può eere anche compleo p> p= p< p F e e d p e ( p ) ( ) = = = e e[ ] > e[ p] p z p Le [ ]= p Le jω = ule per raformare jω n() e co() δ () = ST > L K K = L Kδ () = Gradno, ep, f. d Heavde: δ () Auomaca OMA TE Sefano Panzer- 3

4 Propreà noevol LINEAITA L[c f ()+c f ()]=c F ()+c F () a Le = z a e e d = ESPONENZIALE a SINUSOIDE L M N jω jω L L e n Ω = e P = j O Q Ω + Ω ESPONENZIALE FUNZIONE del TEMPO a ( a) z Le f() = e f() d= F( a) exp(-a)n(omega*) TASLAZIONE L ( a ) f ( a ) = e F ( ) δ a a Auomaca OMA TE Sefano Panzer- 4

5 Propreà noevol TEOEMA del VALOE FINALE TEOEMA del VALOE INIZIALE lm f ( ) = lm F( ) lm f( ) = lm F( ) + INTEGAZIONE DEIVAZIONE L f( ) dτ = F( ) d df L f ( ) = e d = negrando per par = F( ) f () d d d f F f = L ( ) ( ) ( ) d per f ( ) = 3 d 3 L f ( ) F( ) 3 = d è empre da leggere - Auomaca OMA TE Sefano Panzer- 5 df d = (e pare uo da )

6 z g() = f() f() = f( τ) f( τ) dτ appreenazone grafca: f () Convoluzone f () L g() = L f () L f () Dm: z z G () = f( τ) f () τ dτ e d= f () f ( -τ) τ z z = f ( τ) f ( τ) e d dτ = L d funzone rardaa Il valore d g() n dpende dal paao z z τ τ = f () τ F () e dτ = F () f () τ e dτ = F () F () Auomaca OMA TE Sefano Panzer- 6

7 Dmorazon z Lf () = F (); L f( τ) dτ = F () Dm: z L f ()( τ g τ) dτ = F() G() g() = = co ( per > : g() = δ ()) [ ( τ) ] ( ) [ ( )] L f = F L = δ Lf ( ) = F () f( ) Dm: z f ( τ) dτ = f( ) f( ) L f F f ( ) ( ) = () Lf ( ) = F () f( ) Auomaca OMA TE Sefano Panzer- 7

8 Propreà noevol CONVOLUZIONE NEL TEMPO L[ f ( ) g( τ) dτ ] F ( ) G( ) un prodoo! L eg e u a ( τ ).. ( τ ) ulma per l calcolo della rpoa al forzameno (eq. dfferenzale non omogenea) Eempo: L = L N M O z QP = δ () δ ( τ) dτ = dτ = z CONIUGATO F(*)=F*() *= conugao d Eono abelle d raformae e d ANTITASFOMATE :^) Auomaca OMA TE Sefano Panzer- 8

9 Carrellno con aro vcoo e forza applcaa ngreo: equazon: fe = δ () Fe() = Mv = f () e Dv Eempo elemenare f e f a = M Dx x M= D= Coeffcene d aro v()= [ ] M V () v() = F () DV () [ M + D] V () = F () e e L V() = Fe () = M+ D + lm = + Auomaca OMA TE Sefano Panzer- 9

10 Eempo elemenare V () B A A + A + B = + = = + ( + ) + δ - () δ - -e - L - e - L O L v () = L NM L L () + QP = N M O L O QP + NM QP + = δ e La raformaa della omma è uguale alla omma delle raformae Abbamo rolo l eq. dfferenzale rame un eq. algebrca Auomaca OMA TE Sefano Panzer-

11 Inverone delle L-raformae Paramo da un rapporo d polnom, n quano conderamo em a coan concenrae (n genere ), m n per la caualà a = a n n +a n- n a =a n (-p n )...(-p ) p : pol della raformaa zer del denomnaore F () N() D () = = b a n N () bn = + D () a ( p) n :edu Epanone n frazon parzal: p N () = lm ( ) e p pj D () p n praca pol emplc N( p ) p p a ( p p )...( p p )...( p p ) ( ) n n Auomaca OMA TE Sefano Panzer-

12 Se l k-mo polo compare r vole, lo vluppo prende quea forma: () () ( r ) k k k k k k p ( p ) ( p ) con ( r j) ( j) d r N( ) k = lm ( p ) ( r j) k p k ( r j)! d D( ) r Pol eal Mulpl L L M N O Q ( h) ( h) ( h ) p P e = h ( p) ( h )! p ( p) e con p< Eono anche pol comple mulpl, con analogo comporameno Auomaca OMA TE Sefano Panzer-

13 Eemp pol real mulpl Eempo pco r = d L N = lm ( pk) k lm ( pk ) p d D p () ( ) k k NM O L QP = k NM N D O QP L δ = = ()a f Una raformaa con pol nell orgne Calcolando redu, rrovano coeff. corre () ( ) d = d = ; a a f = = = f = Auomaca OMA TE Sefano Panzer- 3

14 Paramer de pol real emplc Convene defnre de paramer prac per caraerzzare gl andamen Pol real Y ()= b p ( ) a f... y()= e y ( ) = p p τ : ampezza del modo τ = Coane d empo p Se l modo è convergene [ p < ] può conderare eno per > 3τ y( 3τ ) = 5% y( ) Auomaca OMA TE Sefano Panzer- 4

15 Y () = j ϕ d Paramer de pol comple conuga b + a + a (...) jϕ adc p = σ + jω, p ; edu, Anraformaa * * = e, * = e ; p= σ + jω ( j ) ( j ) j( ) j( ) y () e jϕ σ+ ω e e jϕ σ ω e e σ ω + ϕ ω + ϕ = + = e e + = e σ co( ω+ ϕ ) ω n =pulazone naurale, ζ :coeffcene d morzameno ( ) Termnologa ( p)( p*) = σ + ω + σ = + ζωn+ ωn ζ pol ono real ζ < dverge p, = ζω n ± ζ ω n ω n e σ π/ω ζ = coψ σ ψ ω n I m ω e Auomaca OMA TE Sefano Panzer- 5

16 Una W() razonale* faorzza n ermn del po: h p ( p) h nel empo : e ( h )! Andamen v. pozone de Pol e olo Combnazon Lnear d e compaono nelle evoluzon lbere dello ao e delle uce. La convergenza a dpende da p ed h I * Aenzone: eono W() non razonal! I e e [p] h= h= h=3 / convergen = non convergen Auomaca OMA TE Sefano Panzer- 6

17 Andamen elemenar L G() L = L N M N () D () con G() razonale, è omma d Eponenzal Snuod morzae Polnom() Polnom x eponenzal aramene mpul δ( ) e O QP σ e a n( ω + ϕ),,,... e a (per ) a + a + b,,,... 3 ( a) Auomaca OMA TE Sefano Panzer- 7. Il loro numero è par al grado del denomnaore (le nuod conano per ). La pozone de pol ul pano, deermna gl andamen 3. La convergenza a dpende da e[p ]

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod Rpoa Impulva Calcolo dell uca noo l ngreo (ved Marro par.. a.3,.5, C., C.3) (ved Vell-Peernella par. II. a II.4, III. a III.3) Auomaca

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod Rpoa Impulva Calcolo dell uca noo l ngreo (ved Marro par. 2. a 2.3,2.5, C 2.2, C 2.3) (ved Vell-Peernella par. II. a II.4, III. a III.3)

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Trasformae e ssem lnear Trasformaa d Laplace Funzone d Trasfermeno Mod Rsposa Impulsva Calcolo dell usca noo l ngresso (ved Marro par. 2. a 2.3,2.5, C 2.2, C 2.3) (ved Vell-Peernella par. II. a II.4, III.

Dettagli

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1 Lezone 6. Funzone d rafermeno F. Prevd - uomaca - Lez.6 Schema della lezone. Defnzone (operava). Inerpreazone della funzone d rafermeno 3. Funzone d rafermeno: pol e zer 4. Funzone d rafermeno: paramerzzazon.

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lear Traformaa d aplace Fuzoe d Trafermeo Mod poa Impulva Calcolo dell uca oo l greo 6-febbrao- Terza Uvera degl ud d oma G.U -FdA- Traformaa d aplace peraore leare che raforma egal el domo

Dettagli

s F(s) f(0 ) nel dominio della pulsazione complessa. Per determinare le e at sen(ωt +ϕ) u(t) e at cos(ωt +ϕ) u(t)

s F(s) f(0 ) nel dominio della pulsazione complessa. Per determinare le e at sen(ωt +ϕ) u(t) e at cos(ωt +ϕ) u(t) A TASFOMATA D APAE E A SUA APPAZONE A UT NEA ON MEMOA. DEFNZONE E POPETÀ a raformaa d aplace d una funzone f( è defna dalla eguene relazone: [ f (] f ( e F ( dove F( è dea raformaa d aplace della funzone

Dettagli

Richiami sui sistemi lineari

Richiami sui sistemi lineari Rcham u tem lnear Ingegnera dell'automazone Coro d Stem d Controllo Multvarable - Prof. F. Amato Verone. Ottobre 0 Rappreentazone ISU Rcordamo che la rappreentazone ISU d un tema LI a tempo-contnuo è del

Dettagli

Lezione n. 2 di Controlli Automatici A prof. Aurelio Piazzi Modellistica ed equazioni differenziali lineari

Lezione n. 2 di Controlli Automatici A prof. Aurelio Piazzi Modellistica ed equazioni differenziali lineari Cors d Laurea n Ingegnera Eleronca, Informaca e delle Telecomuncazon Lezone n. 2 d Conroll Auomac A prof. Aurelo Pazz dfferenzal lnear Unversà degl Sud d Parma a.a. 2009-2010 Cenn d modellsca (crcu elerc

Dettagli

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2)

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2) Regme Permanente (ve Vtell-Petternella par. VI.,VI..,VI.) Comportamento a regme permanente Clafcazone n tp Conzon a Cclo Chuo Conzon a Cclo Aperto Rpota a Regme per Dturb Cotant Dturbo ulla mura Rpota

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III Ingegnera Elettrca Poltecnco d Torno Luca Carlone ControllAutomatcI LEZIONE III Sommaro LEZIONE III Trasformata d Laplace Propretà e trasformate notevol Funzon d trasfermento Scomposzone n fratt semplc

Dettagli

Sistemi dinamici LTI del 2 ordine: traiettorie nel piano di stato. Fondamenti di Automatica Prof. Silvia Strada 1

Sistemi dinamici LTI del 2 ordine: traiettorie nel piano di stato. Fondamenti di Automatica Prof. Silvia Strada 1 Sem dnamc LTI del ordne: raeore nel pano d ao Fondamen d Auomaca Prof. Slva Srada x 8 6 4 8 6 4 x x.5.5 5 5 Movmeno dello ao x 3 4 5 6 7 8 9 Movmeno dello ao x 3 4 5 6 7 8 9..4.6.8..4.6.8 x = Sema dnamco

Dettagli

3. MODELLI MATEMATICI

3. MODELLI MATEMATICI 3. MODE MAEMA ASSFAZONE DE MODE iemi ono decrii da opporuni modelli maemaici. Poiamo claificarli in re caegorie: Modelli maemaici nel dominio del empo o in campo reale Decrivono il comporameno del iema

Dettagli

TEORIA dei CIRCUITI - BIPOLI E TRASFORMATE- Ingegneria dell Informazione. Stefano Pastore

TEORIA dei CIRCUITI - BIPOLI E TRASFORMATE- Ingegneria dell Informazione. Stefano Pastore TEOA de CCUT ngegnera dell nformazone - BPOL E TASFOMATE- Sefano Paore Dparmeno d ngegnera e Archeura Coro d Teora de Crcu 05N a.a. 06-7 Sorgen deal d enone e correne Una orgene deale d enone manene l

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica 15 Gennaio 2015

Istituzioni di Probabilità Laurea magistrale in Matematica 15 Gennaio 2015 Iuzon d Probablà Laurea magrale n Maemaca 5 Gennao 5 Eerczo. pun S conder l equazone dfferenzale ocaca S dmor che dx = X d +, X = x. X = B + e x e B d è l unca oluzone. S mpo la verfca che ale oluzone

Dettagli

d 1 (t) u(t) + m(t)

d 1 (t) u(t) + m(t) Lo chema a blocch rappreentatvo el tema controllo conerato è _ r(t) y(t) (t) m(t) u(t) (t) (t) Le funzon trafermento cacun blocco poono eere calcolate n bae a at e manpolate per evenzarne la componente

Dettagli

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine Lezione 4 Ripoe canoniche dei iemi del primo e del econdo ordine Parameri caraeriici della ripoa allo calino Per ripoe canoniche i inendono le ripoe dei iemi dinamici ai egnali coiddei canonici (impulo,

Dettagli

L Amplificatore Operazionale. Argomenti della lezione: Introduzione. Introduzione. Sommario. Introduzione. v O =A(v P -v N )=Av id.

L Amplificatore Operazionale. Argomenti della lezione: Introduzione. Introduzione. Sommario. Introduzione. v O =A(v P -v N )=Av id. ommaro mplcaore perazonale amplcaore perazonale: Inroduzone agl.. Caraerche degl.. deal mplcaore Inerene e NN Inerene Ineguore Derenzale (mpl. da rumenazone) Crcu elemenar a rpoa dpendene dalla requenza

Dettagli

ELETTROTECNICA - BIPOLI E TRASFORMATE- Ingegneria Industriale. Stefano Pastore

ELETTROTECNICA - BIPOLI E TRASFORMATE- Ingegneria Industriale. Stefano Pastore ELETTOTENA ngegnera ndurale BPOL E TASFOMATE Sefano Paore Dparmeno d ngegnera e Archeura oro d Eleroecnca 4N a.a. 67 lafcazone de componen Dpende dalle equazon coue del modello del componene, e è lneare

Dettagli

Cap. 6 Rappresentazione e analisi dei circuiti elettrici in regime transitorio

Cap. 6 Rappresentazione e analisi dei circuiti elettrici in regime transitorio orso d leroecnca NO er. 0000B orso d leroecnca NO Angelo Baggn ap. 6 appresenazone e anals de crcu elerc n regme ransoro Inroduzone rcuo resso () 0 00V 0Ω > 0 rcuo puramene resso () 00V 0A V ondensaor

Dettagli

Esercitazione di Controlli Automatici 1 n 3

Esercitazione di Controlli Automatici 1 n 3 0 aprle 007 a.a. 006/07 Rferendo al tema d controllo della temperatura n un locale d pccole dmenon dcuo nella eerctazone precedente, e d eguto rportato:. S analzzno le carattertche modal del loop nterno

Dettagli

La Stabilita. La stabilità alla Lyapunov dei sistemi Semplice Asintotica Esponenziale Locale Globale. La stabilità dei sistemi linearizzati

La Stabilita. La stabilità alla Lyapunov dei sistemi Semplice Asintotica Esponenziale Locale Globale. La stabilità dei sistemi linearizzati La Stablta La stabltà alla Lyapunov de sstem Semplce Asntotca Esponenzale Locale Globale La stabltà de sstem lnearzzat Stabltà nput-output (BIBO) Rsposta mpulsva (ved Marro par..3, ved Vtell-Petternella

Dettagli

campionatore - converte un segnale a tempo continuo in una sequenza sono quindi presenti sia variabili a tempo discreto sia variabili a tempo

campionatore - converte un segnale a tempo continuo in una sequenza sono quindi presenti sia variabili a tempo discreto sia variabili a tempo Ingegneria e ecnologie dei Siemi di Conrollo Campionameno e ricoruzione dei egnali Luigi Biagioi DEIS-Univerià di Bologna el. 5 9334 e-mail: lbiagioi@dei.unibo.i Ricoruore di ordine zero Ponendo la equenza

Dettagli

Lezione 20. Progetto per sistemi a fase minima. F. Previdi - Automatica - Lez. 20 1

Lezione 20. Progetto per sistemi a fase minima. F. Previdi - Automatica - Lez. 20 1 Lezone 20. Progetto per tem a fae mnma F. Prevd - Automatca - Lez. 20 Introduzone Il progetto d controllor medante loop hapng laca al progettta molt grad d lbertà, n partcolare nella celta della parte

Dettagli

TEORIA dei CIRCUITI Ingegneria dell Informazione

TEORIA dei CIRCUITI Ingegneria dell Informazione TEOI de CICUITI Ingegnera dell Informaone DOPPI IPOLI Sefano Paore Dparmeno d Ingegnera e rcheura Coro d Teora de Crcu 5IN a.a. 3-4 N-polo Un componene a n ermnal n-polo ha, a caua d IK e IIK, fao un ermnale

Dettagli

Basi di Elettronica (1 parte)

Basi di Elettronica (1 parte) Bai di Eleronica ( pare) A TRASFORMATA DI APACE 2 Traformaa invera di aplace 2 Tabella: raformae di aplace di funzioni elemenari 2 Alcune proprieà noevoli della raformaa di aplace 3 Idenià di Pareval 5

Dettagli

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2)

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2) Regme Permanente (ve Vtell-Petternella par. VI.,VI..,VI.) Comportamento a regme permanente Clafcazone n tp Conzon a Cclo Chuo Conzon a Cclo Aperto Rpota a Regme per Dturb Cotant Dturbo ulla mura Rpota

Dettagli

Modelli circuitali per le linee di trasmissione

Modelli circuitali per le linee di trasmissione Modelli circuiali per le linee di ramiione prof. Anonio Maffucci A. Maffucci, Modelli circuiali per le linee di ramiione [pag. 1/73] Inerconneioni eleriche A vari livelli Board Package hip A. Maffucci,

Dettagli

La Trasformata di Laplace. Pierre-Simon Laplace

La Trasformata di Laplace. Pierre-Simon Laplace a Traformaa di aplac Pirr-Simon aplac 749-827 a Traformaa di Eulro onhard Eulr Eulro 707-783 Dfinizion Si dfinic raformaa di aplac dlla funzion f la funzion F coì dfinia: Dov σjωσj2πf. 0 F { f } f d Dfinizion

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulla trasformata di Laplace

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulla trasformata di Laplace Coro di Metodi Matematici per l Ingegneria A.A. 6/7 Eercizi volti ulla traformata di Laplace Marco Bramanti Politecnico di Milano January, 7 Eercizi A. Eercizi ul calcolo di traformate Eercizio Calcolare

Dettagli

Lezione 9. Calcolo dell antitrasformata di Laplace. F. Previdi - Fondamenti di Automatica - Lez. 9 1

Lezione 9. Calcolo dell antitrasformata di Laplace. F. Previdi - Fondamenti di Automatica - Lez. 9 1 ezione 9. Calcolo dell aniraormaa di aplace. Previdi - ondameni di Auomaica - ez. 9 Schema della lezione. Inroduzione. Aniraormazione di aplace. Srumeni per l aniraormazione 4. Teorema del valore iniziale

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria APPENDICE ATEATICA Elemen d maemaca fnanzara. Il regme dell neresse semplce L neresse è l fruo reso dall nvesmeno del capale. Nel corso dell esposzone s farà rfermeno a due regm o pologe d calcolo dell

Dettagli

Elettrotecnica. per Ingegneria Civile. Docente: Giuliana Sias

Elettrotecnica. per Ingegneria Civile. Docente: Giuliana Sias Eleroecnca per ngegnera Cle Docene: Gulana Sa rfermen cemeno: mercoledì -4 preo dee pad. A pano manarda. ndrzzo e-mal: gulana.a@dee.unca. Telefono: 7-6755878 So web: hp://www.dee.unca./eleroecnca/ nformazon

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale ELETTOTECNICA Ingegnera Indusrale BIPOLI E TASFOMATE Sefano Pasore Dparmeno d Ingegnera e Archeura Corso d Eleroecnca 43IN a.a. 3-4 Classfcazone de componen Dpende dalle equazon cosue del modello del componene,

Dettagli

Analisi delle reti con elementi dinamici

Analisi delle reti con elementi dinamici Prncp d ngegnera elerca ezone a Anals delle re con elemen dnamc Induore Connesson d nduor Induore nduore è un bpolo caraerzzao da una relazone ensonecorrene d po dfferenzale: ( d( d e hanno ers coordna

Dettagli

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) =

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) = Esercizio [puni 4] Prova scria di SEGNALI E SISTEMI 5 seembre 2003 Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 2002-2003) Teso e Soluzione (redaa da L. Finesso) Si racci il grafico dei segnali a. x

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 20/6/2013

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 20/6/2013 Iiuzioni di Probabilià Laurea magirale in Maemaica prova cria del 0/6/03 Exercie. (puni 8 circa) Sia W un moo browniano reale. Sia ϕ : 0, + 0, + una funzione crecene, ia c : 0, + 0, + una funzione miurabile;

Dettagli

ESPONENTI DI LIAPUNOV

ESPONENTI DI LIAPUNOV ESPONENTI DI IAPUNOV Ssem a empo dscreo, mono- e mul-dmensonal Problemache d calcolo Ssem a empo connuo C. Pccard e F. Dercole Polecnco d Mlano - 9/0/200 /8 MAPPE MONO-DIMENSIONAI Consderamo l ssema a

Dettagli

Loop di inseguimento

Loop di inseguimento Loop d negumeno Un ngolo loop con feedbck unro h l eguene dgrmm blocch In le chem R può eere nerpreo come l lore dedero dell uc C menre l lore E rppreen l errore fr l uc deder e quell ule. Il compormeno

Dettagli

Modelli nel dominio della pulsazione complessa s

Modelli nel dominio della pulsazione complessa s Modello VS: Modell el domo della pulaoe complea x&( t) Ax() t Bu() t yt () Cxt () Dut () x() x( ) Ax() Bu () y () Cx () Du () x() ( I A) Bu() ( I A) x() [ ] y () CI ( A) B Du () CI ( A) x() 444444443 44443

Dettagli

C = Consideriamo ora un circuito RC aperto, cioè tale in cui non circoli corrente(pertanto la carica presente sulle armature è nulla).

C = Consideriamo ora un circuito RC aperto, cioè tale in cui non circoli corrente(pertanto la carica presente sulle armature è nulla). I crcu Defnzone: s defnsce crcuo un crcuo elerco n cu al generaore d fem sono collega una ressenza e un condensaore. V cordamo che per un condensaore è possble defnre la capacà come l rapporo ra la carca

Dettagli

AMPLIFICATORI. Esp

AMPLIFICATORI. Esp MPLIICTOI mplfcatore dfferenzale a BJT mplfcator operazonal. Sorgent Controllate e mplfcator Clafcazone degl amplfcator mplfcazone con feedback pplcazon degl amplfcator operazonal. Ep-3 09-0 mplfcatore

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale EETTROTENA nggnra ndural TRANSTOR Sfano Paor Darmno d nggnra Archura oro d Elrocnca 43N a.a. 3-4 nroduzon Sudrmo l ranoro nl domno dl mo d crcu D dl ordn con orgn coan orgn nuodal om ranoro nndamo l oluzon

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0. 2.2 Scomposizione in fratti semplici Evoluzione forzata di un equazione differenziale: la trasformata di Laplace Y(s) del segnale di uscita y(t) è uguale al prodotto della trasformata di Laplace X(s)

Dettagli

Rappresentazione del sistema. Classificazione dei sistemi di controllo

Rappresentazione del sistema. Classificazione dei sistemi di controllo Rappreenazione del iema ẋ= f x,u, (equazione differenziale) y =g x,u, (equazione algebrica) Nomi delle variabili u: ingreo x: ao y: ucia Claificazione dei iemi di conrollo Ordine Il numero n delle variabili

Dettagli

Il paradigma della programmazione dinamica

Il paradigma della programmazione dinamica Il paradgma della programmazone dnamca Paolo Camurat Dp. Automatca e Informatca Poltecnco d Torno Tpologe d problem Problem d rcerca: ete una oluzone valda? cclo Hamltonano: dato un grafo non orentato,

Dettagli

Esempi Calcolo Antitrasformate

Esempi Calcolo Antitrasformate Eempi Calcolo Antitraformate Note per il Coro di FdA - Info April, 05 Il punto focale del coiddetto metodo di Heaviide per l antitraformazione di un egnale regolare a traformata razionale conite nel riconocere

Dettagli

Esercizi & Domande per il Compito di Elettrotecnica del 24 giugno 2002

Esercizi & Domande per il Compito di Elettrotecnica del 24 giugno 2002 Eercizi & Domande per il ompio di Eleroecnica del 4 iuno 00 ESEZO - Traniorio nel dominio di aplace Svolimeno Eercizio - Traniorio nel dominio di aplace coninua i a v v () i a Ω Ω F v (0 - ) v (0 - ) alcolare

Dettagli

Trasformata di Laplace ESEMPI DI MODELLIZZAZIONE

Trasformata di Laplace ESEMPI DI MODELLIZZAZIONE Traformata di Laplace ESEMPI DI MODELLIZZAZIONE Introduzione La traformata di Laplace i utilizza nel momento in cui è tata individuata la funzione di traferimento La F.d.T è una equazione differenziale

Dettagli

Modellistica. Cos è un modello Caratteristiche dei modelli Metodi formali Esempi per sistemi semplici

Modellistica. Cos è un modello Caratteristiche dei modelli Metodi formali Esempi per sistemi semplici Modellstca Cos è un modello Caratterstche de modell Metod formal Esemp per sstem semplc (ved Marro par. 1.1, 1.4) (ved Vtell-Petternella par. I.1, I.1.1, I.1.2, I.2, I.2.1 ) Automatca ROMA TRE Stefano

Dettagli

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono Captolo 1 INTRODUZIONE 21 Anals Modale S facca rfermento al sstema tempo-dscreto e al sstema tempo-contnuo x(k +1)=Ax(k) ẋ(t) =Ax(t) Le evoluzon lbere de due sstem a partre dalla condzone nzale x() = x

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta

Dettagli

Prof. Carlo Rossi DEIS - Università di Bologna Tel:

Prof. Carlo Rossi DEIS - Università di Bologna Tel: Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093020 email: carlo.rossi@unibo.it Sistemi Tempo-Discreti In questi sistemi i segnali hanno come base l insieme dei numeri interi: sono sequenze

Dettagli

AMPLIFICATORI. Esp

AMPLIFICATORI. Esp MPLIFICTOI mplfcatore dfferenzale a BJT mplfcator operazonal. Sorgent Controllate e mplfcator Clafcazone degl amplfcator mplfcazone con feedback pplcazon degl amplfcator operazonal. Ep-3 2-3 mplfcatore

Dettagli

Elettrotecnica /2009 Totale ore: 30; Crediti corrispondenti: 3

Elettrotecnica /2009 Totale ore: 30; Crediti corrispondenti: 3 Eleroecnca 2 28/29 Toale ore: 3; re corrsponden: 3 Anals de crcu n funzonameno dnamco Anals nel domno del empo rcu del prmo ordne e del secondo ordne, elazone ngresso/usca ed equazon d sao, Prncpal segnal

Dettagli

CINEMATICA INVERSA. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona

CINEMATICA INVERSA. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona CINEMATICA INVERSA Paolo Forn Dpartmento d Informata Unvertà degl Stud d Verona Introduzone Cnemata Dretta Dat: angol a gunt Calola: pozone e orentamento organo termnale Cnemata Invera Dat: pozone e orentamento

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale EETTROTENA nggnra ndural TRANSTOR Sfano Paor Darmno d nggnra Archura oro d Elrocnca 43N a.a. 3-4 nroduzon Sudrmo l ranoro nl domno dl mo d crcu D dl ordn con orgn coan orgn nuodal om ranoro nndamo l oluzon

Dettagli

Metodo della Trasformata di Laplace (mtl)

Metodo della Trasformata di Laplace (mtl) Lezione 7 Meodo della raformaa di Laplace Lezione n.7 Meodo della raformaa di Laplace (ml). Inroduzione. Richiami ulla raformaa di Laplace. Proprieà della raformaa. Regola di derivazione.3 abella di raformae

Dettagli

LA TRASFORMATA DI LAPLACE

LA TRASFORMATA DI LAPLACE LA RASFORMAA DI LAPLACE Per decrivere l evoluzione di un itema in regime tranitorio, oia durante il paaggio delle ucite da un regime tazionario ad un altro, è neceario ricorrere ad un modello più generale

Dettagli

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie)

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie) Ing. Eleronca - II a Esperenza del aboraoro d Fsca Generale II Oscllazon lbere e rsonanza d un crcuo -sere (Traazone analca del crcuo -sere on quesa breve noa s vuole fornre la raazone eorca del crcuo

Dettagli

Lezione 5. Calcolo dell antitrasformata di Laplace. F. Previdi - Automatica - Lez. 5 1

Lezione 5. Calcolo dell antitrasformata di Laplace. F. Previdi - Automatica - Lez. 5 1 Lezione 5. Calcolo dell aniraormaa di Laplace. Previdi - Auomaica - Lez. 5 Schema della lezione. Inroduzione. Aniraormazione di Laplace. Srumeni per l aniraormazione 4. Teorema del valore iniziale 5. Teorema

Dettagli

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità Capitolo 6 Il comportamento dei itemi di controllo in regime permanente 6. Claificazione dei itemi di controllo 6. Errore tatico: generalità 6. Calcolo dell errore a regime 6.4 Eercizi - Errori a regime

Dettagli

Soluzione degli esercizi del Capitolo 3

Soluzione degli esercizi del Capitolo 3 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Ricordando dal Paragrafo A.6 dell Appendice A che è facile oenere ẋ () d d ( (e A e A x + Ae (e A A x + ( A e A( ) x + Ax () + Bu () d ( e

Dettagli

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t)

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t) Assumiamo la variabile emporale discrea; sia f lineare. Si consideri la seguene rappresenazione implicia: 1 x f x,u Ax Bu, x x R y η x,u Cx Du n 1 1 Rappresenazioni equivaleni Si consideri la rasformazione:

Dettagli

Calcolo della funzione di trasferimento P(s) Progetto del controllore in base alle specifiche

Calcolo della funzione di trasferimento P(s) Progetto del controllore in base alle specifiche Calolo ella funzione i raferimeno P( Traformano eono Laplae il moello impliio ingreo-uia lineare e azionario ell impiano P y( y( y( u( + + + u( oengo: Y ( + Y ( + Y ( U ( + U ( Da ale relazione i riava:

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondameni di Conrolli Auomaici Prova Parziale 8 Aprile 2 - A.A. 2/ Nome: Nr. Ma. Firma: a) Deerminare la rasformaa di Laplace X i (s) dei segueni segnali emporali x i (): x () = 4 + 2 e +5 cos(3 6), x

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. a gradoni Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiede l antitrasformazione di una funzione razionale

Dettagli

Fisica Generale B. Correnti elettriche stazionarie. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini

Fisica Generale B. Correnti elettriche stazionarie. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini Fsca Generale Corren elerche sazonare Scuola d Ingegnera e rcheura UNIO Cesena nno ccademco 14 15 Inensà d correne Fenomen sazonar: le carche sono n movmeno con caraersche nvaran nel empo n cascun puno.

Dettagli

meccanica delle vibrazioni laurea magistrale ingegneria meccanica parte 3 sistemi SDOF - particolari

meccanica delle vibrazioni laurea magistrale ingegneria meccanica parte 3 sistemi SDOF - particolari meccanica delle vibrazioni laurea magisrale ingegneria meccanica pare 3 sisemi SDOF - paricolari Sisemi SDOF A parire dal sisema SDOF classico si possono sudiare diversi aspei e sisemi semplificai Vibrazioni

Dettagli

Commessa N. Foglio 1 di 6 Rev B. Titolo commessa. Redatto da AO Data Giugno Verificato da AT Data Ottobre 2002

Commessa N. Foglio 1 di 6 Rev B. Titolo commessa. Redatto da AO Data Giugno Verificato da AT Data Ottobre 2002 Commessa N. Foglo d 6 Rev B Deparmen o Cvl and Mnng Engneerng Dvson o Seel Srucures, Unversy campus, SE-97 87 Luleå, Seden Tel: +46 90 9 000 Fax: +46 90 9 9 Redao da AO Daa Gugno 00 Vercao da AT Daa Oore

Dettagli

Note per la Lezione 29 Ugo Vaccaro

Note per la Lezione 29 Ugo Vaccaro Progeaione di Algorimi Anno Accademico 1 1 Noe per la Leione Ugo Vaccaro In quea leione coninueremo lo udio di cammini minimin grafi in cui vi poono eere archi di coo negaivo. Ricordiamo l algorimo baao

Dettagli

coeff. della 1 colonna sono diversi da 0 il sistema è asintoticamente stabile;

coeff. della 1 colonna sono diversi da 0 il sistema è asintoticamente stabile; Sitemi Dinamici: Induttore: i = x, v = Lx Condenatore: i = Cx, v = x x = x x = p Maa: x =, dove x u = v M u = F x = x Ocillatore meccanico: x = (Kx M Dx + u), dove Pendolo: x = x x = g l in x + ml u k

Dettagli

meccanica delle vibrazioni laurea magistrale ingegneria meccanica parte 3 sistemi SDOF - particolari

meccanica delle vibrazioni laurea magistrale ingegneria meccanica parte 3 sistemi SDOF - particolari E vieao ogni uilizzo diverso da quello inerene la preparazione dell esame del corso di @Unis meccanica delle vibrazioni laurea magisrale ingegneria meccanica!! pare 3 sisemi SDOF - paricolari Sisemi SDOF

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica CONTROLLI AUTOMATICI Ingegneria Meccaronica TRASFORMATE DI LAPLACE Prof. Cesare Fanuzzi Ing. Crisian Secchi e-mail: cesare.fanuzzi@unimore.i, crisian.secchi@unimore.i hp://www.auomazione.ingre.unimore.i

Dettagli

Lezione 18. Analisi delle prestazioni

Lezione 18. Analisi delle prestazioni ezione 8. nalii delle pretazioni di itemi i retroazionati i c Senitività F. Previdi - utomatica - ez. 8 Schema. nalii tatica di S ripota allo calino 2. nalii tatica di S ripota alla rampa 3. Tabelle valori

Dettagli

Appunti: Scomposizione in fratti semplici ed antitrasformazione

Appunti: Scomposizione in fratti semplici ed antitrasformazione Appunt: Scomposzone n fratt semplc ed anttrasformazone Gulo Cazzol v0. (AA. 017-018) 1 Fratt semplc 1.1 Funzone ntera.............................................. 1. Funzone razonale fratta strettamente

Dettagli

Applicazioni. Lezione 13 1

Applicazioni. Lezione 13 1 Applicazioni Lezione 13 1 Generalità 1/2 Reti considerate: Reti passive con ingressi costanti o sinusoidali I contributi associati alle condizioni iniziali sono dei transitori I contributi associati agli

Dettagli

Metodo della trasformata di Laplace

Metodo della trasformata di Laplace Meodo della raformaa di aplace Il meodo imbolico conene di affronare l analii di rei coneneni componeni reaivi (condenaori e induori) in regime inuoidale, aggirando la compleià maemaica inrodoa dalle relazioni

Dettagli

Power-Oriented Graphs (POG)

Power-Oriented Graphs (POG) .. MODELLISTICA - Modelltca dnamca.3 Power-Orented Graph (POG) Blocco d elaborazone (cao calare): x x 2 y() =G()[x () x 2 () y G() y G() = b + a x y x 2 y : Potenza che fluce by 2 : Potenza dpata 2 ay2

Dettagli

Controlli Automatici (AUT) - 09AKSBL. Progetto dinamico. Funzioni compensatrici elementari. Struttura di controllo con compensazione in cascata d a

Controlli Automatici (AUT) - 09AKSBL. Progetto dinamico. Funzioni compensatrici elementari. Struttura di controllo con compensazione in cascata d a Controlli Automatici (AUT) - 9AKSBL Funzioni compenatrici elementari Progetto di controllori in cacata Struttura di controllo con compenazione in cacata d a r + + e + C () + u + G() y - d y + dt + L obiettivo

Dettagli

PRINCIPI DI SISTEMI ELETTRICI SEDE DI MILANO

PRINCIPI DI SISTEMI ELETTRICI SEDE DI MILANO same d PINCIPI DI SISTMI TTICI SD DI MINO I Compno del 0 05 07 ) Il crcuo d Fg., n regme sazonaro, è così assegnao: () 0 V 0 V 5 V 8 0 5 5 0 00 mh nerruore S è apero da un empo nfno e s chude all sane

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologe nformatche per la chmca Dr. Sergo Brutt Rappreentazone de dat Come rappreenta un dato d mura? Negl eemp appena volt abbamo ncontrato 2 tp d rappreentazone de dat permental Rappreentazone matrcale

Dettagli

E inc. Sistemi a Radiofrequenza II. Incidenza Obliqua. Esercizio 3.5. ε r 2. Politecnico di Torino CeTeM

E inc. Sistemi a Radiofrequenza II. Incidenza Obliqua. Esercizio 3.5. ε r 2. Politecnico di Torino CeTeM seco.5 ( a b Un onda pana de sulla suua d fgua con un campo dene che vale ( dove Da:. Calcolae l campo magneco oale e flesso all nefacca. f G,, 8, a. e Soluone.5 Campo eleco dene a ( a b ( e Pagna d 7

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n + a n d n y

Dettagli

SisElnB3 12/19/ Dec SisElnB DDC. Antenna. Transmit Signal Generation. 19-Dec SisElnB DDC

SisElnB3 12/19/ Dec SisElnB DDC. Antenna. Transmit Signal Generation. 19-Dec SisElnB DDC SiElnB3 2/9/ Ingegneria dell Informazione Obieivi del gruppo di lezioni B Modulo SISTEMI ELETTRONICI B - AMPLIFICATORI E DOPPI BIPOLI B.3 - Tipologie di amplificaori» Comporameno dinamico di amplificaori»

Dettagli

Dispense del corso di Analisi II

Dispense del corso di Analisi II Dipene del coro di Analii II verione preliminare Paolo Tilli Diparimeno di Maemaica Poliecnico di Torino email: paolo.illi@polio.i gennaio 25 Capiolo 5 Traformaa di Laplace 5. Inroduzione Sia x() una funzione

Dettagli

CINEMATICA DIRETTA. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona

CINEMATICA DIRETTA. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona CINEMATICA DIRETTA Paolo Forn Dpartmento d Informata Unvertà degl Stud d Verona Introduzone Manpolatore: atena nemata (aperta) d orp rgd (bra) e gunt (rotodal e prmat) Per poter manpolare un oggetto nello

Dettagli

Trasformata di Laplace unilatera Teoria

Trasformata di Laplace unilatera Teoria Definizione Tafomaa di Laplace unilaea Teoia L[f()] = f() $ e ($) d = F() Dove: f() = funzione eale afomabile. E nulla pe

Dettagli

= b ns n + + b 0. (s p i ), l r, A(p i) 0, i = 1,..., r. Y f (s) = G(s)U(s) = H(s) + n i=1. Parte dipendente dai poli di G(s) ( transitorio ).

= b ns n + + b 0. (s p i ), l r, A(p i) 0, i = 1,..., r. Y f (s) = G(s)U(s) = H(s) + n i=1. Parte dipendente dai poli di G(s) ( transitorio ). RISPOSTA FORZATA SISTEMI LINEARI STAZIONARI u(t) G(s) = B(s) A(s) = b ns n + + b 0 s n + + a 0 y f (t) Classe di funzioni di ingresso. U := l Q(s) u( ) : U(s) = P (s) = i= (s z i ) ri= (s p i ), l r, A(p

Dettagli

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE Brevi appunti di Fondamenti di Automatica prof. Dipartimento di Informatica e Automazione Universitá degli Studi ROMA RE ROMA RE UNIVERSIÀ DEGLI SUDI 4 marzo 05 Rev. 0. INDICE Indice La rasfomata di Laplace.0.

Dettagli

Elettrotecnica. per Ingegneria Civile. Docente: Giuliana Sias

Elettrotecnica. per Ingegneria Civile. Docente: Giuliana Sias Eleroecnca per ngegnera Cle Docene: Gulana Sa rfermen cemeno: u appunameno preo l dee pad. A ndrzzo e-mal: gulana.a@dee.unca. Telefono: 7-6755878 So web: hp://www.dee.unca./eleroecnca/ nformazon Toale

Dettagli

Università degli Studi di Napoli. Federico II. Appunti di METODI MATEMATICI PER L INGEGNERIA INDUSTRIALE

Università degli Studi di Napoli. Federico II. Appunti di METODI MATEMATICI PER L INGEGNERIA INDUSTRIALE Carlo Colella Davide Formiano Univerià degli Sudi di Napoli Federico II Diparimeno di Ingegneria Navale Appuni di METODI MATEMATICI PER INGEGNERIA INDUSTRIAE A.A. 8/9 INDICE Capiolo I A TRASFORMAZIONE

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 17 gennaio Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 17 gennaio Soluzioni compito 1 ANALISI MATEMATICA II Sapiena Univerità di Roma - Laurea in Ingegneria Informatica Eame del 7 gennaio 07 - Soluioni compito E Calcolare il eguente integrale di funione di variabile reale con i metodi della

Dettagli

26/08/2010. segnali deterministici. segnali casuali o random. stazionario. periodico. Non stazionario. transitorio

26/08/2010. segnali deterministici. segnali casuali o random. stazionario. periodico. Non stazionario. transitorio Cap 5: ANALISI DEI SEGNALI E ARAURA DINAMICA Un segnale è defnto come una qualsas varable fsca che camba nel tempo, nello spazo, o rspetto a altre varabl e che trasporta nformazon segnal determnstc segnal

Dettagli

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 25 Settembre y=x 2 =i L

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 25 Settembre y=x 2 =i L .9.8.7.6.5.4... - 4 5 6 7 8 9 SOLUZIONI PROVA SRITTA DI AUTOMATIA I (Prof. Biani, BIO A-K) 5 Seembre 6. Si conideri il eguene circuio elerico conenene due reiori, un condenaore e un induore: u A B R v

Dettagli

Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo

Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo 1 Corso di Fondamenti di Automatica A.A. 2017/18 Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo Prof. Carlo Cosentino Dipartimento di Medicina Sperimentale e Clinica Università degli

Dettagli